

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	80KB (40K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2682t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4.3 RC_IDLE MODE

In RC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator block using the INTOSC multiplexer. This mode allows for controllable power conservation during Idle periods.

From RC_RUN, this mode is entered by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, first set IDLEN, then set the SCS1 bit and execute SLEEP. Although its value is ignored, it is recommended that SCS0 also be cleared; this is to maintain software compatibility with future devices. The INTOSC multiplexer may be used to select a higher clock frequency, by modifying the IRCF bits, before executing the SLEEP instruction. When the clock source is switched to the INTOSC multiplexer, the primary oscillator is shut down and the OSTS bit is cleared.

If the IRCF bits are set to any non-zero value or the INTSRC bit is set, the INTOSC output is enabled. The IOFS bit becomes set, after the INTOSC output becomes stable, after an interval of TIOBST (parameter 39, Table 27-10). Clocks to the peripherals continue while the INTOSC source stabilizes. If the IRCF bits were previously at a non-zero value, or INTSRC was set before the SLEEP instruction was executed and the INTOSC source was already stable, the IOFS bit will remain set. If the IRCF bits and INTSRC are all clear, the INTOSC output will not be enabled, the IOFS bit will remain clear and there will be no indication of the current clock source.

When a wake event occurs, the peripherals continue to be clocked from the INTOSC multiplexer. After a delay of TCSD following the wake event, the CPU begins executing code being clocked by the INTOSC multiplexer. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

3.5 Exiting Idle and Sleep Modes

An exit from Sleep mode or any of the Idle modes is triggered by an interrupt, a Reset or a WDT time-out. This section discusses the triggers that cause exits from power-managed modes. The clocking subsystem actions are discussed in each of the power-managed modes (see Section 3.2 "Run Modes", Section 3.3 "Sleep Mode" and Section 3.4 "Idle Modes").

3.5.1 EXIT BY INTERRUPT

Any of the available interrupt sources can cause the device to exit from an Idle mode or the Sleep mode to a Run mode. To enable this functionality, an interrupt source must be enabled by setting its enable bit in one of the INTCON or PIE registers. The exit sequence is initiated when the corresponding interrupt flag bit is set.

On all exits from Idle or Sleep modes by interrupt, code execution branches to the interrupt vector if the GIE/ GIEH bit (INTCON<7>) is set. Otherwise, code execution continues or resumes without branching (see Section 9.0 "Interrupts").

A fixed delay of interval TCSD following the wake event is required when leaving the Sleep and Idle modes. This delay is required for the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

3.5.2 EXIT BY WDT TIME-OUT

A WDT time-out will cause different actions depending on which power-managed mode the device is in when the time-out occurs.

If the device is not executing code (all Idle modes and Sleep mode), the time-out will result in an exit from the power-managed mode (see Section 3.2 "Run Modes" and Section 3.3 "Sleep Mode"). If the device is executing code (all Run modes), the time-out will result in a WDT Reset (see Section 24.2 "Watchdog Timer (WDT)").

The WDT timer and postscaler are cleared by executing a SLEEP or CLRWDT instruction, the loss of a currently selected clock source (if the Fail-Safe Clock Monitor is enabled) and modifying the IRCF bits in the OSCCON register if the internal oscillator block is the device clock source.

3.5.3 EXIT BY RESET

Normally, the device is held in Reset by the Oscillator Start-up Timer (OST) until the primary clock becomes ready. At that time, the OSTS bit is set and the device begins executing code. If the internal oscillator block is the new clock source, the IOFS bit is set instead.

The exit delay time from Reset to the start of code execution depends on both the clock sources before and after the wake-up and the type of oscillator if the new clock source is the primary clock. Exit delays are summarized in Table 3-2.

