

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

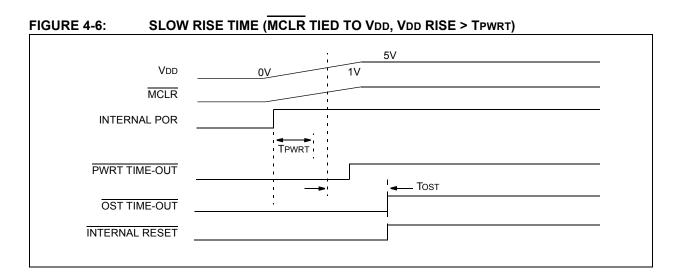
Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	80KB (40K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2682-e-sp

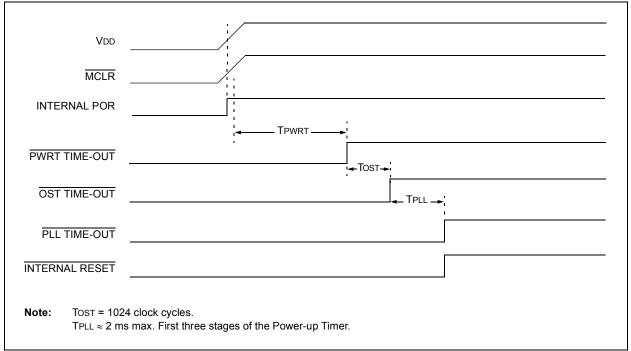
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC18F2682/2685 PINOUT I/O DESCRIPTIONS


Pin Name	Pin Number PDIP, SOIC	Pin Type	Buffer Type	Description
MCLR/VPP/RE3	1		от	Master Clear (input) or programming voltage (input).
MCLR		I	ST	Master Clear (Reset) input. This pin is an active-low
Vpp		Р		Reset to the device.
RE3			ST	Programming voltage input. Digital input.
-	-	1	51	5 1
OSC1/CLKI/RA7	9		от	Oscillator crystal or external clock input.
OSC1		I	ST	Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; CMOS otherwise.
CLKI		I	CMOS	External clock source input. Always associated with pin
				function OSC1. (See related OSC2/CLKO pin.)
RA7		I/O	TTL	General purpose I/O pin.
OSC2/CLKO/RA6	10			Oscillator crystal or clock output.
OSC2		0	_	Oscillator crystal output. Connects to crystal or resonator in
				Crystal Oscillator mode.
CLKO		0	—	In RC mode, OSC2 pin outputs CLKO which has 1/4 the
				frequency of OSC1 and denotes the instruction cycle rate.
RA6		I/O	TTL	General purpose I/O pin.
Legend: TTL = TTL con	npatible in	put		CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels


O = Output

ı. 4

Ρ = Power

FIGURE 4-7: TIME-OUT SEQUENCE ON POR w/PLL ENABLED (MCLR TIED TO VDD)

