

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	80KB (40K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2682-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

2.6 Internal Oscillator Block

The PIC18F2682/2685/4682/4685 devices include an internal oscillator block which generates two different clock signals; either can be used as the microcontroller's clock source. This may eliminate the need for external oscillator circuits on the OSC1 and/or OSC2 pins.

The main output (INTOSC) is an 8 MHz clock source, which can be used to directly drive the device clock. It also drives a postscaler, which can provide a range of clock frequencies from 31 kHz to 4 MHz. The INTOSC output is enabled when a clock frequency from 125 kHz to 8 MHz is selected.

The other clock source is the internal RC oscillator (INTRC), which provides a nominal 31 kHz output. INTRC is enabled if it is selected as the device clock source; it is also enabled automatically when any of the following are enabled:

- Power-up Timer
- · Fail-Safe Clock Monitor
- Watchdog Timer
- Two-Speed Start-up

These features are discussed in greater detail in Section 24.0 "Special Features of the CPU".

The clock source frequency (INTOSC direct, INTRC direct or INTOSC postscaler) is selected by configuring the IRCF bits of the OSCCON register (Register 2-2).

2.6.1 INTIO MODES

Using the internal oscillator as the clock source eliminates the need for up to two external oscillator pins, which can then be used for digital I/O. Two distinct configurations are available:

- In INTIO1 mode, the OSC2 pin outputs Fosc/4, while OSC1 functions as RA7 for digital input and output.
- In INTIO2 mode, OSC1 functions as RA7 and OSC2 functions as RA6, both for digital input and output.

2.6.2 INTOSC OUTPUT FREQUENCY

The internal oscillator block is calibrated at the factory to produce an INTOSC output frequency of 8.0 MHz.

The INTRC oscillator operates independently of the INTOSC source. Any changes in INTOSC across voltage and temperature are not necessarily reflected by changes in INTRC and vice versa.

2.6.3 OSCTUNE REGISTER

The internal oscillator's output has been calibrated at the factory but can be adjusted in the user's application. This is done by writing to the OSCTUNE register (Register 2-1). The tuning sensitivity is constant throughout the tuning range. When the OSCTUNE register is modified, the INTOSC and INTRC frequencies will begin shifting to the new frequency. The INTRC clock will reach the new frequency within 8 clock cycles (approximately $8 * 32 \ \mu s = 256 \ \mu s$). The INTOSC clock will stabilize within 1 ms. Code execution continues during this shift. There is no indication that the shift has occurred.

The OSCTUNE register also implements the INTSRC and PLLEN bits, which control certain features of the internal oscillator block. The INTSRC bit allows users to select which internal oscillator provides the clock source when the 31 kHz frequency option is selected. This is covered in greater detail in **Section 2.7.1 "Oscillator Control Register"**.

The PLLEN bit controls the operation of the frequency multiplier, PLL, in internal oscillator modes.

2.6.4 PLL IN INTOSC MODES

The 4x frequency multiplier can be used with the internal oscillator block to produce faster device clock speeds than are normally possible with an internal oscillator. When enabled, the PLL produces a clock speed of up to 32 MHz.

Unlike HSPLL mode, the PLL is controlled through software. The control bit, PLLEN (OSCTUNE<6>), is used to enable or disable its operation.

The PLL is available when the device is configured to use the internal oscillator block as its primary clock source (FOSC3:FOSC0 = 1001 or 1000). Additionally, the PLL will only function when the selected output frequency is either 4 MHz or 8 MHz (OSCCON<6:4> = 111 or 110). If both of these conditions are not met, the PLL is disabled.

The PLLEN control bit is only functional in those internal oscillator modes where the PLL is available. In all other modes, it is forced to '0' and is effectively unavailable.

2.6.5 INTOSC FREQUENCY DRIFT

The factory calibrates the internal oscillator block output (INTOSC) for 8 MHz. However, this frequency may drift as VDD or temperature changes, which can affect the controller operation in a variety of ways. It is possible to adjust the INTOSC frequency by modifying the value in the OSCTUNE register. This has no effect on the INTRC clock source frequency.

Tuning the INTOSC source requires knowing when to make the adjustment, in which direction it should be made and in some cases, how large a change is needed. Three compensation techniques are discussed in Section 2.6.5.1 "Compensating with the EUSART", Section 2.6.5.2 "Compensating with the Timers" and Section 2.6.5.3 "Compensating with the CCP1 Module in Capture Mode", but other techniques may be used.

3.3 Sleep Mode

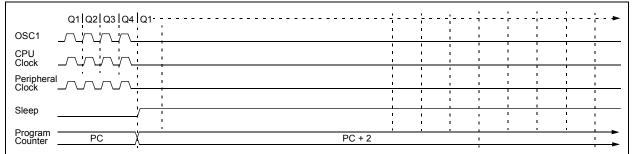
The power-managed Sleep mode in the PIC18F2682/ 2685/4682/4685 devices is identical to the legacy Sleep mode offered in all other PIC devices. It is entered by clearing the IDLEN bit (the default state on device Reset) and executing the SLEEP instruction. This shuts down the selected oscillator (Figure 3-5). All clock source status bits are cleared.

Entering the Sleep mode from any other mode does not require a clock switch. This is because no clocks are needed once the controller has entered Sleep. If the WDT is selected, the INTRC source will continue to operate. If the Timer1 oscillator is enabled, it will also continue to run.

When a wake event occurs in Sleep mode (by interrupt, Reset or WDT time-out), the device will not be clocked until the clock source selected by the SCS1:SCS0 bits becomes ready (see Figure 3-6), or it will be clocked from the internal oscillator block if either the Two-Speed Start-up or the Fail-Safe Clock Monitor are enabled (see Section 24.0 "Special Features of the CPU"). In either case, the OSTS bit is set when the primary clock is providing the device clocks. The IDLEN and SCS bits are not affected by the wake-up.

3.4 Idle Modes

The Idle modes allow the controller's CPU to be selectively shut down while the peripherals continue to operate. Selecting a particular Idle mode allows users to further manage power consumption.


If the IDLEN bit is set to a '1' when a SLEEP instruction is executed, the peripherals will be clocked from the clock source selected using the SCS1:SCS0 bits; however, the CPU will not be clocked. The clock source status bits are not affected. Setting IDLEN and executing a SLEEP instruction provides a quick method of switching from a given Run mode to its corresponding Idle mode.

If the WDT is selected, the INTRC source will continue to operate. If the Timer1 oscillator is enabled, it will also continue to run.

Since the CPU is not executing instructions, the only exits from any of the Idle modes are by interrupt, WDT time-out or a Reset. When a wake event occurs, CPU execution is delayed by an interval of TCSD (parameter 38, Table 27-10) while it becomes ready to execute code. When the CPU begins executing code, it resumes with the same clock source for the current Idle mode. For example, when waking from RC_IDLE mode, the internal oscillator block will clock the CPU and peripherals (in other words, RC_RUN mode). The IDLEN and SCS bits are not affected by the wake-up.