Code execution can begin before the primary clock becomes ready. If either the Two-Speed Start-up (see **Section 24.3 "Two-Speed Start-up"**) or Fail-Safe Clock Monitor (see **Section 24.4 "Fail-Safe Clock Monitor**") is enabled, the device may begin execution as soon as the Reset source has cleared. Execution is clocked by the INTOSC multiplexer driven by the internal oscillator block. Execution is clocked by the internal oscillator block until either the primary clock becomes ready or a power-managed mode is entered before the primary clock becomes ready; the primary clock is then shut down.

TABLE 5-1:SPECIAL FUNCTION REGISTER MAP FOR
PIC18F2682/2685/4682/4685 DEVICES (CONTINUED)

Address	Name	Address	Name	Address	Name	Address	Name
DFFh	_	DDFh	_	DBFh	_	D9Fh	
DFEh	_	DDEh	_	DBEh	_	D9Eh	
DFDh	_	DDDh		DBDh	_	D9Dh	
DFCh	TXBIE	DDCh	_	DBCh	_	D9Ch	
DFBh	_	DDBh	_	DBBh	_	D9Bh	_
DFAh	BIE0	DDAh		DBAh	_	D9Ah	_
DF9h	_	DD9h	_	DB9h	_	D99h	_
DF8h	BSEL0	DD8h	SDFLC	DB8h	_	D98h	_
DF7h	_	DD7h	_	DB7h	_	D97h	_
DF6h	—	DD6h	_	DB6h	_	D96h	_
DF5h	—	DD5h	RXFCON1	DB5h	_	D95h	_
DF4h	_	DD4h	RXFCON0	DB4h	_	D94h	_
DF3h	MSEL3	DD3h	_	DB3h	_	D93h	RXF15EIDL
DF2h	MSEL2	DD2h	_	DB2h	_	D92h	RXF15EIDH
DF1h	MSEL1	DD1h	_	DB1h	_	D91h	RXF15SIDL
DF0h	MSEL0	DD0h	—	DB0h		D90h	RXF15SIDH
DEFh	_	DCFh	—	DAFh		D8Fh	_
DEEh	—	DCEh		DAEh	_	D8Eh	_
DEDh	—	DCDh	—	DADh		D8Dh	_
DECh	—	DCCh	_	DACh	_	D8Ch	_
DEBh	—	DCBh		DABh	_	D8Bh	RXF14EIDL
DEAh	—	DCAh	—	DAAh		D8Ah	RXF14EIDH
DE9h	—	DC9h	_	DA9h	_	D89h	RXF14SIDL
DE8h	—	DC8h	—	DA8h	-	D88h	RXF14SIDH
DE7h	RXFBCON7	DC7h	—	DA7h		D87h	RXF13EIDL
DE6h	RXFBCON6	DC6h	—	DA6h		D86h	RXF13EIDH
DE5h	RXFBCON5	DC5h		DA5h	_	D85h	RXF13SIDL
DE4h	RXFBCON4	DC4h	—	DA4h		D84h	RXF13SIDH
DE3h	RXFBCON3	DC3h		DA3h	—	D83h	RXF12EIDL
DE2h	RXFBCON2	DC2h		DA2h		D82h	RXF12EIDH
DE1h	RXFBCON1	DC1h		DA1h	—	D81h	RXF12SIDL
DE0h	RXFBCON0	DC0h	_	DA0h	—	D80h	RXF12SIDH

Note 1: Registers available only on PIC18F4X8X devices; otherwise, the registers read as '0'.

2: When any TX_ENn bit in RX_TX_SELn is set, then the corresponding bit in this register has transmit properties.

3: This is not a physical register.

