

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	80KB (40K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2682-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.5 Device Reset Timers

PIC18F2682/2685/4682/4685 devices incorporate three separate on-chip timers that help regulate the Power-on Reset process. Their main function is to ensure that the device clock is stable before code is executed. These timers are:

- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- PLL Lock Time-out

4.5.1 POWER-UP TIMER (PWRT)

The Power-up Timer (PWRT) of PIC18F2682/2685/ 4682/4685 devices is an 11-bit counter which uses the INTRC source as the clock input. This yields an approximate time interval of 2048 x 32 μ s = 65.6 ms. While the PWRT is counting, the device is held in Reset.

The power-up time delay depends on the INTRC clock and will vary from chip-to-chip due to temperature and process variation. See DC parameter 33 for details.

The PWRT is enabled by clearing the PWRTEN Configuration bit.

4.5.2 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter 33). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP, HS and HSPLL modes and only on Power-on Reset or on exit from most power-managed modes.

4.5.3 PLL LOCK TIME-OUT

With the PLL enabled in its PLL mode, the time-out sequence following a Power-on Reset is slightly different from other oscillator modes. A separate timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator start-up time-out.

4.5.4 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows:

- 1. After the POR pulse has cleared, PWRT time-out is invoked (if enabled).
- 2. Then, the OST is activated.

The total time-out will vary based on oscillator configuration and the status of the PWRT. Figure 4-3, Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 all depict time-out sequences on power-up, with the Power-up Timer enabled and the device operating in HS Oscillator mode. Figures 4-3 through 4-6 also apply to devices operating in XT or LP modes. For devices in RC mode and with the PWRT disabled, on the other hand, there will be no time-out at all.

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, all time-outs will expire. Bringing MCLR high will begin execution immediately (Figure 4-5). This is useful for testing purposes or to synchronize more than one PIC18FXXXX device operating in parallel.

Oscillator	Power-up ⁽²⁾ an	Exit From		
Configuration	PWRTEN = 0	PWRTEN = 1	Power-Managed Mode	
HSPLL	66 ms ⁽¹⁾ + 1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾	
HS, XT, LP	66 ms ⁽¹⁾ + 1024 Tosc	1024 Tosc	1024 Tosc	
EC, ECIO	66 ms ⁽¹⁾		—	
RC, RCIO	66 ms ⁽¹⁾	—	—	
INTIO1, INTIO2	66 ms ⁽¹⁾	_	—	

TABLE 4-2: TIME-OUT IN VARIOUS SITUATIONS

Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.

2: 2 ms is the nominal time required for the PLL to lock.

TABLE 5-1:SPECIAL FUNCTION REGISTER MAP FOR
PIC18F2682/2685/4682/4685 DEVICES (CONTINUED)

Address	Name	Address	Name	Address	Name	Address	Name
F7Fh	_	F5Fh	CANCON_RO0	F3Fh	CANCON_RO2	F1Fh	RXM1EIDL
F7Eh	_	F5Eh	CANSTAT_RO0	F3Eh	CANSTAT_RO2	F1Eh	RXM1EIDH
F7Dh	—	F5Dh	RXB1D7	F3Dh	TXB1D7	F1Dh	RXM1SIDL
F7Ch	_	F5Ch	RXB1D6	F3Ch	TXB1D6	F1Ch	RXM1SIDH
F7Bh	_	F5Bh	RXB1D5	F3Bh	TXB1D5	F1Bh	RXM0EIDL
F7Ah	_	F5Ah	RXB1D4	F3Ah	TXB1D4	F1Ah	RXM0EIDH
F79h	—	F59h	RXB1D3	F39h	TXB1D3	F19h	RXM0SIDL
F78h	_	F58h	RXB1D2	F38h	TXB1D2	F18h	RXM0SIDH
F77h	ECANCON	F57h	RXB1D1	F37h	TXB1D1	F17h	RXF5EIDL
F76h	TXERRCNT	F56h	RXB1D0	F36h	TXB1D0	F16h	RXF5EIDH
F75h	RXERRCNT	F55h	RXB1DLC	F35h	TXB1DLC	F15h	RXF5SIDL
F74h	COMSTAT	F54h	RXB1EIDL	F34h	TXB1EIDL	F14h	RXF5SIDH
F73h	CIOCON	F53h	RXB1EIDH	F33h	TXB1EIDH	F13h	RXF4EIDL
F72h	BRGCON3	F52h	RXB1SIDL	F32h	TXB1SIDL	F12h	RXF4EIDH
F71h	BRGCON2	F51h	RXB1SIDH	F31h	TXB1SIDH	F11h	RXF4SIDL
F70h	BRGCON1	F50h	RXB1CON	F30h	TXB1CON	F10h	RXF4SIDH
F6Fh	CANCON	F4Fh	CANCON_RO1	F2Fh	CANCON_RO3	F0Fh	RXF3EIDL
F6Eh	CANSTAT	F4Eh	CANSTAT_RO1	F2Eh	CANSTAT_RO3	F0Eh	RXF3EIDH
F6Dh	RXB0D7	F4DH	TXB0D7	F2Dh	TXB2D7	F0Dh	RXF3SIDL
F6Ch	RXB0D6	F4Ch	TXB0D6	F2Ch	TXB2D6	F0Ch	RXF3SIDH
F6Bh	RXB0D5	F4Bh	TXB0D5	F2Bh	TXB2D5	F0Bh	RXF2EIDL
F6Ah	RXB0D4	F4Ah	TXB0D4	F2Ah	TXB2D4	F0Ah	RXF2EIDH
F69h	RXB0D3	F49h	TXB0D3	F29h	TXB2D3	F09h	RXF2SIDL
F68h	RXB0D2	F48h	TXB0D2	F28h	TXB2D2	F08h	RXF2SIDH
F67h	RXB0D1	F47h	TXB0D1	F27h	TXB2D1	F07h	RXF1EIDL
F66h	RXB0D0	F46h	TXB0D0	F26h	TXB2D0	F06h	RXF1EIDH
F65h	RXB0DLC	F45h	TXB0DLC	F25h	TXB2DLC	F05h	RXF1SIDL
F64h	RXB0EIDL	F44h	TXB0EIDL	F24h	TXB2EIDL	F04h	RXF1SIDH
F63h	RXB0EIDH	F43h	TXB0EIDH	F23h	TXB2EIDH	F03h	RXF0EIDL
F62h	RXB0SIDL	F42h	TXB0SIDL	F22h	TXB2SIDL	F02h	RXF0EIDH
F61h	RXB0SIDH	F41h	TXB0SIDH	F21h	TXB2SIDH	F01h	RXF0SIDL
F60h	RXB0CON	F40h	TXB0CON	F20h	TXB2CON	F00h	RXF0SIDH