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
RXB1D5	RXB1D57	RXB1D56	RXB1D55	RXB1D54	RXB1D53	RXB1D52	RXB1D51	RXB1D50	XXXX XXXX	55, 295
RXB1D4	RXB1D47	RXB1D46	RXB1D45	RXB1D44	RXB1D43	RXB1D42	RXB1D41	RXB1D40	XXXX XXXX	55, 295
RXB1D3	RXB1D37	RXB1D36	RXB1D35	RXB1D34	RXB1D33	RXB1D32	RXB1D31	RXB1D30	XXXX XXXX	55, 295
RXB1D2	RXB1D27	RXB1D26	RXB1D25	RXB1D24	RXB1D23	RXB1D22	RXB1D21	RXB1D20	XXXX XXXX	55, 295
RXB1D1	RXB1D17	RXB1D16	RXB1D15	RXB1D14	RXB1D13	RXB1D12	RXB1D11	RXB1D10	XXXX XXXX	55, 295
RXB1D0	RXB1D07	RXB1D06	RXB1D05	RXB1D04	RXB1D03	RXB1D02	RXB1D01	RXB1D00	XXXX XXXX	55, 295
RXB1DLC	_	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	55, 295
RXB1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	55, 294
RXB1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	55, 294
RXB1SIDL	SID2	SID1	SID0	SRR	EXID		EID17	EID16	XXXX XXXX	55, 294
RXB1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	56, 293
RXB1CON Mode 0	RXFUL	RXM1	RXM0 ⁽⁷⁾	(7)	RXRTRRO ⁽⁷⁾	FILHIT2 ⁽⁷⁾	FILHIT1 ⁽⁷⁾	FILHITO ⁽⁷⁾	000- 0000	56, 292
RXB1CON Mode 1, 2	RXFUL	RXM1	RTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	0000 0000	56, 292
TXB0D7	TXB0D77	TXB0D76	TXB0D75	TXB0D74	TXB0D73	TXB0D72	TXB0D71	TXB0D70	XXXX XXXX	56, 286
TXB0D6	TXB0D67	TXB0D66	TXB0D65	TXB0D64	TXB0D63	TXB0D62	TXB0D61	TXB0D60	XXXX XXXX	56, 286
TXB0D5	TXB0D57	TXB0D56	TXB0D55	TXB0D54	TXB0D53	TXB0D52	TXB0D51	TXB0D50	XXXX XXXX	56, 286
TXB0D4	TXB0D47	TXB0D46	TXB0D45	TXB0D44	TXB0D43	TXB0D42	TXB0D41	TXB0D40	XXXX XXXX	56, 286
TXB0D3	TXB0D37	TXB0D36	TXB0D35	TXB0D34	TXB0D33	TXB0D32	TXB0D31	TXB0D30	XXXX XXXX	56, 286
TXB0D2	TXB0D27	TXB0D26	TXB0D25	TXB0D24	TXB0D23	TXB0D22	TXB0D21	TXB0D20	XXXX XXXX	56, 286
TXB0D1	TXB0D17	TXB0D16	TXB0D15	TXB0D14	TXB0D13	TXB0D12	TXB0D11	TXB0D10	XXXX XXXX	56, 286
TXB0D0	TXB0D07	TXB0D06	TXB0D05	TXB0D04	TXB0D03	TXB0D02	TXB0D01	TXB0D00	XXXX XXXX	56, 286
TXB0DLC		TXRTR		-	DLC3	DLC2	DLC1	DLC0	-x xxxx	56, 287
TXB0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	56, 286
TXB0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	56, 285
TXB0SIDL	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxx- x-xx	56, 285
TXB0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	56, 285
TXB0CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ	_	TXPRI1	TXPRI0	0000 0-00	56, 284
TXB1D7	TXB1D77	TXB1D76	TXB1D75	TXB1D74	TXB1D73	TXB1D72	TXB1D71	TXB1D70	XXXX XXXX	56, 286
TXB1D6	TXB1D67	TXB1D66	TXB1D65	TXB1D64	TXB1D63	TXB1D62	TXB1D61	TXB1D60	XXXX XXXX	56, 286
TXB1D5	TXB1D57	TXB1D56	TXB1D55	TXB1D54	TXB1D53	TXB1D52	TXB1D51	TXB1D50	XXXX XXXX	56, 286
TXB1D4	TXB1D47	TXB1D46	TXB1D45	TXB1D44	TXB1D43	TXB1D42	TXB1D41	TXB1D40	XXXX XXXX	56, 286
TXB1D3	TXB1D37	TXB1D36	TXB1D35	TXB1D34	TXB1D33	TXB1D32	TXB1D31	TXB1D30	XXXX XXXX	56, 286
TXB1D2	TXB1D07	TXB1D26	TXB1D25	TXB1D24	TXB1D23	TXB1D02	TXB1D01	TXB1D00	XXXX XXXX	56, 286
TXB1D1	TXB1D27 TXB1D17	TXB1D20	TXB1D25	TXB1D24	TXB1D23	TXB1D22 TXB1D12	TXB1D21	TXB1D20	XXXX XXXX	56, 286
TXB1D0	TXB1D17 TXB1D07	TXB1D10 TXB1D06	TXB1D15	TXB1D14	TXB1D13	TXB1D12 TXB1D02	TXB1D11 TXB1D01	TXB1D10	XXXX XXXX	56, 286
TXB1DLC	—	TXRTR	—	-	DLC3	DLC2	DLC1	DLC0	-x xxxx	56, 287
TXB1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	56, 286
TXB1EIDE	EID7 EID15	EID14	EID3	EID4 EID12	EID11	EID10	EID9	EID8		56, 285
TXB1EIDH	SID2	SID14	SID0		EXIDE		EID9 EID17	EID8 EID16	XXXX XXXX	56, 285
INDIGIDE	SIDZ	301	5100						xxx- x-xx	JU, 205

TABLE 5-2:REGISTER FILE SUMMARY (PIC18F2682/2685/4682/4685) (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented, read as '0'.

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

3: These registers and/or bits are not implemented on PIC18F2682/2685 devices and are read as '0'. Reset values are shown for PIC18F4682/4685 devices; individual unimplemented bits should be interpreted as '---'.

4: The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN[™] technology is set up in Mode 1 or Mode 2.

9: These registers and/or bits are available on PIC18F4682/4685 devices only.