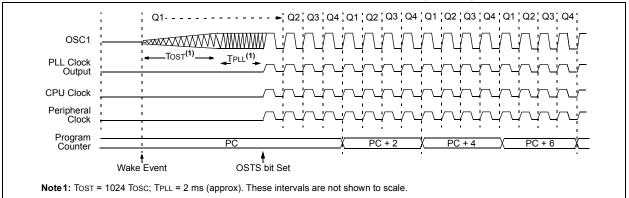

While in any Idle mode or the Sleep mode, a WDT timeout will result in a WDT wake-up to the Run mode currently specified by the SCS1:SCS0 bits.

FIGURE 3-5: TRANSITION TIMING FOR ENTRY TO SLEEP MODE

TRANSITION TIMING FOR WAKE FROM SLEEP (HSPLL)

5.3 Data Memory Organization

Note: The operation of some aspects of data memory are changed when the PIC18 extended instruction set is enabled. See Section 5.6 "Data Memory and the Extended Instruction Set" for more information.

The data memory in PIC18 devices is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4096 bytes of data memory. The memory space is divided into as many as 16 banks that contain 256 bytes each; PIC18F2682/2685/4682/4685 devices implement all 16 banks. Figure 5-5 shows the data memory organization for the PIC18F2682/2685/4682/4685 devices.

The data memory contains Special Function Registers (SFRs) and General Purpose Registers (GPRs). The SFRs are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and scratchpad operations in the user's application. Any read of an unimplemented location will read as '0's.

The instruction set and architecture allow operations across all banks. The entire data memory may be accessed by Direct, Indirect or Indexed Addressing modes. Addressing modes are discussed later in this subsection.

To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle, PIC18 devices implement an Access Bank. This is a 256-byte memory space that provides fast access to SFRs and the lower portion of GPR Bank 0 without using the BSR. **Section 5.3.2 "Access Bank"** provides a detailed description of the Access RAM.

5.3.1 BANK SELECT REGISTER (BSR)

Large areas of data memory require an efficient addressing scheme to make rapid access to any address possible. Ideally, this means that an entire address does not need to be provided for each read or write operation. For PIC18 devices, this is accomplished with a RAM banking scheme. This divides the memory space into 16 contiguous banks of 256 bytes. Depending on the instruction, each location can be addressed directly by its full 12-bit address, or an 8-bit low-order address and a 4-bit Bank Pointer.

Most instructions in the PIC18 instruction set make use of the Bank Pointer, known as the Bank Select Register (BSR). This SFR holds the 4 Most Significant bits of a location's address; the instruction itself includes the 8 Least Significant bits. Only the four lower bits of the BSR are implemented (BSR3:BSR0). The upper four bits are unused; they will always read '0' and cannot be written to. The BSR can be loaded directly by using the MOVLB instruction.

The value of the BSR indicates the bank in data memory. The 8 bits in the instruction show the location in the bank and can be thought of as an offset from the bank's lower boundary. The relationship between the BSR's value and the bank division in data memory is shown in Figure 5-6.

Since up to 16 registers may share the same low-order address, the user must always be careful to ensure that the proper bank is selected before performing a data read or write. For example, writing what should be program data to an 8-bit address of F9h while the BSR is 0Fh, will end up resetting the program counter.

While any bank can be selected, only those banks that are actually implemented can be read or written to. Writes to unimplemented banks are ignored, while reads from unimplemented banks will return '0's. Even so, the STATUS register will still be affected as if the operation was successful. The data memory map in Figure 5-5 indicates which banks are implemented.

In the core PIC18 instruction set, only the MOVFF instruction fully specifies the 12-bit address of the source and target registers. This instruction ignores the BSR completely when it executes. All other instructions include only the low-order address as an operand and must use either the BSR or the Access Bank to locate their target registers.

TABLE 5-1:	SPECIAL FUNCTION REGISTER MAP FOR
	PIC18F2682/2685/4682/4685 DEVICES (CONTINUED)