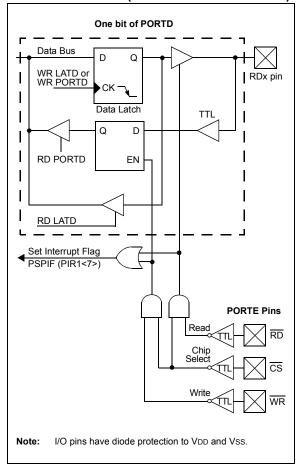
R/W-	1 R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
INT2I	P INT1IP	—	INT2IE	INT1IE	_	INT2IF	INT1IF
bit 7							bit 0
Legend:							
R = Read	lable bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value	e at POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	INT2IP: INT	2 External Inter	rupt Priority bi	t			
	1 = High pr 0 = Low pri	,					
bit 6	INT1IP: INT	1 External Inter	rupt Priority bi	t			
	1 = High pr 0 = Low pri	•					
bit 5	Unimpleme	nted: Read as	0'				
bit 4	INT2IE: INT	2 External Inter	rupt Enable bi	t			
		s the INT2 exter s the INT2 exte					
bit 3	INT1IE: INT	1 External Inter	rupt Enable bi	t			
		s the INT1 exter s the INT1 exte					
bit 2	Unimpleme	nted: Read as	0'				
bit 1	INT2IF: INT	2 External Inter	upt Flag bit				
		Γ2 external inter Γ2 external inter			ed in software)	
bit 0	INT1IF: INT	1 External Inter	upt Flag bit				
		Γ1 external inter Γ1 external inter			ed in software)	
Note:	Interrupt flag bits enable bit or the are clear prior to	global interrupt	enable bit. Us	er software sho	uld ensure th	e appropriate inte	

REGISTER 9-3: INTCON3: INTERRUPT CONTROL REGISTER 3

10.6 Parallel Slave Port

Note:	The Parallel Slave Port is only available on
	PIC18F4682/4685 devices.

In addition to its function as a general I/O port, PORTD can also operate as an 8-bit wide Parallel Slave Port (PSP) or microprocessor port. PSP operation is controlled by the 4 upper bits of the TRISE register (Register 10-1). Setting control bit, PSPMODE (TRISE<4>), enables PSP operation, as long as the Enhanced CCP1 (ECCP1) module is not operating in dual output or quad output PWM mode. In Slave mode, the port is asynchronously readable and writable by the external world.


The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting the control bit, PSPMODE, enables the PORTE I/O pins to become control inputs for the microprocessor port. When set, port pin RE0 is the RD input, RE1 is the WR input and RE2 is the CS (Chip Select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits, PFCG3:PFCG0 (ADCON1<3:0>), must also be set to '1010'.

A write to the PSP occurs when both the $\overline{\text{CS}}$ and $\overline{\text{WR}}$ lines are first detected low and ends when either are detected high. The PSPIF and IBF flag bits are both set when the write ends.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The data in PORTD is read out and the OBF bit is set. If the user writes new data to PORTD to set OBF, the data is immediately read out; however, the OBF bit is not set.

When either the \overline{CS} or \overline{RD} line is detected high, the PORTD pins return to the input state and the PSPIF bit is set. User applications should wait for PSPIF to be set before servicing the PSP. When this happens, the IBF and OBF bits can be polled and the appropriate action taken. The timing for the control signals in Write and Read modes is shown in Figure 10-3 and Figure 10-4, respectively.

16.4.7.1 Auto-Shutdown and Auto-Restart

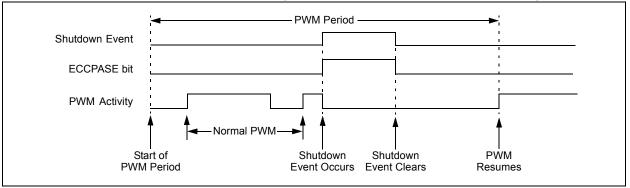
The auto-shutdown feature can be configured to allow automatic restarts of the module following a shutdown event. This is enabled by setting the PRSEN bit of the ECCP1DEL register (ECCP1DEL<7>).

In Shutdown mode with PRSEN = 1 (Figure 16-10), the ECCPASE bit will remain set for as long as the cause of the shutdown continues. When the shutdown condition clears, the ECCPASE bit is cleared. If PRSEN = 0 (Figure 16-11), once a shutdown condition occurs, the ECCPASE bit will remain set until it is cleared by firmware. Once ECCPASE is cleared, the Enhanced PWM will resume at the beginning of the next PWM period.