Note 1: Registers available only on PIC18F4X8X devices; otherwise, the registers read as '0'.

2: When any TX_ENn bit in RX_TX_SELn is set, then the corresponding bit in this register has transmit properties.

3: This is not a physical register.

TABLE 5-1:SPECIAL FUNCTION REGISTER MAP FOR
PIC18F2682/2685/4682/4685 DEVICES (CONTINUED)

Address	Name	Address	Name	Address	Name	Address	Name
DFFh	—	DDFh	—	DBFh	—	D9Fh	—
DFEh		DDEh	—	DBEh	—	D9Eh	—
DFDh	—	DDDh	—	DBDh	—	D9Dh	—
DFCh	TXBIE	DDCh	_	DBCh	—	D9Ch	—
DFBh		DDBh	—	DBBh	—	D9Bh	—
DFAh	BIE0	DDAh	_	DBAh	—	D9Ah	_
DF9h	—	DD9h	—	DB9h	—	D99h	—
DF8h	BSEL0	DD8h	SDFLC	DB8h	—	D98h	—
DF7h		DD7h	_	DB7h	—	D97h	_
DF6h	—	DD6h	—	DB6h	—	D96h	—
DF5h	—	DD5h	RXFCON1	DB5h	—	D95h	—
DF4h		DD4h	RXFCON0	DB4h	—	D94h	_
DF3h	MSEL3	DD3h	_	DB3h	—	D93h	RXF15EIDL
DF2h	MSEL2	DD2h	—	DB2h	—	D92h	RXF15EIDH
DF1h	MSEL1	DD1h	_	DB1h	—	D91h	RXF15SIDL
DF0h	MSEL0	DD0h	_	DB0h	—	D90h	RXF15SIDH
DEFh	—	DCFh	_	DAFh	—	D8Fh	—
DEEh	—	DCEh		DAEh	—	D8Eh	
DEDh	—	DCDh		DADh	—	D8Dh	
DECh	—	DCCh	_	DACh	—	D8Ch	—
DEBh	—	DCBh		DABh	—	D8Bh	RXF14EIDL
DEAh	—	DCAh		DAAh	—	D8Ah	RXF14EIDH
DE9h	—	DC9h	_	DA9h	—	D89h	RXF14SIDL
DE8h	—	DC8h		DA8h	—	D88h	RXF14SIDH
DE7h	RXFBCON7	DC7h		DA7h	—	D87h	RXF13EIDL
DE6h	RXFBCON6	DC6h	_	DA6h	—	D86h	RXF13EIDH
DE5h	RXFBCON5	DC5h		DA5h	—	D85h	RXF13SIDL
DE4h	RXFBCON4	DC4h	_	DA4h	—	D84h	RXF13SIDH
DE3h	RXFBCON3	DC3h	_	DA3h	—	D83h	RXF12EIDL
DE2h	RXFBCON2	DC2h	_	DA2h	_	D82h	RXF12EIDH
DE1h	RXFBCON1	DC1h	_	DA1h	—	D81h	RXF12SIDL
DE0h	RXFBCON0	DC0h	_	DA0h	_	D80h	RXF12SIDH

Note 1: Registers available only on PIC18F4X8X devices; otherwise, the registers read as '0'.

2: When any TX_ENn bit in RX_TX_SELn is set, then the corresponding bit in this register has transmit properties.

3: This is not a physical register.