TABLE 5-2		JSIERF	ILE SUM		10185260	82/2685/46	82/4685) ((JONTINUE	.D)	
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page
RXF1SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	58, 305
RXF1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	58, 306
RXF0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	58, 306
RXF0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	58, 306
RXF0SIDL	SID2	SID1	SID0	—	EXIDEN	—	EID17	EID16	xxx- x-xx	58, 305
RXF0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	58, 306
B5D7 ⁽⁸⁾	B5D77	B5D76	B5D75	B5D74	B5D73	B5D72	B5D71	B5D70	XXXX XXXX	58, 302
B5D6 ⁽⁸⁾	B5D67	B5D66	B5D65	B5D64	B5D63	B5D62	B5D61	B5D60	XXXX XXXX	58, 302
B5D5 ⁽⁸⁾	B5D57	B5D56	B5D55	B5D54	B5D53	B5D52	B5D51	B5D50	XXXX XXXX	58, 302
B5D4 ⁽⁸⁾	B5D47	B5D46	B5D45	B5D44	B5D43	B5D42	B5D41	B5D40	XXXX XXXX	58, 302
B5D3 ⁽⁸⁾	B5D37	B5D36	B5D35	B5D34	B5D33	B5D32	B5D31	B5D30	XXXX XXXX	58, 302
B5D2 ⁽⁸⁾	B5D27	B5D26	B5D25	B5D24	B5D23	B5D22	B5D21	B5D20	XXXX XXXX	58, 302
B5D1 ⁽⁸⁾	B5D17	B5D16	B5D15	B5D14	B5D13	B5D12	B5D11	B5D10	XXXX XXXX	58, 302
B5D0 ⁽⁸⁾	B5D07	B5D06	B5D05	B5D04	B5D03	B5D02	B5D01	B5D00	XXXX XXXX	58, 302
B5DLC ⁽⁸⁾ Receive mode		RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	58, 303
B5DLC ⁽⁸⁾ Transmit mode		TXRTR	—	-	DLC3	DLC2	DLC1	DLC0	-x xxxx	58, 304
B5EIDL ⁽⁸⁾	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	58, 301
B5EIDH ⁽⁸⁾	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	58, 301
B5SIDL ⁽⁸⁾ Receive mode	SID2	SID1	SID0	SRR	EXID	—	EID17	EID16	хххх х-хх	58, 300
B5SIDL ⁽⁸⁾ Transmit mode	SID2	SID1	SID0	—	EXIDE	_	EID17	EID16	xxx- x-xx	58, 300
B5SIDH ⁽⁸⁾	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx x-xx	58, 299
B5CON ⁽⁸⁾ Receive mode	RXFUL	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHITO	0000 0000	58, 298
B5CON ⁽⁸⁾ Transmit mode	TXBIF	TXABT	TXLARB	TXERR	TXREQ	RTREN	TXPRI1	TXPRI0	0000 0000	58, 298
B4D7 ⁽⁸⁾	B4D77	B4D76	B4D75	B4D74	B4D73	B4D72	B4D71	B4D70	XXXX XXXX	58, 302
B4D6 ⁽⁸⁾	B4D67	B4D66	B4D65	B4D64	B4D63	B4D62	B4D61	B4D60	XXXX XXXX	58, 302
B4D5 ⁽⁸⁾	B4D57	B4D56	B4D55	B4D54	B4D53	B4D52	B4D51	B4D50	XXXX XXXX	58, 302
B4D4 ⁽⁸⁾	B4D47	B4D46	B4D45	B4D44	B4D43	B4D42	B4D41	B4D40	XXXX XXXX	59, 302
B4D3 ⁽⁸⁾	B4D37	B4D36	B4D35	B4D34	B4D33	B4D32	B4D31	B4D30	XXXX XXXX	59, 302
B4D2 ⁽⁸⁾	B4D27	B4D26	B4D25	B4D24	B4D23	B4D22	B4D21	B4D20	XXXX XXXX	59, 302
B4D1 ⁽⁸⁾	B4D17	B4D16	B4D15	B4D14	B4D13	B4D12	B4D11	B4D10	XXXX XXXX	59, 302
B4D0 ⁽⁸⁾	B4D07	B4D06	B4D05	B4D04	B4D03	B4D02	B4D01	B4D00	XXXX XXXX	58, 302
B4DLC ⁽⁸⁾ Receive mode		RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	58, 303
B4DLC ⁽⁸⁾ Transmit mode	_	TXRTR	—	—	DLC3	DLC2	DLC1	DLC0	-x xxxx	58, 304
B4EIDL ⁽⁸⁾	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	59, 301
B4EIDH ⁽⁸⁾	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	59, 301

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented, read as '0'.

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

These registers and/or bits are not implemented on PIC18F2682/2685 devices and are read as '0'. Reset values are shown for PIC18F4682/4685 3: devices; individual unimplemented bits should be interpreted as '---'

The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC 4: Modes"

The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only. 5:

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

CAN bits have multiple functions depending on the selected mode of the CAN module. 7:

This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2. 8:

9: These registers and/or bits are available on PIC18F4682/4685 devices only.

5.4 Data Addressing Modes

Note: The execution of some instructions in the core PIC18 instruction set are changed when the PIC18 extended instruction set is enabled. See Section 5.6 "Data Memory and the Extended Instruction Set" for more information.

While the program memory can be addressed in only one way – through the program counter – information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). Its operation is discussed in greater detail in **Section 5.6.1 "Indexed Addressing with Literal Offset**".

5.4.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all. They either perform an operation that globally affects the device or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way but require an additional explicit argument in the opcode. This is known as Literal Addressing mode because they require some literal value as an argument. Examples include ADDLW and MOVLW which, respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

5.4.2 DIRECT ADDRESSING

Direct Addressing mode specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byteoriented instructions use some version of Direct Addressing by default. All of these instructions include some 8-bit literal address as their Least Significant Byte. This address specifies either a register address in one of the banks of data RAM (Section 5.3.3 "General **Purpose Register File**") or a location in the Access Bank (Section 5.3.2 "Access Bank") as the data source for the instruction.