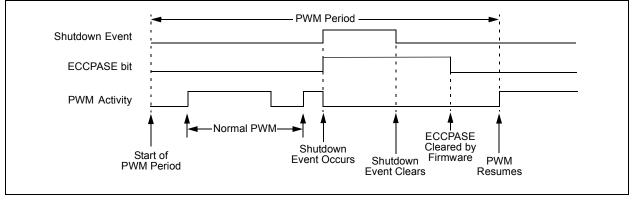
Note:	Writing to the ECCPASE bit is disabled
	while a shutdown condition is active.

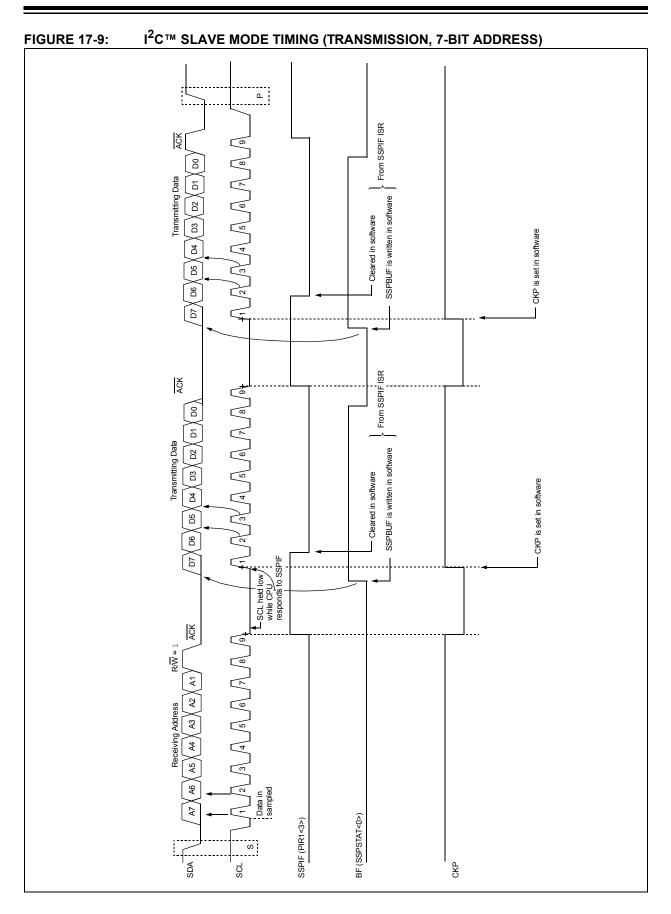
Independent of the PRSEN bit setting, if the autoshutdown source is one of the comparators, the shutdown condition is a level. The ECCPASE bit cannot be cleared as long as the cause of the shutdown persists.

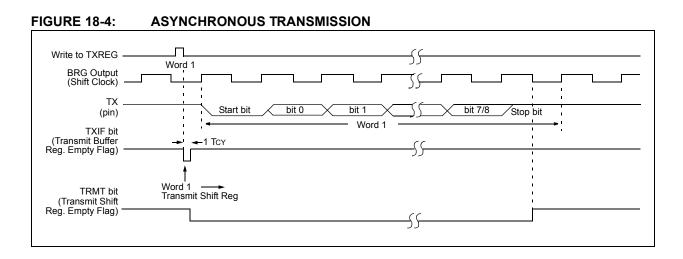
The Auto-Shutdown mode can be forced by writing a '1' to the ECCPASE bit.


16.4.8 START-UP CONSIDERATIONS

When the ECCP1 module is used in the PWM mode, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins. When the microcontroller is released from Reset, all of the I/O pins are in the high-impedance state. The external circuits must keep the power switch devices in the OFF state until the microcontroller drives the I/O pins with the proper signal levels, or activates the PWM output(s).