D7Fh — D7Eh — D7Eh — D7Dh — D7Ch — D7Ch — D7Bh RXF11EIDL D7Ah RXF11EIDH D7Ah RXF11SIDL D7Ah RXF11SIDL D7Ah RXF10EIDL D78h RXF10EIDL D76h RXF10EIDH D75h RXF10SIDL D74h RXF10SIDL D74h RXF9EIDL D72h RXF9EIDL D72h RXF9EIDL D72h RXF9EIDL D71h RXF9SIDL D70h RXF9SIDL D70h RXF9SIDL D6Eh — D6Eh — D6Eh — D6Bh RXF8SIDL D6Ah RXF8EIDL D6Ah RXF8EIDL D6Ah RXF8SIDL D68h RXF8SIDL D66h RXF7SIDL D66h RXF7SIDL D61h RXF6SIDL	Address	Name
D7Dh — D7Ch — D7Bh RXF11EIDL D7Ah RXF11EIDL D7Ah RXF11SIDL D79h RXF11SIDL D79h RXF11SIDH D79h RXF10EIDL D77h RXF10EIDL D76h RXF10EIDH D75h RXF10SIDH D75h RXF10SIDH D73h RXF9EIDL D74h RXF9EIDL D72h RXF9EIDH D71h RXF9SIDL D70h RXF9SIDL D70h RXF9SIDH D6Fh — D6Eh — D6Bh RXF8SIDL D6Ah RXF8EIDL D6Ah RXF8EIDL D6Ah RXF8EIDH D69h RXF8SIDL D68h RXF8SIDL D66h RXF7EIDL D66h RXF7EIDL D66h RXF7SIDL D66h RXF7SIDL D66h RXF7SIDL D66h RXF7SIDL D66h RXF7SIDL	D7Fh	_
D7Ch — D7Bh RXF11EIDL D7Ah RXF11EIDH D79h RXF11SIDL D78h RXF11SIDH D79h RXF10EIDL D78h RXF10EIDL D76h RXF10EIDH D75h RXF10SIDL D74h RXF10SIDH D73h RXF9EIDL D72h RXF9EIDL D72h RXF9EIDH D71h RXF9SIDL D70h RXF9SIDL D6Fh — D6Eh — D6Ch — D6Bh RXF8EIDL D6Ah RXF8EIDL D6Ah RXF8EIDL D68h RXF8SIDL D68h RXF8SIDL D68h RXF8SIDL D68h RXF7EIDH D65h RXF7SIDL D66h RXF7SIDL D66h RXF7SIDL D66h RXF7SIDL D66h RXF7SIDL	D7Eh	_
D7BhRXF11EIDLD7AhRXF11EIDHD79hRXF11SIDLD79hRXF11SIDLD78hRXF10EIDLD77hRXF10EIDLD76hRXF10EIDHD75hRXF10SIDLD74hRXF9EIDLD72hRXF9EIDLD72hRXF9SIDLD70hRXF9SIDLD70hRXF9SIDLD6EhD6BhRXF8EIDLD6AhRXF8EIDLD6AhRXF8EIDLD6AhRXF8SIDLD6AhRXF8SIDLD6AhRXF8SIDLD6AhRXF78IDLD6AhRXF78IDLD6AhRXF78IDLD6AhRXF78IDLD6AhRXF78IDLD6AhRXF75IDLD6AhRXF75IDLD6AhRXF75IDLD6AhRXF75IDLD6AhRXF75IDLD6AhRXF75IDLD6AhRXF75IDLD6AhRXF75IDLD6AhRXF6EIDLD6AhRXF6EIDLD6AhRXF6EIDLD6AhRXF6EIDL	D7Dh	_
D7Ah RXF11EIDH D79h RXF11SIDL D78h RXF11SIDL D78h RXF10EIDL D77h RXF10EIDL D76h RXF10EIDH D75h RXF10SIDL D74h RXF10SIDH D73h RXF9EIDL D72h RXF9EIDL D72h RXF9EIDH D71h RXF9SIDL D70h RXF9SIDH D6Fh — D6Eh — D6Bh RXF8SIDH D6Ah RXF8EIDL D6Ah RXF8EIDL D6Ah RXF8SIDL D68h RXF8SIDL D68h RXF8SIDL D66h RXF7EIDL D66h RXF7EIDL D66h RXF7SIDL D66h RXF7SIDL D66h RXF7SIDL D66h RXF7SIDL D64h RXF7SIDL D64h RXF7SIDL D64h RXF7SIDL D64h RXF7SIDL D64h RXF6EIDL	D7Ch	—
D79hRXF11SIDLD78hRXF11SIDHD77hRXF10EIDLD77hRXF10EIDLD76hRXF10SIDLD75hRXF10SIDLD74hRXF9EIDLD73hRXF9EIDLD72hRXF9EIDHD71hRXF9SIDLD70hRXF9SIDHD6EhD6DhD6BhRXF8EIDLD6AhRXF8EIDLD6AhRXF8SIDLD6AhRXF8SIDLD6AhRXF8SIDLD6AhRXF8SIDLD6AhRXF78IDLD6AhRXF78IDLD6AhRXF75IDLD6AhRXF7EIDLD6AhRXF75IDLD6AhRXF75IDLD6AhRXF75IDLD6AhRXF75IDLD6AhRXF75IDLD6AhRXF75IDLD6AhRXF75IDLD6AhRXF75IDLD6AhRXF6EIDLD6AhRXF6EIDLD6AhRXF6EIDL	D7Bh	RXF11EIDL
D78hRXF11SIDHD77hRXF10EIDLD77hRXF10EIDLD76hRXF10SIDLD75hRXF10SIDLD74hRXF9EIDLD73hRXF9EIDLD72hRXF9EIDHD71hRXF9SIDLD70hRXF9SIDLD70hRXF9SIDLD6EhD6ChD6BhRXF8EIDLD6AhRXF8EIDLD6AhRXF8EIDLD6AhRXF8EIDLD6AhRXF8SIDLD6AhRXF8EIDHD69hRXF8SIDLD64hRXF7EIDHD65hRXF7SIDLD64hRXF7SIDLD63hRXF6EIDLD63hRXF6EIDLD63hRXF6EIDLD63hRXF6EIDLD63hRXF6EIDLD63hRXF6EIDLD63hRXF6EIDLD63hRXF6EIDLD63hRXF6EIDLD63hRXF6EIDL	D7Ah	RXF11EIDH
D77h RXF10EIDL D76h RXF10EIDH D75h RXF10SIDL D74h RXF10SIDH D73h RXF9EIDL D72h RXF9EIDH D72h RXF9SIDL D70h RXF9SIDH D6Fh — D6Eh — D6Eh — D6Ch — D6Ch — D6Bh RXF8EIDL D6Ah RXF8EIDL D6Ah RXF8SIDL D6Ah RXF8SIDL D68h RXF8SIDL D66h RXF7EIDH D67h RXF7EIDH D65h RXF7SIDL D66h RXF7SIDL D66h RXF7SIDL D66h RXF7SIDL D66h RXF7SIDL D66h RXF7SIDL D66h RXF7SIDL D61h RXF6EIDH	D79h	RXF11SIDL
D76h RXF10EIDH D75h RXF10SIDL D74h RXF10SIDH D73h RXF9EIDL D72h RXF9EIDH D72h RXF9EIDH D71h RXF9SIDL D70h RXF9SIDH D6Fh — D6Eh — D6Eh — D6Bh RXF8SIDL D6Ah RXF8EIDL D6Ah RXF8EIDL D6Ah RXF8SIDL D6Ah RXF8SIDL D66h RXF7EIDH D67h RXF7EIDL D66h RXF7SIDL D66h RXF7SIDL D66h RXF7SIDL D64h RXF7SIDL D64h RXF7SIDL D64h RXF6EIDL	D78h	RXF11SIDH