PIC18F2682/2685/4682/4685

IADLE 3-2		JUSIER	ILE SUN	LE SUMMART (FICTOF2002/2003/4002/4003) (CONTINUED)						
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
B2EIDL ⁽⁸⁾	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	60, 301
B2EIDH ⁽⁸⁾	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	60, 301
B2SIDL ⁽⁸⁾ Receive mode	SID2	SID1	SID0	SRR	EXID	—	EID17	EID16	XXXX X-XX	58, 300
B2SIDL ⁽⁸⁾ Transmit mode	SID2	SID1	SID0	_	EXIDE	—	EID17	EID16	xxx- x-xx	58, 300
B2SIDH ⁽⁸⁾	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	60, 299
B2CON ⁽⁸⁾ Receive mode	RXFUL	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHITO	0000 0000	60, 298
B2CON ⁽⁸⁾ Transmit mode	TXBIF	RXM1	TXLARB	TXERR	TXREQ	RTREN	TXPRI1	TXPRI0	0000 0000	60, 298
B1D7 ⁽⁸⁾	B1D77	B1D76	B1D75	B1D74	B1D73	B1D72	B1D71	B1D70	XXXX XXXX	60, 302
B1D6 ⁽⁸⁾	B1D67	B1D66	B1D65	B1D64	B1D63	B1D62	B1D61	B1D60	XXXX XXXX	60, 302
B1D5 ⁽⁸⁾	B1D57	B1D56	B1D55	B1D54	B1D53	B1D52	B1D51	B1D50	XXXX XXXX	60, 302
B1D4 ⁽⁸⁾	B1D47	B1D46	B1D45	B1D44	B1D43	B1D42	B1D41	B1D40	XXXX XXXX	60, 302
B1D3 ⁽⁸⁾	B1D37	B1D36	B1D35	B1D34	B1D33	B1D32	B1D31	B1D30	XXXX XXXX	60, 302
B1D2 ⁽⁸⁾	B1D27	B1D26	B1D25	B1D24	B1D23	B1D22	B1D21	B1D20	XXXX XXXX	60, 302
B1D1 ⁽⁸⁾	B1D17	B1D16	B1D15	B1D14	B1D13	B1D12	B1D11	B1D10	XXXX XXXX	60, 302
B1D0 ⁽⁸⁾	B1D07	B1D06	B1D05	B1D04	B1D03	B1D02	B1D01	B1D00	XXXX XXXX	60, 302
B1DLC ⁽⁸⁾ Receive mode	_	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	58, 303
B1DLC ⁽⁸⁾ Transmit mode	_	TXRTR	_	_	DLC3	DLC2	DLC1	DLC0	-x xxxx	58, 304
B1EIDL ⁽⁸⁾	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	60, 301
B1EIDH ⁽⁸⁾	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	60, 301
B1SIDL ⁽⁸⁾ Receive mode	SID2	SID1	SID0	SRR	EXID	—	EID17	EID16	XXXX X-XX	58, 300
B1SIDL ⁽⁸⁾ Transmit mode	SID2	SID1	SID0	_	EXIDE	—	EID17	EID16	xxx- x-xx	58, 300
B1SIDH ⁽⁸⁾	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	60, 299
B1CON ⁽⁸⁾ Receive mode	RXFUL	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	0000 0000	60, 298
B1CON ⁽⁸⁾ Transmit mode	TXBIF	TXABT	TXLARB	TXERR	TXREQ	RTREN	TXPRI1	TXPRI0	0000 0000	60, 298
B0D7 ⁽⁸⁾	B0D77	B0D76	B0D75	B0D74	B0D73	B0D72	B0D71	B0D70	XXXX XXXX	60, 302
B0D6 ⁽⁸⁾	B0D67	B0D66	B0D65	B0D64	B0D63	B0D62	B0D61	B0D60	XXXX XXXX	60, 302
B0D5 ⁽⁸⁾	B0D57	B0D56	B0D55	B0D54	B0D53	B0D52	B0D51	B0D50	XXXX XXXX	60, 302
B0D4 ⁽⁸⁾	B0D47	B0D46	B0D45	B0D44	B0D43	B0D42	B0D41	B0D40	XXXX XXXX	60, 302
B0D3 ⁽⁸⁾	B0D37	B0D36	B0D35	B0D34	B0D33	B0D32	B0D31	B0D30	XXXX XXXX	60, 302
B0D2 ⁽⁸⁾	B0D27	B0D26	B0D25	B0D24	B0D23	B0D22	B0D21	B0D20	XXXX XXXX	60, 302
B0D1 ⁽⁸⁾	B0D17	B0D16	B0D15	B0D14	B0D13	B0D12	B0D11	B0D10	XXXX XXXX	60, 302
B0D0 ⁽⁸⁾	B0D07	B0D06	B0D05	B0D04	B0D03	B0D02	B0D01	B0D00	XXXX XXXX	60, 302
B0DLC ⁽⁸⁾ Receive mode	_	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	58, 303

DECISTED FILE CUMMADY (DICASE2002/2005/4002/4005) (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented, read as '0'.

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

These registers and/or bits are not implemented on PIC18F2682/2685 devices and are read as '0'. Reset values are shown for PIC18F4682/4685 3: devices; individual unimplemented bits should be interpreted as '---'

The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC 4: Modes"

The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only. 5:

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

CAN bits have multiple functions depending on the selected mode of the CAN module. 7:

This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2. 8:

9: These registers and/or bits are available on PIC18F4682/4685 devices only.

5.4.3.1 FSR Registers and the INDF Operand

At the core of Indirect Addressing are three sets of registers: FSR0, FSR1 and FSR2. Each represents a pair of 8-bit registers: FSRnH and FSRnL. The four upper bits of the FSRnH register are not used, so each FSR pair holds a 12-bit value. This represents a value that can address the entire range of the data memory in a linear fashion. The FSR register pairs, then, serve as pointers to data memory locations.

Indirect Addressing is accomplished with a set of Indirect File Operands: INDF0 through INDF2. These can be thought of as "virtual" registers: they are mapped in the SFR space, but are not physically implemented. Reading or writing to a particular INDF register actually accesses its corresponding FSR register pair. A read from INDF1, for example, reads the data at the address indicated by FSR1H:FSR1L. Instructions that use the INDF registers as operands actually use the contents of their corresponding FSR as a pointer to the instruction's target. The INDF operand is just a convenient way of using the pointer.

Because Indirect Addressing uses a full 12-bit address, data RAM banking is not necessary. Thus, the current contents of the BSR and Access RAM bit have no effect on determining the target address.