The ECCP1M1:ECCP1M0 bits (ECCP1CON<1:0>) allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pins are configured as outputs. Changing the polarity configuration while the PWM pins are configured as outputs is not recommended, since it may result in damage to the application circuits.


The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pins for output at the same time as the ECCP1 module may cause damage to the application circuit. The ECCP1 module must be enabled in the proper output mode and complete a full PWM cycle before configuring the PWM pins as outputs. The completion of a full PWM cycle is indicated by the TMR2IF bit being set as the second PWM period begins.


FIGURE 16-10: PWM AUTO-SHUTDOWN (PRSEN = 1, AUTO-RESTART ENABLED)

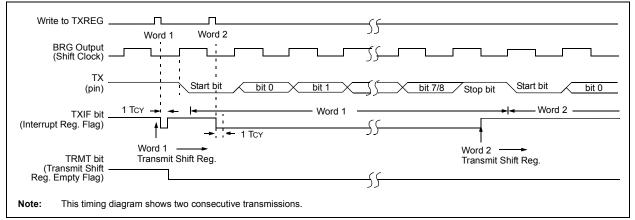

FIGURE 16-11: PWM AUTO-SHUTDOWN (PRSEN = 0, AUTO-RESTART DISABLED)

FIGURE 18-5: ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)

TABLE 18-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	51	
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	54	
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	54	
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	54	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	53	
TXREG	EUSART T	ransmit Reg	jister						53	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	53	
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	53	
SPBRGH	EUSART B	EUSART Baud Rate Generator Register High Byte								
SPBRG	EUSART B	aud Rate G	enerator Re	gister Low	Byte				53	

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

Note 1: Reserved in PIC18F2682/2685 devices; always maintain these bits clear.

22.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake-up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

22.7 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
HLVDCON	VDIRMAG	_	IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0	52
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	51
PIR2	OSCFIF	CMIF ⁽¹⁾	_	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽¹⁾	54
PIE2	OSCFIE	CMIE ⁽¹⁾		EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE ⁽¹⁾	54
IPR2	OSCFIP	CMIP ⁽¹⁾		EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP ⁽¹⁾	53

TABLE 22-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

Note 1: These bits are available in PIC18F4682/4685 devices and reserved in PIC18F2682/2685 devices.

EXAMPLE 23-3: TRANSMITTING A CAN MESSAGE USING BANKED METHOD

; Need to transmit Standard Identifier message 123h using TXBO buffer. ; To successfully transmit, CAN module must be either in Normal or Loopback mode. ; TXBO buffer is not in access bank. And since we want banked method, we need to make sure ; that correct bank is selected. BANKSEL TXB0CON ; One BANKSEL in beginning will make sure that we are ; in correct bank for rest of the buffer access. ; Now load transmit data into TXB0 buffer. MOVLW MY_DATA_BYTE1 ; Load first data byte into buffer ; Compiler will automatically set "BANKED" bit MOVWF TXB0D0 ; Load rest of data bytes - up to 8 bytes into TXBO buffer. . . . ; Load message identifier MOVLW 60H ; Load SID2:SID0, EXIDE = 0 MOVWF TXB0SIDL MOVLW 24H ; Load SID10:SID3 MOVWF TXB0SIDH ; No need to load TXB0EIDL:TXB0EIDH, as we are transmitting Standard Identifier Message only. ; Now that all data bytes are loaded, mark it for transmission. MOVLW B'00001000' ; Normal priority; Request transmission MOVWF TXB0CON ; If required, wait for message to get transmitted BTFSC TXB0CON, TXREQ ; Is it transmitted? BRA \$-2 ; No. Continue to wait... ; Message is transmitted.