D75h RXF10SIDL D74h RXF10SIDH D73h RXF9EIDL D72h RXF9EIDH D71h RXF9SIDL D70h RXF9SIDH D6Fh — D6Eh — D6Ch — D6Bh RXF8EIDL D6Ah RXF8EIDL D6Ah RXF8EIDH D69h RXF8SIDL D68h RXF8SIDL D66h RXF7EIDH D67h RXF7EIDL D66h RXF7EIDL D66h RXF7SIDL D66h RXF7SIDL D64h RXF7SIDL D64h RXF7SIDH D63h RXF6EIDL D62h RXF6EIDH D61h RXF6SIDL	D77h	RXF10EIDL
D74h RXF10SIDH D73h RXF9EIDL D72h RXF9EIDH D71h RXF9SIDL D70h RXF9SIDH D6Fh — D6Eh — D6Dh — D6Ch — D6Bh RXF8EIDL D6Ah RXF8EIDL D6Ah RXF8SIDL D6Ah RXF8SIDL D68h RXF8SIDL D66h RXF7EIDH D65h RXF7EIDH D65h RXF7SIDL D66h RXF7SIDL D66h RXF7SIDL D66h RXF7SIDL D66h RXF7SIDL D66h RXF7SIDL D66h RXF7SIDL	D76h	RXF10EIDH
D73h RXF9EIDL D72h RXF9EIDH D71h RXF9SIDL D70h RXF9SIDH D6Fh — D6Eh — D6Dh — D6Ch — D6Ch — D6Ch — D6Gh RXF8EIDL D6Ah RXF8EIDH D69h RXF8SIDL D68h RXF8SIDH D69h RXF8SIDL D68h RXF7EIDH D67h RXF7EIDL D66h RXF7EIDH D65h RXF7SIDL D64h RXF7SIDL D64h RXF7SIDL D64h RXF6EIDL D62h RXF6EIDH D61h RXF6SIDL	D75h	RXF10SIDL
D72h RXF9EIDH D71h RXF9SIDL D70h RXF9SIDH D6Fh — D6Eh — D6Dh — D6Ch — D6Bh RXF8EIDL D6Ah RXF8EIDL D6Ah RXF8EIDH D69h RXF8SIDL D68h RXF8SIDL D68h RXF7EIDH D67h RXF7EIDL D66h RXF7EIDH D65h RXF7SIDL D64h RXF7SIDL D64h RXF7SIDL D64h RXF6EIDL D62h RXF6EIDH D61h RXF6SIDL	D74h	RXF10SIDH
D71h RXF9SIDL D70h RXF9SIDH D6Fh — D6Eh — D6Dh — D6Ch — D6Bh RXF8EIDL D6Ah RXF8EIDL D6Ah RXF8SIDL D6Ah RXF8SIDL D69h RXF8SIDL D68h RXF7EIDH D67h RXF7EIDL D66h RXF7EIDH D65h RXF7SIDL D64h RXF7SIDL D64h RXF7SIDH D63h RXF6EIDL D62h RXF6EIDH D61h RXF6SIDL	D73h	RXF9EIDL
D70h RXF9SIDH D6Fh — D6Eh — D6Dh — D6Dh — D6Ch — D6Bh RXF8EIDL D6Ah RXF8EIDH D69h RXF8SIDL D68h RXF8SIDL D68h RXF8SIDH D67h RXF7EIDH D65h RXF7EIDH D65h RXF7SIDL D64h RXF7SIDL D64h RXF7SIDL D64h RXF6EIDH D63h RXF6EIDL	D72h	RXF9EIDH
D6Fh — D6Eh — D6Dh — D6Dh — D6Ch — D6Bh RXF8EIDL D6Ah RXF8EIDH D69h RXF8SIDL D68h RXF8SIDL D68h RXF8SIDH D67h RXF7EIDL D66h RXF7EIDH D65h RXF7SIDL D64h RXF7SIDL D64h RXF7SIDH D63h RXF6EIDL D62h RXF6EIDH D61h RXF6SIDL	D71h	RXF9SIDL
D6Eh — D6Dh — D6Dh — D6Ch — D6Bh RXF8EIDL D6Ah RXF8EIDH D69h RXF8SIDL D69h RXF8SIDL D68h RXF8SIDH D67h RXF7EIDL D66h RXF7EIDH D65h RXF7SIDL D64h RXF7SIDL D64h RXF6EIDL D62h RXF6EIDH D61h RXF6SIDL	D70h	RXF9SIDH
D6Dh — D6Ch — D6Bh RXF8EIDL D6Ah RXF8EIDH D69h RXF8SIDL D69h RXF8SIDL D68h RXF8SIDH D67h RXF7EIDL D66h RXF7EIDH D65h RXF7SIDL D64h RXF7SIDH D63h RXF6EIDL D62h RXF6EIDH D61h RXF6SIDL	D6Fh	—
D6Ch — D6Bh RXF8EIDL D6Ah RXF8EIDH D69h RXF8SIDL D68h RXF8SIDL D67h RXF7EIDL D66h RXF7EIDH D65h RXF7SIDL D64h RXF7SIDL D64h RXF7SIDL D63h RXF6EIDL D62h RXF6EIDH D61h RXF6SIDL	D6Eh	—
D6BhRXF8EIDLD6AhRXF8EIDHD69hRXF8SIDLD69hRXF8SIDLD68hRXF78IDLD67hRXF7EIDHD66hRXF7EIDHD65hRXF7SIDLD64hRXF7SIDHD63hRXF6EIDLD62hRXF6EIDHD61hRXF6SIDL	D6Dh	_
D6AhRXF8EIDHD69hRXF8SIDLD69hRXF8SIDHD68hRXF7EIDLD67hRXF7EIDHD66hRXF7EIDHD65hRXF7SIDLD64hRXF7SIDHD63hRXF6EIDLD62hRXF6EIDHD61hRXF6SIDL	D6Ch	_
D69hRXF8SIDLD68hRXF8SIDHD67hRXF7EIDLD66hRXF7EIDHD65hRXF7SIDLD64hRXF7SIDHD63hRXF6EIDLD62hRXF6EIDHD61hRXF6SIDL	D6Bh	RXF8EIDL
D68hRXF8SIDHD67hRXF7EIDLD66hRXF7EIDHD65hRXF7SIDLD64hRXF7SIDHD63hRXF6EIDLD62hRXF6EIDHD61hRXF6SIDL	D6Ah	RXF8EIDH
D67hRXF7EIDLD66hRXF7EIDHD65hRXF7SIDLD64hRXF7SIDHD63hRXF6EIDLD62hRXF6EIDHD61hRXF6SIDL	D69h	RXF8SIDL
D66hRXF7EIDHD65hRXF7SIDLD64hRXF7SIDHD63hRXF6EIDLD62hRXF6EIDHD61hRXF6SIDL	D68h	RXF8SIDH
D65hRXF7SIDLD64hRXF7SIDHD63hRXF6EIDLD62hRXF6EIDHD61hRXF6SIDL	D67h	RXF7EIDL
D64h RXF7SIDH D63h RXF6EIDL D62h RXF6EIDH D61h RXF6SIDL	D66h	RXF7EIDH
D63h RXF6EIDL D62h RXF6EIDH D61h RXF6SIDL	D65h	RXF7SIDL
D62h RXF6EIDH D61h RXF6SIDL	D64h	RXF7SIDH
D61h RXF6SIDL	D63h	RXF6EIDL
	D62h	RXF6EIDH
D60h RXF6SIDH	D61h	RXF6SIDL
	D60h	RXF6SIDH