FIGURE 5-7: INDIRECT ADDRESSING

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OSCFIF	CMIF ⁽¹⁾		EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
h:+ 7		illeten Esil heten					
DIT /		scillator Fall Inter	rupt Flag bit clock input b	as changed to	INTOSC (must	he cleared in s	oftware)
	0 = Device	clock operating		as changed to			onware)
bit 6	CMIF: Com	parator Interrupt	Flag bit ⁽¹⁾				
	1 = Compa	arator input has cl	hanged (mus	t be cleared in	software)		
	0 = Compa	arator input has n	ot changed				
bit 5	Unimplem	ented: Read as ') '				
bit 4	EEIF: Data	EEPROM/Flash	Write Operat	ion Interrupt Fl	ag bit		
	1 = The wr	ite operation is co	omplete (mus	t be cleared in	software)		
hit 2			ot Complete d nt Elog bit	nas not been	stanted		
DIL 3	$1 = \Delta bus d$		(must be cle	ared in softwar	-e)		
	0 = No bus	s collision occurre	d		0)		
bit 2	HLVDIF: Hi	igh/Low-Voltage [Detect Interru	pt Flag bit			
	1 = A high	low-voltage cond	ition occurred	d (must be clea	ared in software)	
	0 = The de	evice voltage is at	ove the High	/Low-Voltage [Detect trip point		
bit 1	TMR3IF: TI	MR3 Overflow Int	errupt Flag b	it			
	1 = TMR3 0 = TMR3	register overflowe	ed (must be c verflow	cleared in softw	vare)		
bit 0	FCCP1IF:	FCCP1 Interrupt	Flag bit(1)				
	Capture mo	ode:					
	1 = A TMR	1 register capture	e occurred (m	nust be cleared	in software)		
	0 = No TM	R1 register captu	re occurred				
	<u>Compare m</u>	<u>10de:</u> 1 register compa	ro match oco	urrod (must bo	cloared in soft	wara)	
	0 = No TM	R1 register compa	are match occ	curred		wale)	
	PWM mode	<u>;</u>					
	Unused in t	his mode.					

REGISTER 9-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

10.4 PORTD, TRISD and LATD Registers

Note:	PORTD is only available on PIC18F4682/
	4685 devices.

PORTD is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Three of the PORTD pins are multiplexed with outputs P1A, P1B, P1C and P1D of the Enhanced CCP1 (ECCP1) module. The operation of these additional PWM output pins is covered in greater detail in Section 16.0 "Enhanced Capture/Compare/PWM (ECCP1) Module".

Note: On a Power-on Reset, these pins are configured as digital inputs.

PORTD can also be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit, PSPMODE (TRISE<4>). In this mode, the input buffers are TTL. See **Section 10.6 "Parallel Slave Port"** for additional information on the Parallel Slave Port (PSP).

Note:	When the Enhanced PWM mode is used							
	with either dual or quad outputs, the PSP							
	functions of PORTD are automatically							
	disabled.							

EXAMPLE 10-4: INITIALIZING PORTD

CLRF POR	TD ; Initialize PORTD by ; clearing output
CLRF LAT	; data latches D ; Alternate method ; to clear output
MOVLW OCF	; data latches h ; Value used to ; initialize data
MOVWF TRI	; direction SD ; Set RD<3:0> as inputs ; RD<5:4> as outputs ; RD<7:6> as inputs
1	

EXAMPLE	12-1:	IMPLEMENTING	A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE
RTCinit			
	MOVLW	80h	; Preload TMR1 register pair
	MOVWF	TMR1H	; for 1 second overflow
	CLRF	TMR1L	
	MOVLW	b'00001111'	; Configure for external clock,
	MOVWF	T1OSC	; Asynchronous operation, external oscillator
	CLRF	secs	; Initialize timekeeping registers
	CLRF	mins	;
	MOVLW	.12	
	MOVWF	hours	
	BSF	PIE1, TMR1IE	; Enable Timer1 interrupt
	RETURN	1	
RTCisr			
	BSF	TMR1H, 7	; Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	; Clear interrupt flag
	INCF	secs, F	; Increment seconds
	MOVLW	.59	; 60 seconds elapsed?
	CPFSGI	secs	
	RETURN	1	; No, done
	CLRF	secs	; Clear seconds
	INCF	mins, F	; Increment minutes
	MOVLW	.59	; 60 minutes elapsed?
	CPFSGI	' mins	
	RETURN	1	; No, done
	CLRF	mins	; clear minutes
	INCF	hours, F	; Increment hours
	MOVLW	.23	; 24 hours elapsed?
	CPFSGI	hours	
	RETURN	1	; No, done
	MOVLW	.01	; Reset hours to 1
	MOVWF	hours	
	RETURN	1	; Done
1			

TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	51
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	54
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	54
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	54
TMR1L	Timer1 Reg	gister Low By	/te						52
TMR1H	TImer1 Reg	gister High B	yte						52
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	52

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: These bits are unimplemented on PIC18F2682/2685 devices; always maintain these bits clear.

14.2 Timer3 16-Bit Read/Write Mode

Timer3 can be configured for 16-bit reads and writes (see Figure 14-2). When the RD16 control bit (T3CON<7>) is set, the address for TMR3H is mapped to a buffer register for the high byte of Timer3. A read from TMR3L will load the contents of the high byte of Timer3 into the Timer3 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer3 must also take place through the TMR3H Buffer register. The Timer3 high byte is updated with the contents of TMR3H when a write occurs to TMR3L. This allows a user to write all 16 bits to both the high and low bytes of Timer3 at once.

The high byte of Timer3 is not directly readable or writable in this mode. All reads and writes must take place through the Timer3 High Byte Buffer register.

Writes to TMR3H do not clear the Timer3 prescaler. The prescaler is only cleared on writes to TMR3L.

14.3 Using the Timer1 Oscillator as the Timer3 Clock Source

The Timer1 internal oscillator may be used as the clock source for Timer3. The Timer1 oscillator is enabled by setting the T1OSCEN (T1CON<3>) bit. To use it as the Timer3 clock source, the TMR3CS bit must also be set. As previously noted, this also configures Timer3 to increment on every rising edge of the oscillator source.

The Timer1 oscillator is described in Section 12.0 "Timer1 Module".

14.4 Timer3 Interrupt

The TMR3 register pair (TMR3H:TMR3L) increments from 0000h to FFFFh and overflows to 0000h. The Timer3 interrupt, if enabled, is generated on overflow and is latched in the interrupt flag bit, TMR3IF (PIR2<1>). This interrupt can be enabled or disabled by setting or clearing the Timer3 Interrupt Enable bit, TMR3IE (PIE2<1>).