The Access RAM bit 'a' determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 5.3.1 "Bank Select Register (BSR)") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In those cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction. Their destination is either the target register being operated on or the W register.

5.4.3 INDIRECT ADDRESSING

Indirect Addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations to be read or written to. Since the FSRs are themselves located in RAM as Special Function Registers, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures, such as tables and arrays in data memory.

The registers for Indirect Addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code, using loops, such as the example of clearing an entire RAM bank in Example 5-5.

EXAMPLE 5-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

	LFSR	FSR0,	100h	;	
NEXT	CLRF	POSTIN	20	;	Clear INDF
				;	register then
				;	inc pointer
	BTFSS	FSROH,	1	;	All done with
				;	Bank1?
	BRA	NEXT		;	NO, clear next
CONTINU	JE			;	YES, continue

REGISTER 6-1: EECON1: DATA EEPROM CONTROL REGISTER 1

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	—	FREE	WRERR ⁽¹⁾	WREN	WR	RD
bit 7							bit 0

Legend:	S = Settable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7	EEPGD: Flash Program or Data EEPROM Memory Select bit
	1 = Access Flash program memory 0 = Access data EEPROM memory
	-
bit 6	CFGS: Flash Program/Data EEPROM or Configuration Select bit
	1 = Access Configuration registers
	0 = Access Flash program or data EEPROM memory
bit 5	Unimplemented: Read as '0'
bit 4	FREE: Flash Row Erase Enable bit
	 1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation)
	0 = Perform write-only
bit 3	WRERR: Flash Program/Data EEPROM Error Flag bit ⁽¹⁾
	1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal
	operation or an improper write attempt) 0 = The write operation completed
bit 2	
DIL Z	WREN: Flash Program/Data EEPROM Write Enable bit
	 1 = Allows write cycles to Flash program/data EEPROM 0 = Inhibits write cycles to Flash program/data EEPROM
1.11.4	
bit 1	WR: Write Control bit
	 1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle (The operation is self-timed and the bit is cleared by hardware once write is complete.
	The WR bit can only be set (not cleared) in software.) 0 = Write cycle to the EEPROM is complete
bit 0	RD: Read Control bit
DIT U	1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only
	be set (not cleared) in software. RD bit cannot be set when EEPGD = 1 or CFGS = 1.)
	0 = Does not initiate an EEPROM read
Note 1:	When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

7.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADRH:EEADR register pair, clear the EEPGD control bit (EECON1<7>) and then set control bit, RD (EECON1<0>). The data is available on the very next instruction cycle; therefore, the EEDATA register can be read by the next instruction. EEDATA will hold this value until another read operation, or until it is written to by the user (during a write operation).

The basic process is shown in Example 7-1.

7.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADRH:EEADR register pair and the data written to the EEDATA register. The sequence in Example 7-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write 0AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

EXAMPLE 7-1: DATA EEPROM READ

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, EECON1, EEADRH:EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared in hardware and the EEPROM Interrupt Flag bit (EEIF) is set. The user may either enable this interrupt, or poll this bit. EEIF must be cleared by software.

7.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

MOVLW MOVWF MOVLW MOVWF	DATA_EE_ADDRH EEADRH DATA_EE_ADDR EEADR	; ; Upper bits of Data Memory Address to read ; ; Lower bits of Data Memory Address to read
BCF	EECON1, EEPGD	; Point to DATA memory
BCF	EECON1, CFGS	; Access EEPROM
BSF	EECON1, RD	; EEPROM Read
MOVF	EEDATA, W	; W = EEDATA

EXAMPLE 7-2: DATA EEPRC	ROM	WRITE
-------------------------	-----	-------

	MOVLW	DATA_EE_ADDRH	;
	MOVWF	EEADRH	; Upper bits of Data Memory Address to write
	MOVLW	DATA_EE_ADDR	;
	MOVWF	EEADR	; Lower bits of Data Memory Address to write
	MOVLW	DATA_EE_DATA	;
	MOVWF	EEDATA	; Data Memory Value to write
	BCF	EECON1, EPGD	; Point to DATA memory
	BCF	EECON1, CFGS	; Access EEPROM
	BSF	EECON1, WREN	; Enable writes
	BCF	INTCON, GIE	; Disable Interrupts
	MOVLW	55h	;
Required	MOVWF	EECON2	; Write 55h
Sequence	MOVLW	0AAh	;
	MOVWF	EECON2	; Write OAAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BSF	INTCON, GIE	; Enable Interrupts
			; User code execution
	BCF	EECON1, WREN	; Disable writes on write complete (EEIF set)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	54
LATB	LATB Data	Output Regis	ter						54
TRISB	PORTB Dat	a Direction R	legister						54
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	51
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	51
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	51
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	52

TABLE 10-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTB.