Note 1: Registers available only on PIC18F4X8X devices; otherwise, the registers read as '0'.

2: When any TX_ENn bit in RX_TX_SELn is set, then the corresponding bit in this register has transmit properties.

3: This is not a physical register.

PIC18F2682/2685/4682/4685

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
SPBRGH	EUSART Bau	ud Rate Gene	rator Register	High Byte					0000 0000	53, 233
SPBRG	EUSART Bau	ud Rate Gene	rator Register	· Low Byte					0000 0000	53, 233
RCREG	EUSART Red	ceive Register							0000 0000	53, 240
TXREG	EUSART Tra	nsmit Registe	r						0000 0000	53, 238
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	53, 239
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	53, 239
EEADRH	_	_	—	_	_	_	EEPROM Addr	Register High Byte	00	53, 110
EEADR	EEPROM Ad	EPROM Address Register Low Byte								
EEDATA	EEPROM Data Register									53, 107
EECON2	EEPROM Co	ontrol Register	2 (not a phys	sical register)					0000 0000	53, 107
EECON1	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD	xx-0 x000	53, 107
IPR3 Mode 0	IRXIP	WAKIP	ERRIP	TXB2IP	TXB1IP	TXB0IP	RXB1IP	RXB0IP	1111 1111	53, 128
IPR3 Mode 1, 2	IRXIP	WAKIP	ERRIP	TXBnIP	TXB1IP ⁽⁸⁾	TXB0IP ⁽⁸⁾	RXBnIP	FIFOWMIP	1111 1111	53, 128
PIR3 Mode 0	IRXIF	WAKIF	ERRIF	TXB2IF	TXB1IF	TXB0IF	RXB1IF	RXB0IF	0000 0000	53, 122
PIR3 Mode 1, 2	IRXIF	WAKIF	ERRIF	TXBnlF	TXB1IF ⁽⁸⁾	TXB0IF ⁽⁸⁾	RXBnIF	FIFOWMIF	0000 0000	53, 122
PIE3 Mode 0	IRXIE	WAKIE	ERRIE	TXB2IE	TXB1IE	TXB0IE	RXB1IE	RXB0IE	0000 0000	53, 125
PIE3 Mode 1, 2	IRXIE	WAKIE	ERRIE	TXBnIE	TXB1IE ⁽⁸⁾	TXB0IE ⁽⁸⁾	RXBnIE	FIFOMWIE	0000 0000	53, 125
IPR2	OSCFIP	CMIP ⁽⁹⁾	—	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP ⁽⁹⁾	11-1 1111	53, 127
PIR2	OSCFIF	CMIF ⁽⁹⁾	_	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽⁹⁾	00-0 0000	54, 121
PIE2	OSCFIE	CMIE ⁽⁹⁾	_	EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE ⁽⁹⁾	00-0 0000	54, 124
IPR1	PSPIP ⁽³⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	54, 126
PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	54, 120
PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	54, 123
OSCTUNE	INTSRC	PLLEN ⁽⁴⁾	—	TUN4	TUN3	TUN2	TUN1	TUN0	0q-0 0000	29, 54
TRISE ⁽³⁾	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	54, 143
TRISD ⁽³⁾	PORTD Data	Direction Reg	gister					<u>.</u>	1111 1111	54, 140
TRISC	PORTC Data	Direction Reg	gister						1111 1111	54, 137
TRISB	PORTB Data	Direction Reg	gister						1111 1111	54, 134
TRISA	TRISA7 ⁽⁶⁾	TRISA6 ⁽⁶⁾	PORTA Data	a Direction Reg	gister				1111 1111	54, 131
LATE ⁽³⁾	_	—	—	—	—	LATE Data Out	put Register		xxx	54, 143
LATD ⁽³⁾	LATD Data O	utput Registe	r						XXXX XXXX	54, 140
LATC		utput Registe							xxxx xxxx	54, 137
LATB	LATB Data O	utput Register	r						XXXX XXXX	54, 134
LATA	LATA7 ⁽⁶⁾	LATA6 ⁽⁶⁾	LATA Data (Dutput Registe	r				XXXX XXXX	54, 131
PORTE ⁽³⁾	_		_	_	RE3 ⁽⁵⁾	RE2 ⁽³⁾	RE1 ⁽³⁾	RE0 ⁽³⁾	xxxx	54, 147
PORTD ⁽³⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX XXXX	54, 140
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	54, 137

TABLE 5-2:REGISTER FILE SUMMARY (PIC18F2682/2685/4682/4685) (CONTINUED)

 $Legend: \ x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented, read as '0'.$

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

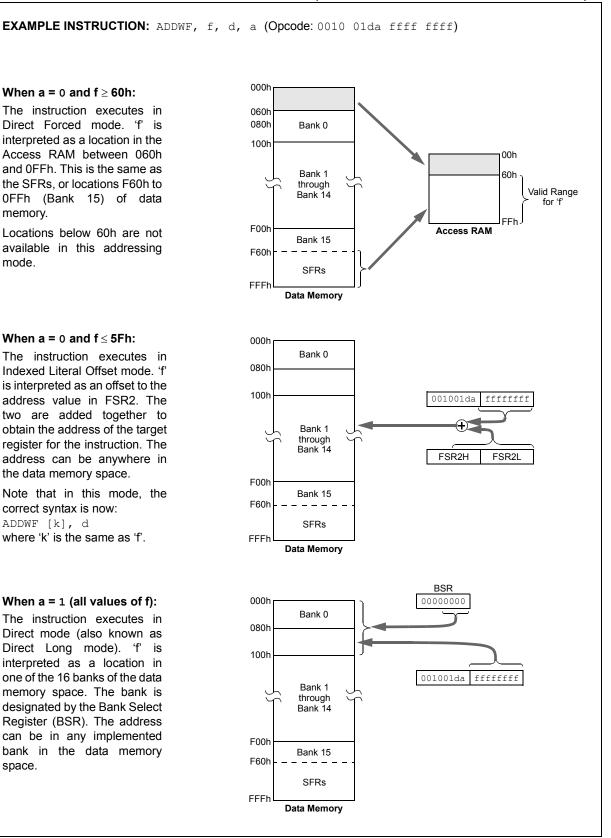
2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

3: These registers and/or bits are not implemented on PIC18F2682/2685 devices and are read as '0'. Reset values are shown for PIC18F4682/4685 devices; individual unimplemented bits should be interpreted as '---'.

4: The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.


7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2.

9: These registers and/or bits are available on PIC18F4682/4685 devices only.

PIC18F2682/2685/4682/4685

FIGURE 5-8: COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)

9.6 INTx Pin Interrupts

External interrupts on the RB0/INT0, RB1/INT1 and RB2/INT2 pins are edge-triggered. If the corresponding INTEDGx bit in the INTCON2 register is set (= 1), the interrupt is triggered by a rising edge; if the bit is clear, the trigger is on the falling edge. When a valid edge appears on the RBx/INTx pin, the corresponding flag bit, INTxIF, is set. This interrupt can be disabled by clearing the corresponding enable bit INTxIE. Flag bit, INTxIF, must be cleared in software in the Interrupt.

All external interrupts (INT0, INT1 and INT2) can wake-up the processor from the power-managed modes if bit INTxIE was set prior to going into the power-managed modes. If the Global Interrupt Enable bit, GIE, is set, the processor will branch to the interrupt vector following wake-up.

Interrupt priority for INT1 and INT2 is determined by the value contained in the interrupt priority bits, INT1IP (INTCON3<6>) and INT2IP (INTCON3<7>). There is no priority bit associated with INT0. It is always a high priority interrupt source.

9.7 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow in the TMR0 register (FFh \rightarrow 00h) will set flag bit TMR0IF. In 16-bit mode, an overflow in the TMR0H:TMR0L register pair (FFFFh \rightarrow 0000h) will set TMR0IF. The interrupt can be enabled/disabled by setting/clearing enable bit TMR0IE (INTCON<5>). Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit, TMR0IP (INTCON2<2>). See Section 11.0 "Timer0 Module" for further details on the Timer0 module.

9.8 PORTB Interrupt-on-Change

An input change on PORTB<7:4> sets flag bit, RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit, RBIE (INTCON<3>). Interrupt priority for PORTB interrupt-on-change is determined by the value contained in the interrupt priority bit, RBIP (INTCON2<0>).