14.5 Resetting Timer3 Using the ECCP1 Special Event Trigger

If the ECCP1 module is configured to generate a Special Event Trigger in Compare mode (ECCP1M3:ECCP1M0 = 1011), this signal will reset Timer3. It will also start an A/D conversion if the A/D module is enabled (see Section 15.3.4 "Special Event Trigger" for more information.).

The module must be configured as either a timer or synchronous counter to take advantage of this feature. When used this way, the ECCPR1H:ECCPR1L register pair effectively becomes a period register for Timer3.

If Timer3 is running in Asynchronous Counter mode, the Reset operation may not work.

In the event that a write to Timer3 coincides with a Special Event Trigger from a CCP1 module, the write will take precedence.

Note: The Special Event Triggers from the ECCP1 module will not set the TMR3IF interrupt flag bit (PIR2<1>).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	51
PIR2	OSCFIF	CMIF ⁽¹⁾	—	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽¹⁾	54
PIE2	OSCFIE	CMIE ⁽¹⁾	_	EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE ⁽¹⁾	54
IPR2	OSCFIP	CMIP ⁽¹⁾	—	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP ⁽¹⁾	53
TMR3L	Timer3 Reg	gister, Low By	te						53
TMR3H	Timer3 Reg	gister, High By	⁄te						53
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	52
T3CON	RD16	T3ECCP1 ⁽¹⁾	T3CKPS1	T3CKPS0	T3CCP1 ⁽¹⁾	T3SYNC	TMR3CS	TMR3ON	53

TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer3 module.

Note 1: These bits are unimplemented on PIC18F2682/2685 devices; always maintain these bits clear.

18.2.5 BREAK CHARACTER SEQUENCE

The Enhanced EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. The Break character transmit consists of a Start bit, followed by twelve '0' bits and a Stop bit. The frame Break character is sent whenever the SENDB and TXEN bits (TXSTA<3> and TXSTA<5>) are set while the Transmit Shift register is loaded with data. Note that the value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

Note that the data value written to the TXREG for the Break character is ignored. The write simply serves the purpose of initiating the proper sequence.

The TRMT bit indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 18-10 for the timing of the Break character sequence.

18.2.5.1 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to set up the Break character.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware. The Sync character now transmits in the preconfigured mode.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

18.2.6 RECEIVING A BREAK CHARACTER

The Enhanced USART module can receive a Break character in two ways.

The first method forces configuration of the baud rate at a frequency of 9/13 the typical speed. This allows for the Stop bit transition to be at the correct sampling location (13 bits for Break versus Start bit and 8 data bits for typical data).

The second method uses the auto-wake-up feature described in **Section 18.2.4 "Auto-Wake-up on Sync Break Character"**. By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Rate Detect feature. For both methods, the user can set the ABD bit once the TXIF interrupt is observed.

FIGURE 18-10: SEND BREAK CHARACTER SEQUENCE

The module is enabled by setting the HLVDEN bit. Each time that the HLVD module is enabled, the circuitry requires some time to stabilize. The IRVST bit is a read-only bit and is used to indicate when the circuit is stable. The module can only generate an interrupt after the circuit is stable and IRVST is set.

The VDIRMAG bit determines the overall operation of the module. When VDIRMAG is cleared, the module monitors for drops in VDD below a predetermined set point. When the bit is set, the module monitors for rises in VDD above the set point.

22.1 Operation

When the HLVD module is enabled, a comparator uses an internally generated reference voltage as the set point. The set point is compared with the trip point, where each node in the resistor divider represents a trip point voltage. The "trip point" voltage is the voltage level at which the device detects a high or low-voltage event, depending on the configuration of the module. When the supply voltage is equal to the trip point, the voltage tapped off of the resistor array is equal to the internal reference voltage generated by the voltage reference module. The comparator then generates an interrupt signal by setting the HLVDIF bit.

The trip point voltage is software programmable to any one of sixteen values. The trip point is selected by programming the HLVDL3:HLVDL0 bits (HLVDCON<3:0>).

The HLVD module has an additional feature that allows the user to supply the trip voltage to the module from an external source. This mode is enabled when bits HLVDL3:HLVDL0 are set to '1111'. In this state, the comparator input is multiplexed from the external input pin, HLVDIN. This gives users flexibility because it allows them to configure the High/Low-Voltage Detect interrupt to occur at any voltage in the valid operating range.

REGISTER 23-34: BnDLC: TX/RX BUFFER n DATA LENGTH CODE REGISTERS IN RECEIVE MODE $[0 \le n \le 5, TXnEN (BSEL \le n) = 0]^{(1)}$

U-0	R-x	R-x	R-x	R-x	R-x	R-x	R-x
	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0

Legend:											
R = Readal	ble bit	W = Writable bit	U = Unimplemented bit.	read as '0'							
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown							
bit 7	Unimple	mented: Read as '0'									
bit 6	RXRTR:	Receiver Remote Transmiss	sion Request bit								
	1 = This 0 = This	is a remote transmission rec is not a remote transmission	quest i request								
bit 5	RB1 : Re	served bit 1									
	Reserve	d by CAN Spec and read as	ʻ0'.								
bit 4	RB0: Re	served bit 0									
	Reserve	d by CAN Spec and read as	ʻ0'.								
bit 3-0	DLC3:DI	DLC3:DLC0: Data Length Code bits									
	1111 = F	Reserved									
	1110 = F	Reserved									
	1101 = F	Reserved									
	1100 = F	Reserved									
	1011 = F	Reserved									
	1010 = F	Reserved									
	1001 = H	Reserved									
	1000 = L	Data length = 8 bytes									
	0111 = L	Data length = 7 bytes									
	0110 = L	Data length = 6 bytes									
	0101 - L	$a_{12} = 0$ by $b_{12} = 0$ by $b_{12} = 0$									
	0100 = [$a_{12} = 3 bytes$									
	0010 - [)ata length = 2 bytes									
	0010 - L)ata length = 1 bytes									
	0000 = [Data length = 0 bytes									

Note 1: These registers are available in Mode 1 and 2 only.