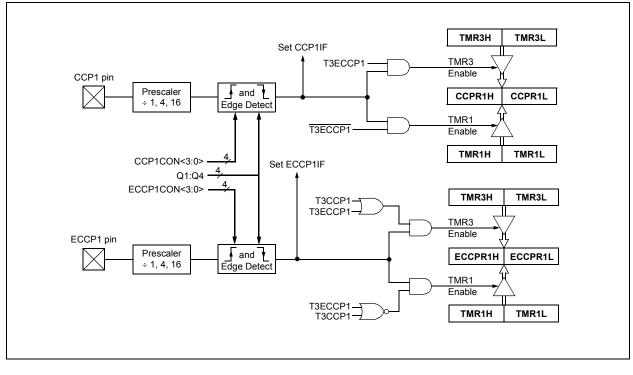
15.1 CCP1 Module Configuration

Each Capture/Compare/PWM module is associated with a control register (CCP1CON or ECCP1CON) and a data register (CCPR1 or ECCPR1). The data register, in turn, is comprised of two 8-bit registers: CCPR1L or ECCPR1L (low byte) and CCPR1H or ECCPR1H (high byte). All registers are both readable and writable.

15.1.1 CCP1 MODULES AND TIMER RESOURCES

The CCP1 modules utilize Timers 1, 2 or 3, depending on the mode selected. Timer1 and Timer3 are available to modules in Capture or Compare modes, while Timer2 is available for modules in PWM mode.

TABLE 15-1:CCP1 MODE – TIMER
RESOURCE

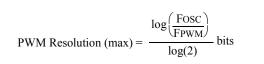

CCP1/ECCP1 Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2

The assignment of a particular timer to a module is determined by the Timer to CCP1/ECCP1 enable bits in the T3CON register (Register 14-1). Both modules may be active at any given time and may share the same timer resource if they are configured to operate in the same mode (Capture/Compare or PWM) at the same time. The interactions between the two modules are summarized in Figure 15-1 and Figure 15-2.

TABLE 15-2: INTERACTIONS BETWEEN CCP1 AND ECCP1 FOR TIMER RESOURCES

CCP1 Mode	ECCP1 Mode	Interaction
Capture	Capture	Each module can use TMR1 or TMR3 as the time base. Time base can be different for each CCP1.
Capture	Compare	CCP1 can be configured for the Special Event Trigger to reset TMR1 or TMR3 (depending upon which time base is used). Automatic A/D conversions on trigger event can also be done. Operation of CCP1 could be affected if it is using the same timer as a time base.
Compare	Capture	CCP1 can be configured for the Special Event Trigger to reset TMR1 or TMR3 (depending upon which time base is used). Operation of CCP1 could be affected if it is using the same timer as a time base.
Compare	Compare	Either module can be configured for the Special Event Trigger to reset the time base. Automatic A/D conversions on ECCP1 trigger event can be done. Conflicts may occur if both modules are using the same time base.
Capture	PWM*	None
Compare	PWM*	None
PWM*	Capture	None
PWM*	Compare	None
PWM*	PWM	Both PWMs will have the same frequency and update rate (TMR2 interrupt).

* Includes standard and Enhanced PWM operation.


FIGURE 15-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the equation.

EQUATION 15-3:

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

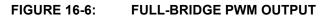
TABLE 15-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

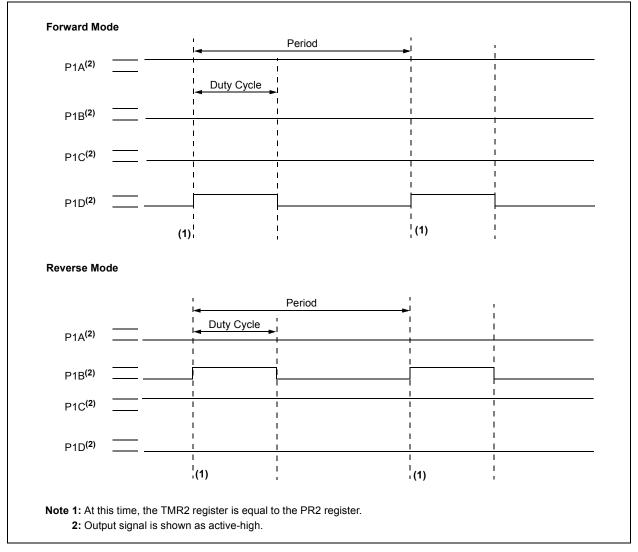
PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h
Maximum Resolution (bits)	14	12	10	8	7	6.58

15.4.3 PWM AUTO-SHUTDOWN (ECCP1 ONLY)

The PWM auto-shutdown features of the Enhanced CCP1 module are available to ECCP1 in PIC18F4682/ 4685 (40/44-pin) devices. The operation of this feature is discussed in detail in **Section 16.4.7 "Enhanced PWM Auto-Shutdown"**.

Auto-shutdown features are not available for CCP1.


15.4.4 SETUP FOR PWM OPERATION


The following steps should be taken when configuring the CCP1 module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the appropriate TRIS bit.
- 4. Set the TMR2 prescale value, then enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

16.4.5 FULL-BRIDGE MODE

In Full-Bridge Output mode, four pins are used as outputs; however, only two outputs are active at a time. In the Forward mode, pin P1A is continuously active and pin P1D is modulated. In the Reverse mode, pin P1C is continuously active and pin P1B is modulated. These are illustrated in Figure 16-6. P1A, P1B, P1C and P1D outputs are multiplexed with the PORTD<4>, PORTD<5>, PORTD<6> and PORTD<7> data latches. The TRISD<4>, TRISD<5>, TRISD<6> and TRISD<7> bits must be cleared to make the P1A, P1B, P1C and P1D pins outputs.