9.9 Context Saving During Interrupts

During interrupts, the return PC address is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the fast return stack. If a fast return from interrupt is not used (See Section 5.3 "Data Memory Organization"), the user may need to save the WREG, STATUS and BSR registers on entry to the Interrupt Service Routine. Depending on the user's application, other registers may also need to be saved. Example 9-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine.

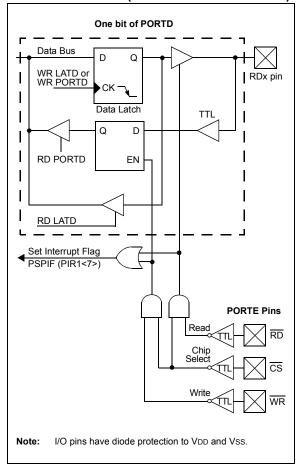
W_TEMP	; W_TEMP is in virtual bank
STATUS, STATUS_TEMP	; STATUS_TEMP located anywhere
BSR, BSR TEMP	; BSR TMEP located anywhere
ISR CODE	
BSR_TEMP, BSR	; Restore BSR
W_TEMP, W	; Restore WREG
STATUS TEMP, STATUS	; Restore STATUS
	STATUS, STATUS_TEMP BSR, BSR_TEMP SR CODE BSR_TEMP, BSR W_TEMP, W

EXAMPLE 9-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM

10.6 Parallel Slave Port

Note:	The Parallel Slave Port is only available on
	PIC18F4682/4685 devices.

In addition to its function as a general I/O port, PORTD can also operate as an 8-bit wide Parallel Slave Port (PSP) or microprocessor port. PSP operation is controlled by the 4 upper bits of the TRISE register (Register 10-1). Setting control bit, PSPMODE (TRISE<4>), enables PSP operation, as long as the Enhanced CCP1 (ECCP1) module is not operating in dual output or quad output PWM mode. In Slave mode, the port is asynchronously readable and writable by the external world.


The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting the control bit, PSPMODE, enables the PORTE I/O pins to become control inputs for the microprocessor port. When set, port pin RE0 is the RD input, RE1 is the WR input and RE2 is the CS (Chip Select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits, PFCG3:PFCG0 (ADCON1<3:0>), must also be set to '1010'.

A write to the PSP occurs when both the $\overline{\text{CS}}$ and $\overline{\text{WR}}$ lines are first detected low and ends when either are detected high. The PSPIF and IBF flag bits are both set when the write ends.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The data in PORTD is read out and the OBF bit is set. If the user writes new data to PORTD to set OBF, the data is immediately read out; however, the OBF bit is not set.

When either the \overline{CS} or \overline{RD} line is detected high, the PORTD pins return to the input state and the PSPIF bit is set. User applications should wait for PSPIF to be set before servicing the PSP. When this happens, the IBF and OBF bits can be polled and the appropriate action taken. The timing for the control signals in Write and Read modes is shown in Figure 10-3 and Figure 10-4, respectively.

PIC18F2682/2685/4682/4685

NOTES:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	51
RCON	IPEN	SBOREN ⁽²⁾	_	RI	TO	PD	POR	BOR	52
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	54
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	54
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	54
TRISB	PORTB Dat	a Direction R	egister						54
TRISC	PORTC Da	ta Direction R	egister						54
TMR2	Timer2 Reg	ister							52
PR2	Timer2 Peri	od Register							52
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	52
CCPR1L	Capture/Co	mpare/PWM	Register 1 Lo	ow Byte					53
CCPR1H	Capture/Co	mpare/PWM	Register 1 H	igh Byte					53
CCP1CON	—	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	53
ECCPR1L ⁽¹⁾	Enhanced (Enhanced Capture/Compare/PWM Register 1 Low Byte							
ECCPR1H ⁽¹⁾	Enhanced (Capture/Comp	oare/PWM R	egister 1 Hig	h Byte				53
ECCP1CON ⁽¹⁾	EPWM1M1	EPWM1M0	EDC1B1	EDC1B0	ECCP1M3	ECCP1M2	ECCP1M1	ECCP1M0	53

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PWM or Timer2.

Note 1: These bits or registers are available on PIC18F4682/4685 devices only.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'.

17.3.5 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 17-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode. The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This then, would give waveforms for SPI communication as shown in Figure 17-3, Figure 17-5 and Figure 17-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user-programmable to be one of the following:

- · Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 17-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

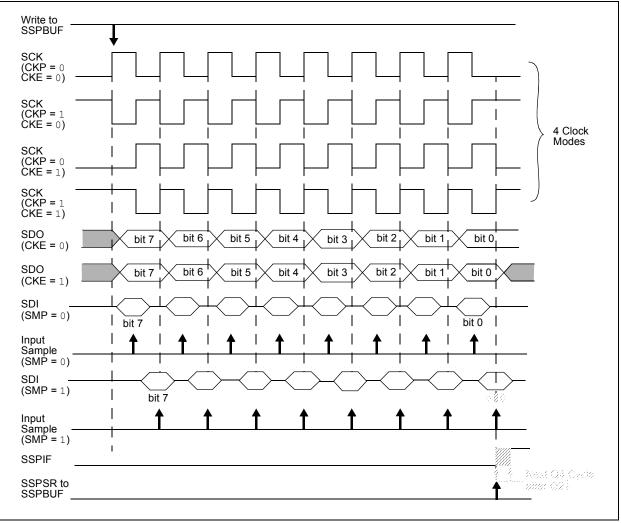


FIGURE 17-3: SPI MODE WAVEFORM (MASTER MODE)

REGISTER 23-16: RXBnSIDL: RECEIVE BUFFER n STANDARD IDENTIFIER REGISTERS,

R-x	R-x	R-x	R-x	R-x	U-0	R-x	R-x		
SID2	SID1	SID0	SRR	EXID	_	EID17	EID16		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown							nown		
bit 7-5 bit 4	Extended Ider	tandard Identifi ntifier bits EID2 ite Remote Re	0:EID18 (if E)	,					
				I to the value o	f RXRTRRO (RE	3XnCON<3>) w	hen EXID = 0.		
bit 3	EXID: Extend	ed Identifier bit							
 1 = Received message is an extended data frame, SID10:SID0 are EID28:EID18 0 = Received message is a standard data frame 									
bit 2	Unimplemented: Read as '0'								
bit 1-0	EID17:EID16: Extended Identifier bits								

LOW BYTE $[0 \le n \le 1]$

REGISTER 23-17: RXBnEIDH: RECEIVE BUFFER n EXTENDED IDENTIFIER REGISTERS, HIGH BYTE [0 \leq n \leq 1]

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID15:EID8: Extended Identifier bits

REGISTER 23-18: RXBnEIDL: RECEIVE BUFFER n EXTENDED IDENTIFIER REGISTERS, LOW BYTE [0 \leq n \leq 1]

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

Legend:			
R = Readable bit	Readable bit W = Writable bit U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID7:EID0: Extended Identifier bits

$\label{eq:register23-24: BnSIDH: TX/RX BUFFER n STANDARD IDENTIFIER REGISTERS, \\ HIGH BYTE IN RECEIVE MODE [0 \le n \le 5, TXnEN (BSEL0<n>) = 0]^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 SID10:SID3: Standard Identifier bits (if EXIDE (BnSIDL<3>) = 0) Extended Identifier bits EID28:EID21 (if EXIDE = 1).