23.2.3.2 Message Acceptance Filters and Masks

This section describes the message acceptance filters and masks for the CAN receive buffers.

REGISTER 23-37: RXFnSIDH: RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER REGISTERS, HIGH BYTE [0 \le n \le 15]⁽¹⁾

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID10 | SID9 | SID8 | SID7 | SID6 | SID5 | SID4 | SID3 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 SID10:SID3: Standard Identifier Filter bits (if EXIDEN = 0) Extended Identifier Filter bits EID28:EID21 (if EXIDEN = 1).

Note 1: Registers RXF6SIDH:RXF15SIDH are available in Mode 1 and 2 only.

REGISTER 23-38: RXFnSIDL: RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER REGISTERS, LOW BYTE [0 \le n \le 15]⁽¹⁾

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	EXIDEN ⁽²⁾	—	EID17	EID16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	SID2:SID0: Standard Identifier Filter bits (if EXIDEN = 0)
	Extended Identifier Filter bits EID20:EID18 (if EXIDEN = 1).
bit 4	Unimplemented: Read as '0'
bit 3	EXIDEN: Extended Identifier Filter Enable bit ⁽²⁾
	1 = Filter will only accept extended ID messages
	0 = Filter will only accept standard ID messages
bit 2	Unimplemented: Read as '0'
bit 1-0	EID17:EID16: Extended Identifier Filter bits

- **Note 1:** Registers RXF6SIDL:RXF15SIDL are available in Mode 1 and 2 only.
 - 2: In Mode 0, this bit must be set/cleared as required, irrespective of corresponding mask register value.

TABLE 23-1: CAN CONTROLLER REGISTER MAP (CONTINUED)

Address ⁽¹⁾	Name	Address	Name	Address	Name	Address	Name
E7Fh	CANCON_RO4 ⁽²⁾	E5Fh	CANCON_RO6 ⁽²⁾	E3Fh	CANCON_RO8 ⁽²⁾	E1Fh	(4)
E7Eh	CANSTAT_RO4 ⁽²⁾	E5Eh	CANSTAT_RO6 ⁽²⁾	E3Eh	CANSTAT_RO8 ⁽²⁾	E1Eh	(4)
E7Dh	B5D7	E5Dh	B3D7	E3Dh	B1D7	E1Dh	(4)
E7Ch	B5D6	E5Ch	B3D6	E3Ch	B1D6	E1Ch	(4)
E7Bh	B5D5	E5Bh	B3D5	E3Bh	B1D5	E1Bh	(4)
E7Ah	B5D4	E5Ah	B3D4	E3Ah	B1D4	E1Ah	(4)
E79h	B5D3	E59h	B3D3	E39h	B1D3	E19h	(4)
E78h	B5D2	E58h	B3D2	E38h	B1D2	E18h	(4)
E77h	B5D1	E57h	B3D1	E37h	B1D1	E17h	(4)
E76h	B5D0	E56h	B3D0	E36h	B1D0	E16h	(4)
E75h	B5DLC	E55h	B3DLC	E35h	B1DLC	E15h	(4)
E74h	B5EIDL	E54h	B3EIDL	E34h	B1EIDL	E14h	(4)
E73h	B5EIDH	E53h	B3EIDH	E33h	B1EIDH	E13h	(4)
E72h	B5SIDL	E52h	B3SIDL	E32h	B1SIDL	E12h	(4)
E71h	B5SIDH	E51h	B3SIDH	E31h	B1SIDH	E11h	(4)
E70h	B5CON	E50h	B3CON	E30h	B1CON	E10h	(4)
E6Fh	CANCON_RO5	E4Fh	CANCON_RO7	E2Fh	CANCON_RO9	E0Fh	(4)
E6Eh	CANSTAT_RO5	E4Eh	CANSTAT_RO7	E2Eh	CANSTAT_RO9	E0Eh	(4)
E6Dh	B4D7	E4Dh	B2D7	E2Dh	B0D7	E0Dh	(4)
E6Ch	B4D6	E4Ch	B2D6	E2Ch	B0D6	E0Ch	(4)
E6Bh	B4D5	E4Bh	B2D5	E2Bh	B0D5	E0Bh	(4)
E6Ah	B4D4	E4Ah	B2D4	E2Ah	B0D4	E0Ah	(4)
E69h	B4D3	E49h	B2D3	E29h	B0D3	E09h	(4)
E68h	B4D2	E48h	B2D2	E28h	B0D2	E08h	(4)
E67h	B4D1	E47h	B2D1	E27h	B0D1	E07h	(4)
E66h	B4D0	E46h	B2D0	E26h	B0D0	E06h	(4)
E65h	B4DLC	E45h	B2DLC	E25h	B0DLC	E05h	(4)
E64h	B4EIDL	E44h	B2EIDL	E24h	B0EIDL	E04h	(4)
E63h	B4EIDH	E43h	B2EIDH	E23h	B0EIDH	E03h	(4)
E62h	B4SIDL	E42h	B2SIDL	E22h	B0SIDL	E02h	(4)
E61h	B4SIDH	E41h	B2SIDH	E21h	BOSIDH	E01h	(4)
E60h	B4CON	E40h	B2CON	E20h	B0CON	E00h	(4)

Note 1: Shaded registers are available in Access Bank low area, while the rest are available in Bank 15.

2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the controller register due to the Microchip header file requirement.

3: These registers are not CAN registers.

4: Unimplemented registers are read as '0'.