16.4.9 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the ECCP1 module for PWM operation:

- 1. Configure the PWM pins, P1A and P1B (and P1C and P1D, if used), as inputs by setting the corresponding TRIS bits.
- 2. Set the PWM period by loading the PR2 register.
- Configure the ECCP1 module for the desired PWM mode and configuration by loading the ECCP1CON register with the appropriate values:
 - Select one of the available output configurations and direction with the EPWM1M1:EPWM1M0 bits.
 - Select the polarities of the PWM output signals with the ECCP1M3:ECCP1M0 bits.
- 4. Set the PWM duty cycle by loading the ECCPR1L register and ECCP1CON<5:4> bits.
- 5. For Half-Bridge Output mode, set the deadband delay by loading ECCP1DEL<6:0> with the appropriate value.
- 6. If auto-shutdown operation is required, load the ECCP1AS register:
 - Select the auto-shutdown sources using the ECCPAS2:ECCPAS0 bits.
 - Select the shutdown states of the PWM output pins using PSSAC1:PSSAC0 and PSSBD1:PSSBD0 bits.
 - Set the ECCPASE bit (ECCP1AS<7>).
 - Configure the comparators using the CMCON register.
 - Configure the comparator inputs as analog inputs.
- 7. If auto-restart operation is required, set the PRSEN bit (ECCP1DEL<7>).
- 8. Configure and start TMR2:
 - Clear the TMR2 interrupt flag bit by clearing the TMR2IF bit (PIR1<1>).
 - Set the TMR2 prescale value by loading the T2CKPS bits (T2CON<1:0>).
 - Enable Timer2 by setting the TMR2ON bit (T2CON<2>).
- 9. Enable PWM outputs after a new PWM cycle has started:
 - Wait until TMRx overflows (TMRxIF bit is set).
 - Enable the ECCP1/P1A, P1B, P1C and/or P1D pin outputs by clearing the respective TRIS bits.
 - Clear the ECCPASE bit (ECCP1AS<7>).

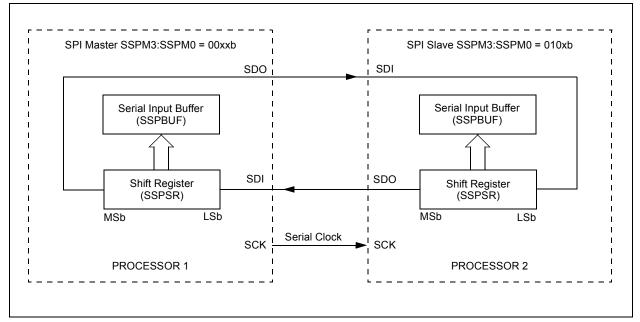
16.4.10 EFFECTS OF A RESET

Both Power-on Reset and subsequent Resets will force all ports to Input mode and the ECCP1 registers to their Reset states.

This forces the Enhanced CCP1 module to reset to a state compatible with the standard CCP1 module.

17.3.3 ENABLING SPI I/O

To enable the serial port, MSSP Enable bit, SSPEN (SSPCON1<5>), must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, reinitialize the SSPCON registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:


- · SDI is automatically controlled by the SPI module
- SDO must have TRISC<5> bit cleared
- SCK (Master mode) must have TRISC<3> bit cleared
- SCK (Slave mode) must have TRISC<3> bit set
- SS must have TRISF<7> bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

17.3.4 TYPICAL CONNECTION

Figure 17-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- · Master sends data Slave sends dummy data
- · Master sends data Slave sends data
- · Master sends dummy data Slave sends data

FIGURE 17-2: SPI MASTER/SLAVE CONNECTION

EXAMPLE 23-2: WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS TX/RX BUFFERS (CONTINUED)

ErrorInter	rrupt	
BCF	PIR3, ERRIF	; Clear the interrupt flag
		; Handle error.
RETFIE	2	
TXB2Intern	rupt	
BCF	PIR3, TXB2IF	; Clear the interrupt flag
GOTO	AccessBuffer	
TXBlIntern	rupt	
BCF	PIR3, TXB1IF	; Clear the interrupt flag
GOTO	AccessBuffer	
TXB0Interr	rupt	
BCF	PIR3, TXB0IF	; Clear the interrupt flag
GOTO	AccessBuffer	
RXBlInterr	rupt	
BCF	PIR3, RXB1IF	; Clear the interrupt flag
GOTO	Accessbuffer	
RXBOIntern	rupt	
BCF	PIR3, RXB0IF	; Clear the interrupt flag
GOTO	AccessBuffer	
AccessBuff	fer	; This is either TX or RX interrupt
; Copy	CANSTAT.ICODE bits to CA	ANCON.WIN bits
MOVF	TempCANCON, W	; Clear CANCON.WIN bits before copying
		; new ones.
ANDLW	B'11110001'	; Use previously saved CANCON value to
		; make sure same value.
MOVWF	TempCANCON	; Copy masked value back to TempCANCON
MOVF	TempCANSTAT, W	; Retrieve ICODE bits
ANDLW	B'00001110'	; Use previously saved CANSTAT value
		; to make sure same value.
IORWF	TempCANCON	; Copy ICODE bits to WIN bits.
MOVFF	TempCANCON, CANCON	; Copy the result to actual CANCON
; Acce	ess current buffer	
; User	code	
; Rest	ore CANCON.WIN bits	
MOVF	CANCON, W	; Preserve current non WIN bits
ANDLW	B'11110001'	
IORWF	TempCANCON	; Restore original WIN bits
; Do n	not need to restore CANSTA	AT - it is read-only register.
; Retu	arn from interrupt or chec	k for another module interrupt source