Note 1: These registers are available in Mode 1 and 2 only.

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID10 | SID9 | SID8 | SID7 | SID6 | SID5 | SID4 | SID3 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **SID10:SID3:** Standard Identifier bits (if EXIDE (BnSIDL<3>) = 0) Extended Identifier bits EID28:EID21 (if EXIDE = 1).

Note 1: These registers are available in Mode 1 and 2 only.

REGISTER 23-59: TXBIE: TRANSMIT BUFFERS INTERRUPT ENABLE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0
—	—	—	TXB2IE ⁽²⁾	TXB1IE ⁽²⁾	TXB0IE ⁽²⁾		—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	Unimplemented: Read as '0'
bit 4-2	TXB2IE:TXB0IE: Transmit Buffer 2-0 Interrupt Enable bit ⁽²⁾
	1 = Transmit buffer interrupt is enabled
	0 = Transmit buffer interrupt is disabled
bit 1-0	Unimplemented: Read as '0'

Note 1: This register is available in Mode 1 and 2 only.

2: TXBnIE in PIE3 register must be set to get an interrupt.

REGISTER 23-60: BIE0: BUFFER INTERRUPT ENABLE REGISTER 0⁽¹⁾

R/W-0	R/W-0						
B5IE ⁽²⁾	B4IE ⁽²⁾	B3IE ⁽²⁾	B2IE ⁽²⁾	B1IE ⁽²⁾	B0IE ⁽²⁾	RXB1IE ⁽²⁾	RXB0IE ⁽²⁾
bit 7				•			bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2 B5IE:B0IE: Programmable Transmit/Receive Buffer 5-0 Interrupt Enable bit⁽²⁾ 1 = Interrupt is enabled 0 = Interrupt is disabled bit 1-0 RXB1IE:RXB0IE: Dedicated Receive Buffer 1-0 Interrupt Enable bit⁽²⁾ 1 = Interrupt is enabled 0 = Interrupt is disabled

Note 1: This register is available in Mode 1 and 2 only.

2: Either TXBnIE or RXBnIE in PIE3 register must be set to get an interrupt.

Table 23-3 shows the relation between the clock generated by the PLL and the frequency error from jitter (measured jitter-induced error of 2%, Gaussian distribution, within 3 standard deviations), as a percentage of the nominal clock frequency.

This is clearly smaller than the expected drift of a crystal oscillator, typically specified at 100 ppm or 0.01%. If we add jitter to oscillator drift, we have a total frequency drift of 0.0132%. The total oscillator frequency errors for common clock frequencies and bit rates, including both drift and jitter, are shown in Table 23-4.

TABLE 23-3 :	FREQUENCY ERROR FROM JITTER AT VARIOUS PLL GENERATED CLOCK SPEEDS

PLL			Frequency Error at Various Nominal Bit Times (Bit Rates)				
Output	P _{jitter}	T _{jitter}	8 μs (125 Kb/s)	4 μs (250 Kb/s)	2 μs (500 Kb/s)	1 μs (1 Mb/s)	
40 MHz	0.5 ns	1 ns	0.00125%	0.00250%	0.005%	0.01%	
24 MHz	0.83 ns	1.67 ns	0.00209%	0.00418%	0.008%	0.017%	
16 MHz	1.25 ns	2.5 ns	0.00313%	0.00625%	0.013%	0.025%	

TABLE 23-4:TOTAL FREQUENCY ERROR AT VARIOUS PLL GENERATED CLOCK SPEEDS
(100 PPM OSCILLATOR DRIFT, INCLUDING ERROR FROM JITTER)

	Frequency Error at Various Nominal Bit Times (Bit Rates)						
Nominal PLL Output	8 μs (125 Kb/s)	4 μs (250 Kb/s)	2 μs (500 Kb/s)	1 μs (1 Mb/s)			
40 MHz	0.01125%	0.01250%	0.015%	0.02%			
24 MHz	0.01209%	0.01418%	0.018%	0.027%			
16 MHz	0.01313%	0.01625%	0.023%	0.035%			

REGISTER 24-8: CONFIG6L: CONFIGURATION REGISTER 6 LOW (BYTE ADDRESS 30000Ah)

U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1
—	—	WRT5 ⁽¹⁾	WRT4	WRT3	WRT2	WRT1	WRT0
bit 7							bit 0

Legend:									
R = Reada	R = Readable bit C = Clearable bit		U = Unimplemented bit, read as '0'						
-n = Value	when device	is unprogrammed	u = Unchanged from programmed state						
bit 7-6	Unimple	emented: Read as '0'							
bit 5	-	Write Protection bit ⁽¹⁾							
bit o	 1 = Block 5 (014000-017FFFh) not write-protected 0 = Block 5 (014000-017FFFh) write-protected 								
bit 4	WRT4:	WRT4: Write Protection bit							
1 = Block 4 (010000-013FFFh) 0 = Block 4 (010000-013FFFh)									
bit 3	WRT3: Write Protection bit								
		k 3 (00C000-00FFFFh) not w k 3 (00C000-00FFFFh) write-							
bit 2	WRT2:	Write Protection bit							
		k 2 (008000-00BFFFh) not w k 2 (008000-00BFFFh) write-∣							
bit 1	WRT1:	Write Protection bit							
		k 1 (004000-007FFFh) not wr k 1 (004000-007FFFh) write-r							
bit 0	WRT0:	Write Protection bit							
		k 0 (000800-003FFFh) not wr k 0 (000800-003FFFh) write-p							

Note 1: Unimplemented in PIC18F2682/4682 devices; maintain this bit set.

REGISTER 24-12: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F2682/2685/4682/4685

R	R	R	R	R	R	R	R	
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	
bit 7				•			bit 0	
Legend:								
R = Read-onl	R = Read-only bit P = Programmable bit U = Unimplemented bit, read as '0'							
-n = Value when device is unprogrammed				u = Unchanged from programmed state				
bit 7-5	DEV2:DEV0:	Device ID bits						
	000 = PIC18F2682							
	001 = PIC18	-2685						
010 = PIC18F4682								
	011 = PIC18F	-4685						
bit 4-0	REV3:REV0: Revision ID bits							
	These bits are	e used to indica	ate the device	revision.				