REGISTER 23-35: BnDLC: TX/RX BUFFER n DATA LENGTH CODE REGISTERS IN TRANSMIT MODE $[0 \le n \le 5, TXnEN (BSEL \le n) = 1]^{(1)}$

U-0	R/W-x	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x				
_	TXRTR	—	—	DLC3	DLC2	DLC1	DLC0				
bit 7							bit 0				
Legend:											
R = Readal	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown				
bit 7	Unimplemen	ted: Read as ')'								
bit 6	TXRTR: Trans	smitter Remote	Transmission	n Request bit							
	1 = Transmitte	1 = Transmitted message will have RTR bit set									
	0 = Transmitte	ed message wi	ll have RTR b	it cleared							
bit 5-4	Unimplemen	ted: Read as ')'								
bit 3-0	DLC3:DLC0:	Data Length C	ode bits								
	1111-1001 =	Reserved									
		length = 8 byte									
		length = 7 byte									
		length = 6 byte									
	0101 = Data length = 5 bytes										
	0100 = Data length = 4 bytes 0011 = Data length = 3 bytes										
		length = 2 byte									
		length = 1 byte									
	0000 = Data	length = 0 byte	S								

Note 1: These registers are available in Mode 1 and 2 only.

REGISTER 23-36: BSEL0: BUFFER SELECT REGISTER 0⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
B5TXEN	B4TXEN	B3TXEN	B2TXEN	B1TXEN	B0TXEN	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2 B5TXEN:B0TXEN: Buffer 5 to Buffer 0 Transmit Enable bit

- 1 = Buffer is configured in Transmit mode
- 0 = Buffer is configured in Receive mode
- bit 1-0 Unimplemented: Read as '0'

Note 1: These registers are available in Mode 1 and 2 only.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FIL15_1	FIL15_0	FIL14_1	FIL14_0	FIL13_1	FIL13_0	FIL12_1	FIL12_0
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-6 bit 5-4	11 = No masl 10 = Filter 15 01 = Accepta 00 = Accepta	nce Mask 1 nce Mask 0 I 4_0: Filter 14 k nce Mask 1					
bit 3-2	11 = No masl 10 = Filter 15 01 = Accepta 00 = Accepta	nce Mask 1 nce Mask 0					
bit 1-0	FIL12_1:FIL1 11 = No masl 10 = Filter 15 01 = Accepta 00 = Accepta	nce Mask 1	Select bits 1 a	nd 0			

REGISTER 23-51: MSEL3: MASK SELECT REGISTER 3⁽¹⁾

Note 1: This register is available in Mode 1 and 2 only.

R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0					
WAKDIS	WAKFIL	—		—	SEG2PH2 ⁽¹⁾	SEG2PH1 ⁽¹⁾	SEG2PH0 ⁽¹⁾					
bit 7							bit 0					
Legend:												
R = Readat	ole bit	W = Writable I	bit	U = Unimple	mented bit, rea	d as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown					
bit 7	WAKDIS: Wa	ake-up Disable I	bit									
		1 = Disable CAN bus activity wake-up feature										
	0 = Enable C	AN bus activity	wake-up fea	iture								
bit 6	WAKFIL: Selects CAN bus Line Filter for Wake-up bit											
		l bus line filter fo										
	0 = CAN bus	line filter is not	used for wak	ke-up								
bit 5-3	Unimplemen	nted: Read as ')'									
bit 2-0	SEG2PH2:SI	EG2PH0: Phase	e Segment 2	Time Select bi	its ⁽¹⁾							
		Segment 2 time										
	110 = Phase Segment 2 time = 7 x TQ											
		Segment 2 time										
	100 = Phase Segment 2 time = 5 x TQ 011 = Phase Segment 2 time = 4 x TQ											
		Segment 2 time										
		Segment 2 time										
	000 = Phase	Segment 2 time	e = 1 x Tq									

REGISTER 23-54: BRGCON3: BAUD RATE CONTROL REGISTER 3

Note 1: Ignored if SEG2PHTS bit (BRGCON2<7>) is '0'.