Made 0	R/C-0	R/C-0	R-0	R-0	R-0	R-0	R-0	R-0			
Mode 0	RXB00VFL	RXB10VFL	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN			
Mode 1	R/C-0	R/C-0	R-0	R-0	R-0	R-0	R-0	R-0			
	—	RXBnOVFL	TXB0	TXBP	RXBP	TXWARN	RXWARN	EWARN			
	R/C-0	R/C-0	R-0	R-0	R-0	R-0	R-0	R-0			
Mode 2	FIFOEMPTY	RXBnOVFL	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN			
	bit 7			÷				bit			
Legend:											
R = Read	able bit		C = Clearab	le bit	U = Unimpl	emented bit, I	read as '0'				
-n = Valu	e at POR		'1' = Bit is se	et	'0' = Bit is c	leared	x = Bit is unk	nown			
bit 7	Mode 0: RXB0OVFL:	Receive Buffe	r 0 Overflow	bit							
		Buffer 0 overflo									
		Buffer 0 has no	ot overflowed	1							
	Mode 1: Unimplement	nted: Read as	' ∩'								
	Unimplemented: Read as '0' Mode 2:										
	FIFOEMPTY: FIFO Not Empty bit										
		FIFO is not em FIFO is empty	ipty								
bit 6	Mode 0: RXB10VFL: Receive Buffer 1 Overflow bit										
	 1 = Receive Buffer 1 overflowed 0 = Receive Buffer 1 has not overflowed 										
	Mode 1, 2: BXPROVEL : Ressive Buffer & Overflow bit										
	RXBnOVFL: Receive Buffer n Overflow bit 1 = Receive Buffer n has overflowed										
	0 = Receive Buffer n has overflowed										
bit 5	TXBO: Transmitter Bus-Off bit										
		error counter a									
bit 4	TXBP: Transmitter Bus Passive bit										
		error counter a									
bit 3	RXBP: Receiver Bus Passive bit										
		error counter > error counter ≤									
bit 2	TXWARN: Tr	ransmitter War	ning bit								
		error counter a									
bit 1	RXWARN: R	eceiver Warnin	ng bit								
		eceive error cou error counter ≤									
bit 0		or Warning bit lag of the RXW	/ARN and T>	WARN bits.							
	1 = The RXV	VARN or the T	XWARN bits	are set							

REGISTER 23-4: COMSTAT: COMMUNICATION STATUS REGISTER

REGISTER 24-9: CONFIG6H: CONFIGURATION REGISTER 6 HIGH (BYTE ADDRESS 30000Bh)

					-		
R/C-1	R/C-1	R-1	U-0	U-0	U-0	U-0	U-0
WRTD	WRTB	WRTC ⁽¹⁾	—	—			—
bit 7	•						bit 0
Legend:							
R = Readable	bit	C = Clearable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value whe	en device is unp	programmed		u = Unchang	ed from progran	nmed state	
bit 7 bit 6	1 = Data EEP 0 = Data EEP WRTB: Boot 1 = Boot Bloc 0 = Boot Bloc	EEPROM Write PROM not write PROM write-pro Block Write Pro k (000000-000 k (000000-000	-protected tected btection bit 7FFh) not writ 7FFh) write-pi	e-protected rotected			
bit 5 bit 4-0	1 = Configura 0 = Configura	guration Regist tion registers (tion registers (300000-3000F 300000-3000F	Fh) not write-			
DIL 4-0	ommplemen	ted: Read as '	J				

Note 1: This bit is read-only in normal execution mode; it can be written only in Program mode.