REGISTER 24-13: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F2682/2685/4682/4685

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

Legend:		
R = Read-only bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device is	unprogrammed	u = Unchanged from programmed state

bit 7-0 DEV10:DEV3: Device ID bits These bits are used with the DEV2:DEV0 bits in Device ID Register 1 to identify the part number. 0010 0111 = PIC18F2682/2685/4682/4685 devices

Note 1: These values for DEV10:DEV3 may be shared with other devices. The specific device is always identified by using the entire DEV10:DEV0 bit sequence.

PIC18F2682/2685/4682/4685

FIGURE 27-10: CAPTURE/COMPARE/PWM TIMINGS (ALL CCP MODULES)

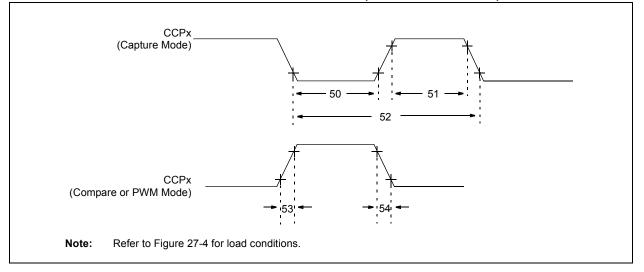


TABLE 27-12: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL CCP MODULES)

Param No.	Sym		Characteristic		Min	Max	Units	Conditions
50	TccL	CCPx Input Low No prescale			0.5 Tcy + 20	_	ns	
		Time	With prescaler	PIC18FXXXX	10	_	ns	
				PIC18LFXXXX	20	_	ns	VDD = 2.0V
51	51 TCCH CCPx		CCPx Input High No prescaler		0.5 TCY + 20	_	ns	
Time	Time	With prescaler	PIC18FXXXX	10	_	ns		
			PIC18LFXXXX	20	_	ns	VDD = 2.0V	
52	TCCP	CCPx Input Period		<u>3 Tcy + 40</u> N	—	ns	N = prescale value (1, 4 or 16)	
53	TccR	CCPx Output Fal	CCPx Output Fall Time		—	25	ns	
		PIC		PIC18LFXXXX	—	45	ns	VDD = 2.0V
54	TCCF	CCF CCPx Output Fall Time		PIC18FXXXX	—	25	ns	
				PIC18LFXXXX	_	45	ns	VDD = 2.0V

т

T0CON Register	
PSA Bit	
T0CS Bit	. 150
T0PS2:T0PS0 Bits	
T0SE Bit	. 150
Table Reads/Table Writes	66
TBLRD	.403
TBLWT	
Time-out in Various Situations (table)	47
Timer0	149
Associated Registers	151
Clock Source Edge Select (T0SE Bit)	
Clock Source Select (TOCS Bit)	
Operation	
Overflow Interrupt	
Prescaler. See Prescaler, Timer0.	. 151
Reads and Writes in 16-Bit Mode	150
Timer1	
16-Bit Read/Write Mode	
Associated Registers	.157
Interrupt	
Operation	
Oscillator	
Layout Considerations	. 156
Resetting, Using a Special Event Trigger	
Output (CCP1)	
Special Event Trigger (ECCP1)	. 176
Use as a Real-Time Clock	. 156
Timer2	. 159
Associated Registers	. 160
Interrupt	. 160
Operation	
Output	
PR2 Register171	
TMR2 to PR2 Match Interrupt	171
Timer3	161
16-Bit Read/Write Mode	
Associated Registers	
Operation	
Oscillator	
Overflow Interrupt	163
Special Event Trigger (ECCP1)	163
TMR3H Register	
TMR3D Register	
	, 101
Timing Diagrams	454
A/D Conversion	
Acknowledge Sequence	
Asynchronous Reception	
Asynchronous Transmission	
Asynchronous Transmission (Back-to-Back)	
Automatic Baud Rate Calculation	
Auto-Wake-up Bit (WUE) During Normal Operation	
Auto-Wake-up Bit (WUE) During Sleep	
Baud Rate Generator with Clock Arbitration	
BRG Overflow Sequence	. 237
BRG Reset Due to SDA Arbitration	
During Start Condition	. 225
Brown-out Reset (BOR)	.440
Bus Collision During a Repeated Start Condition	
(Case 1)	. 226
Bus Collision During a Repeated Start Condition	
(Case 2)	. 226
· · · ·	

Bus Collision During a Start Condition
(SCL = 0)
Bus Collision During a Start Condition
(SDA Only)
Bus Collision During a Stop Condition
(Case 1) 227
Bus Collision During a Stop Condition
(Case 2)
Bus Collision for Transmit and
Acknowledge
Acknowledge
Capture/Compare/PWM (All CCP Modules)
CLKO and I/O 439
Clock Synchronization
Clock/Instruction Cycle
EUSART Synchronous Receive
(Master/Slave)
(IVIASIEI/SIAVE)
EUSART Synchronous Transmission
(Master/Slave) 452
Example SPI Master Mode (CKE = 0)
Example SPI Master Mode (CKE = 1)
Example SPI Slave Mode (CKE = 0)
Example SPI Slave Mode (CKE = 0)
External Clock (All Modes Except PLL) 437
Fail-Safe Clock Monitor 359
First Start Bit Timing
Full-Bridge PWM Output 181
Half-Bridge PWM Output
High/Low-Voltage Detect Characteristics
High-Voltage Detect (VDIRMAG = 1)
I ² C Bus Data
I ² C Bus Start/Stop Bits
I ² C Master Mode (7 or 10-Bit Transmission)
I ² C Master Mode (7-Bit Reception) 221
I^2C Slave Mode (10-Bit Reception, SEN = 0)
I^2C Slave Mode (10-Bit Reception, SEN = 1)
1^{2} Olave Mode (10-Bit Reception, SEN = 1)
I ² C Slave Mode (10-Bit Transmission)
I ² C Slave Mode (7-Bit Reception, SEN = 0)
I^2C Slave Mode (7-Bit Reception, SEN = 1)
I ² C Slave Mode (7-Bit Transmission)
I ² C Slave Mode General Call Address Sequence (7 or
10-Bit Address Mode)
Low-Voltage Detect (VDIRMAG = 0)
Low-voltage Detect (VDIRMAG = 0) $\dots 271$
Master SSP I ² C Bus Data 450
Master SSP I ² C Bus Start/Stop Bits 450
Parallel Slave Port (PIC18F4682/4685)
Parallel Slave Port (PSP) Read 147
Parallel Slave Port (PSP) Write
PWM Auto-Shutdown (PRSEN = 0,
Auto-Restart Disabled) 186
PWM Auto-Shutdown (PRSEN = 1,
Auto-Restart Enabled) 186
PWM Direction Change
PWM Direction Change at Near 100% Duty Cycle 183
PWM Output
Repeated Start Condition
Reset, Watchdog Timer (WDT), Oscillator
Start-up Timer (OST) and
Power-up Timer (PWRT) 440
Send Break Character Sequence
Slave Synchronization
Slow Rise Time (MCLR Tied to VDD,
VDD Rise > TPWRT)
SPI Mode (Master Mode) 194