PIC18F2682/2685/4682/4685

BTF	sc	Bit Test Fil	le, Skip if Cl	ear	BTF	SS	Bit Test Fi	le, Skip if Se	t
Synta	ax:	BTFSC f, b	{,a}		Synta	IX:	BTFSS f, b {	,a}	
Oper	ands:	0 ≤ f ≤ 255 0 ≤ b ≤ 7 a ∈ [0,1]			Opera	ands:	0 ≤ f ≤ 255 0 ≤ b < 7 a ∈ [0,1]		
Oper	ation:	skip if (f)	= 0		Opera	ation:	skip if (f)	= 1	
Statu	s Affected:	None			Statu	s Affected:	None		
Enco	ding:	1011	bbba ff	ff ffff	Enco	ding:	1010 bbba ffff fff		
Desc	ription:	If bit 'b' in register 'f' is '0', then the next instruction is skipped. If bit 'b' is '0', then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details		Desc	ription:	If bit 'b' in register 'f' is '1', then the nerinstruction is skipped. If bit 'b' is '1', the next instruction fetched during the current instruction execution is discarand a NOP is executed instead, makin this a two-cycle instruction. If 'a' is '0', the Access Bank is selecter 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented a Bit-Oriented Instruction in Indexed Literal Offset Addressing in Indexed Default of the default's for a default.		then the next 'b' is '1', then during the n is discarded ead, making (is selected. If p select the d instruction ion operates Idressing h). Oriented and in Indexed	
		Literal Offse	et Mode" for d	etails.			Literal Offso	et Mode" for d	etails.
Word	IS:	1			Word	s:	1		
Cycle	28:	1(2) Note: 3 cy by a	cles if skip and a 2-word instru	d followed ction.	Cycle	S:	1(2) Note: 3 cyd by a	cles if skip and 2-word instruc	followed tion.
QC	ycle Activity:				QC	cle Activity:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	Decode	Read	Process	No		Decode	Read	Process	No
16 - 1		register 'f'	Data	operation	16 - 1-		register 'f'	Data	operation
IT SK	ip:	00	00	04	IT SKI	p:	00	00	04
	Q1 No	Q2	Q3	Q4		Q1 No	Q2	Q3 No	Q4
	operation	operation	operation	operation		operation	operation	operation	operation
lf sk	ip and followed	by 2-word ins	truction:		lf ski	p and followed	by 2-word ins	truction:	
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	No	No	No	No		No	No	No	No
	operation	operation	operation	operation		operation	operation	operation	operation
	No	No	No	No		No	No	No	No
	operation	operation	operation	operation		operation	operation	operation	operation
<u>Exan</u>	<u>nple:</u>	HERE BI FALSE : TRUE :	FFSC FLAG	, 1 , 0	Exam	iple:	HERE BI FALSE : TRUE :	FFSS FLAG	, 1, 0
	Before Instruct PC After Instructio If FLAG< PC If FLAG< PC	tion = add n 1> = 0; = add 1> = 1; = add	ress (HERE) ress (TRUE) ress (False)			Before Instruct PC After Instructio If FLAG< PC If FLAG< PC	tion = add n = 0; = add 1> = 1; = add	ress (HERE) ress (FALSE) ress (TRUE)	

27.2 DC Characteristics:

Power-Down and Supply Current PIC18F2682/2685/4682/4685 (Industrial) PIC18LF2682/2685/4682/4685 (Industrial) (Continued)

PIC18LF: (Indus	2682/2685/4682/4685 strial)	Standa Operati	rd Oper	ating Co erature	onditions (unless -40°C ≤ TA	s otherwise stated ≤ +85°C for indust) rial
PIC18F20 (Indus	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Device	Typ Max Units Conditions					
	Supply Current (IDD) ^(2,3)						
	All devices	9.00	18.00	mA	-40°C		
		8.90	17.00	mA	+25°C	VDD = 4.2V	
		8.80	16.00	mA	+85°C		(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
	All devices	12.00	24.00	mA	-40°C		
		12.00	22.00	mA	+25°C	VDD = 5.0V	(PRI RUN HSPLL)
		12.00	21.00	mA	+85°C		(***_**********************************
	All devices	21.00	39.00	mA	-40°C		
		21.00	39.00	mA	+25°C	VDD = 4.2V (PRI RUN HSPI	(PRI RUN HSPLL)
		21.00	39.00	mA	+85°C	VDD = 5.0V	
	All devices	28.00	44.00	mA	-40°C		
		28.00	44.00	mA	+25°C		
		28.00	44.00	mA	+85°C		()

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** For RC oscillator configurations, current through RExT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

27.2 DC Characteristics: Power-Down and Supply Current PIC18F2682/2685/4682/4685 (Industrial) PIC18LF2682/2685/4682/4685 (Industrial) (Continued)

PIC18LF (Indu	2682/2685/4682/4685 strial)	Standa Operati	rd Oper	erature	onditions (unless -40°C \leq TA	s otherwise stated ≤ +85°C for indus	1) trial
PIC18F2 (Indu	682/2685/4682/4685 strial, Extended)	Standa Operati	rd Oper	ating Co erature	onditions (unless -40°C ≤ TA -40°C ≤ TA	s otherwise stated ≤ +85°C for indus ≤ +125°C for exte	i) trial nded
Param No.	Device	Тур	Max	Units		Condit	ions
	Supply Current (IDD) ^(2,3)						
	PIC18LF268X/468X	65	220	μA	-40°C		
		65	220	μA	+25°C	VDD = 2.0V	
		70	220	μA	+85°C		
	PIC18LF268X/468X	120	330	μA	-40°C		
		120	330	μA	+25°C	VDD = 3.0V	FOSC = 1 MHz
		130	330	μA	+85°C		EC oscillator)
	All devices	300	600	μA	-40°C	-	
		240	600	μA	+25°C	VDD = 5.0V	
		300	600	μA	+85°C		
	Extended devices only	320	600	μA	+125°C		
	PIC18LF268X/468X	260	760	μA	-40°C	-	
		255	760	μA	+25°C	VDD = 2.0V	
		270	760	μA	+85°C		
	PIC18LF268X/468X	420	1.4	μA	-40°C	-	
		430	1.4	μA	+25°C	VDD = 3.0V	FOSC = 4 MHZ (PRI_IDLE mode
		450	1.4	μA	+85°C		EC oscillator)
	All devices	0.9	2.2	mA	-40°C	-	
		0.9	2.2	mA	+25°C	Vpp = 5.0V	
		0.9	2.2	mA	+85°C	100 0.01	
	Extended devices only	1	3	mA	+125°C		
	Extended devices only	2.8	7	mA	+125°C	VDD = 4.2V	Fosc = 25 MHz
		4.3	11	mA	+125°C	VDD = 5.0V	(PRI_IDLE mode, EC oscillator)
	All devices	6	18	mA	-40°C		
		6.2	18	mA	+25°C	VDD = 4.2 V	Fosc = 40 MHz
		6.6	18	mA	+85°C		
	All devices	8.1	22	mA	-40°C		EC oscillator)
		9.1	22	mA	+25°C	VDD = 5.0V	,
		8.3	22	mA	+85°C		