GOTO)	Uncondit	ional Bra	anch		INCF	Incremen	t f	
Syntax:		GOTO k				Syntax:	INCF f{,c	d {,a}}	
Operan	nds:	$0 \le k \le 104$	8575			Operands:	$0 \leq f \leq 255$		
Operati	ion:	$k \rightarrow PC<20$):1>				d ∈ [0,1] a ∈ [0,1]		
Status /	Affected:	None				Operation:	$a \in [0, 1]$ (f) + 1 \rightarrow definition	aet	
Encodir	ng:					Status Affected:	$(1) + 1 \rightarrow 0$ C, DC, N,		
1st wor	rd (k<7:0>)	1110		k ₇ kkk	kkkk ₀			-	
2nd wo	ord(k<19:8>)	1111	k ₁₉ kkk	kkkk	kkkk ₈	Encoding: Description:	0010	10da ff	ff ff:
		anywhere v range. The PC<20:1>. instruction.	20-bit valu קסדס is a	ue 'k' is lo	aded into		placed bac If 'a' is '0', t	V. If 'd' is '1', tl k in register 'f' he Access Ba he BSR is use	' (default). ink is selec
Nords:		2					GPR bank	(default).	
Cycles:	:	2						ind the extend	
Q Cyc	le Activity:							led, this instru Literal Offset /	•
_	Q1	Q2	Q3		Q4			never f \leq 95 (5	
	Decode	Read literal 'k'<7:0>,	No operatio	on 'k'	ad literal <19:8>, ite to PC		Bit-Oriente	5.2.3 "Byte-Or ed Instruction set Mode" for	ns in Index
	No operation	No operation	No operatio	on op	No peration	Words:	1		detailo.
						Cycles:	1		
Exampl	<u>le:</u>	GOTO THE	RE			Q Cycle Activity:			
Af	ter Instructio	n				Q1	Q2	Q3	Q4
	PC =	Address (T	HERE)			Decode	Read	Process	Write t
							register 'f'	Data	destinati
						Example:	INCF	CNT, 1, 0)
						Before Instruc			
						ONT			

CNT Z C DC

After Instruction

CNT Z C DC FFh

= 0 = ? = ?

=

= = =

NEGF	Negate f
Syntax:	NEGF f {,a}
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$
Operation:	$(\overline{f}) + 1 \rightarrow f$
Status Affected:	N, OV, C, DC, Z
Encoding:	0110 110a ffff ffff
Description:	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.
Words:	1
Cycles:	1
O Cycle Activity:	

NOF	•	No Opera	No Operation					
Synta	ax:	NOP						
Oper	ands:	None	None					
Oper	ation:	No operati	No operation					
Statu	s Affected:	None						
Enco	ding:	0000	0000	000	0	0000		
		1111	XXXX	XXX	xx	XXXX		
Desc	ription:	No operati	on.					
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q	3		Q4		
	Decode	No	No			No		
		operation	operat	tion	ор	eration		

Example:

None.

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

Example:	NEGF	REG,	1

Before Instructio	n		
REG =	001	1 1010	[3Ah]
After Instruction			
REG =	: 110	0 0110	[C6h]

© 2009 Microchip Technology Inc.

SUE	WFB	Su	btract	W fron	n f wit	hΒ	orrow
Synta	ax:	SU	BWFB	f {,d {	,a}}		
Oper	ands:	0 ≤	$0 \le f \le 255$				
		d ∈ [0,1]					
-			[0,1]	-			
•	ation:	$(f) - (W) - (\overline{C}) \rightarrow dest$					
	s Affected:	N, OV, C, DC, Z					
Enco	0	0101 10da ffff ffff					
Desc	ription:	Subtract W and the Carry flag (borrow) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
14/	1		eral Off	set Mod	le" for	deta	IIS.
Word		1					
Cycle		1					
QC	ycle Activity:		02	C	12		04
	Q1 Decode	R	Q2 lead	1	23 cess	L V	Q4 Vrite to
	200040		ster 'f'	Da			stination
Exan	nple 1:	S	UBWFB	REG,	1, 0		
	Before Instruc	tion					
	REG W	=	19h 0Dh	(00		01)	
	č	=	1	(00)	00 11	01)	
	After Instructio						
	REG W	=	0Ch 0Dh	(00) (00)		11) 01)	
	С	=	1	(00	00 11	° - ,	
	Z N	=	0 0	; res	ult is p	ositiv	/e
Exan	nple 2:	S	UBWFB	REG,	0,0		
	Before Instruc	tion					
	REG W	=	1Bh 1Ah	(00 (00	01 10	11) 10)	
	č	=	0	(00	01 10.	10)	
	After Instructio						
	REG W	=	1Bh 00h	(00)	01 103	11)	
	C Z	=	1		ultio =		
	Z N	=	0	, ies	ult is ze	910	
Exan	nple 3:	S	UBWFB	REG,	1, 0		
	Before Instruc	tion					
	REG W	=	03h 0Eh	(00 (00	00 00	11) 01)	
	č	=	1	(00	00 11	JI)	
	After Instructio		FFb		11 01	·	
	REG	=	F5h	(11 ; [2 's	11 010 comp]	00) 	
	W C	=	0Eh 0		00 11		
	Z	=	0				
	Ν	=	1	; res	ult is ne	egat	ive

SWAPF	Swap f					
Syntax:	SWAPF f	SWAPF f {,d {,a}}				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$				
Operation:	,	(f<3:0>) → dest<7:4>, (f<7:4>) → dest<3:0>				
Status Affected:	None					
Encoding:	0011	10da	ffff	ffff		
Description:	f' are exch is placed in placed in re If 'a' is '0', t GPR bank If 'a' is '1', t GPR bank If 'a' is '0' a set is enab in Indexed mode wher Section 25 Bit-Oriente	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Proce Data		Write to estination		
Example:		REG, 1,	0			
Before Instruc REG After Instructio	= 53h					
REG	= 35h					