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

 \overline{MCLR} = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through RExT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

27.2 DC Characteristics: Power-Down and Supply Current PIC18F2682/2685/4682/4685 (Industrial) PIC18LF2682/2685/4682/4685 (Industrial) (Continued)

PIC18LF2 (Indus	2682/2685/4682/4685 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
PIC18F26 (Indus	682/2685/4682/4685 strial, Extended)	Standa Operati	$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Device	Тур	Max	Units	Conditions						
	Module Differential Curre	nts (∆lw	от, ∆Іво	R, ∆ILVD	, Δ IOSCB, Δ IAD)						
D022	Watchdog Timer	1.3	4.5	μA	-40°C						
(∆IWDT)		1.4	4.5	μA	+25°C	VDD = 2.0V					
		2	4.5	μA	+85°C						
		1.9	5.5	μA	-40°C						
		2	5.5	μA	+25°C	VDD = 3.0V					
		2.8	5.5	μA	+85°C						
		4	10	μA	-40°C						
		5.5	10	μA	+25°C						
		5.6	10	μA	+85°C	VDD = 5.0V					
		13	14	μA	-40°C to +125°C						
D022A	Brown-out Reset	35	65	μA	-40°C to +85°C	VDD = 3.0V					
(Δ IBOR)		40	75	μA	-40°C to +85°C						
		55	75	μA	-40°C to +125°C	VDD = 5.0V					
D022B	High/Low-Voltage Detect	22	45	μA	-40°C to +85°C	VDD = 2.0V					
$(\Delta ILVD)$		25	45	μA	-40°C to +85°C	VDD = 3.0V					
		29	55	μA	-40°C to +85°C						
		30	55	μA	-40°C to +125°C	VDD - 5.0V					
D025	Timer1 Oscillator	2.1	4.5	μA	-40°C to +85°C						
(Δ IOSCB)		1.8	4.5	μA	-40°C to +85°C	VDD = 2.0V	32 kHz on Timer1 ⁽⁴⁾				
		2.1	4.5	μA	-40°C to +125°C						
		2.2	6	μA	-40°C						
		2.6	6	μA	+25°C	VDD = 3.0V	32 kHz on Timer1 ⁽⁴⁾				
		2.9	6	μA	+85°C						
		3	8	μA	-40°C						
		3.2	8	μA	+25°C	VDD = 5.0V	32 kHz on Timer1 ⁽⁴⁾				
		3.4	8	μA	+85°C						
D026	A/D Converter	1	2	μA	-40°C to +85°C	VDD = 2.0V					
(∆IAD)		1	2	μA	-40°C to +85°C	VDD = 3.0V	A/D on, not converting				
		1	2	μA	-40°C to +85°C		$1.6 \ \mu S \le TAD \le 6.4 \ \mu S$				
		2	8	μA	-40°C to +125°C	VDD = 5.0V					

Legend: Shading of rows is to assist in readability of the table. Note 1: The power-down current in Sleep mode does not depe

1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

PIC18F2682/2685/4682/4685

FIGURE 27-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 27-8: BROWN-OUT RESET TIMING

TABLE 27-10:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Sym	Characteristic	Min	Тур	Мах	Units	Conditions
30	TMCL	MCLR Pulse Width (low)	2	—		μS	
31	Twdt	Watchdog Timer Time-out Period (no postscaler)	3.4	4.00	4.6	ms	
32	Tost	Oscillation Start-up Timer Period	1024 Tosc	_	1024 Tosc		Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	55.6	65.5	75	ms	
34	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	2	—	μS	
35	TBOR	Brown-out Reset Pulse Width	200		—	μS	$VDD \le BVDD$ (see D005)
36	Tirvst	Time for Internal Reference Voltage to become stable	—	20	50	μS	
37	Tlvd	High/Low-Voltage Detect Pulse Width	200	_	—	μS	$VDD \leq VLVD$
38	TCSD	CPU Start-up Time	—	10	—	μS	
39	TIOBST	Time for INTOSC to stabilize	_	1	_	μS	

PIC18F2682/2685/4682/4685

TABLE 27-22: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic		Min	Мах	Units	Conditions
120	TCKH2DTV	SYNC XMIT (MASTER & SLAVE)					
		Clock High to Data Out Valid	PIC18FXXXX	_	40	ns	
			PIC18LFXXXX		100	ns	VDD = 2.0V
121	TCKRF	Clock Out Rise Time and Fall Time	PIC18FXXXX	_	20	ns	
		(Master mode)	PIC18LFXXXX	—	50	ns	VDD = 2.0V
122	TDTRF	Data Out Rise Time and Fall Time	PIC18FXXXX	—	20	ns	
			PIC18LFXXXX		50	ns	VDD = 2.0V

FIGURE 27-21: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 27-23: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Мах	Units	Conditions
125	TDTV2CKL	SYNC RCV (MASTER & SLAVE) Data Hold before CK \downarrow (DT hold time)	10	_	ns	
126	TCKL2DTL	Data Hold after CK \downarrow (DT hold time)	15	_	ns	