TABLE 23-1: CAN CONTROLLER REGISTER MAP (CONTINUED)

Address ⁽¹⁾	Name	Address	Name	Address	Name	Address	Name
E7Fh	CANCON_RO4 ⁽²⁾	E5Fh	CANCON_RO6(2)	E3Fh	CANCON_RO8 ⁽²⁾	E1Fh	(4)
E7Eh	CANSTAT_RO4 ⁽²⁾	E5Eh	CANSTAT_RO6 ⁽²⁾	E3Eh	CANSTAT_RO8 ⁽²⁾	E1Eh	(4)
E7Dh	B5D7	E5Dh	B3D7	E3Dh	B1D7	E1Dh	(4)
E7Ch	B5D6	E5Ch	B3D6	E3Ch	B1D6	E1Ch	(4)
E7Bh	B5D5	E5Bh	B3D5	E3Bh	B1D5	E1Bh	(4)
E7Ah	B5D4	E5Ah	B3D4	E3Ah	B1D4	E1Ah	(4)
E79h	B5D3	E59h	B3D3	E39h	B1D3	E19h	(4)
E78h	B5D2	E58h	B3D2	E38h	B1D2	E18h	(4)
E77h	B5D1	E57h	B3D1	E37h	B1D1	E17h	(4)
E76h	B5D0	E56h	B3D0	E36h	B1D0	E16h	(4)
E75h	B5DLC	E55h	B3DLC	E35h	B1DLC	E15h	(4)
E74h	B5EIDL	E54h	B3EIDL	E34h	B1EIDL	E14h	(4)
E73h	B5EIDH	E53h	B3EIDH	E33h	B1EIDH	E13h	(4)
E72h	B5SIDL	E52h	B3SIDL	E32h	B1SIDL	E12h	(4)
E71h	B5SIDH	E51h	B3SIDH	E31h	B1SIDH	E11h	(4)
E70h	B5CON	E50h	B3CON	E30h	B1CON	E10h	(4)
E6Fh	CANCON_RO5	E4Fh	CANCON_RO7	E2Fh	CANCON_RO9	E0Fh	(4)
E6Eh	CANSTAT_RO5	E4Eh	CANSTAT_RO7	E2Eh	CANSTAT_RO9	E0Eh	(4)
E6Dh	B4D7	E4Dh	B2D7	E2Dh	B0D7	E0Dh	(4)
E6Ch	B4D6	E4Ch	B2D6	E2Ch	B0D6	E0Ch	(4)
E6Bh	B4D5	E4Bh	B2D5	E2Bh	B0D5	E0Bh	(4)
E6Ah	B4D4	E4Ah	B2D4	E2Ah	B0D4	E0Ah	(4)
E69h	B4D3	E49h	B2D3	E29h	B0D3	E09h	(4)
E68h	B4D2	E48h	B2D2	E28h	B0D2	E08h	(4)
E67h	B4D1	E47h	B2D1	E27h	B0D1	E07h	(4)
E66h	B4D0	E46h	B2D0	E26h	B0D0	E06h	(4)
E65h	B4DLC	E45h	B2DLC	E25h	B0DLC	E05h	(4)
E64h	B4EIDL	E44h	B2EIDL	E24h	B0EIDL	E04h	(4)
E63h	B4EIDH	E43h	B2EIDH	E23h	B0EIDH	E03h	(4)
E62h	B4SIDL	E42h	B2SIDL	E22h	B0SIDL	E02h	(4)
E61h	B4SIDH	E41h	B2SIDH	E21h	B0SIDH	E01h	(4)
E60h	B4CON	E40h	B2CON	E20h	B0CON	E00h	(4)

Note 1: Shaded registers are available in Access Bank low area, while the rest are available in Bank 15.

2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the controller register due to the Microchip header file requirement.

3: These registers are not CAN registers.

4: Unimplemented registers are read as '0'.

23.6.3 TRANSMIT PRIORITY

Transmit priority is a prioritization within the PIC18F2682/2685/4682/4685 devices of the pending transmittable messages. This is independent from and not related to any prioritization implicit in the message arbitration scheme built into the CAN protocol. Prior to sending the SOF, the priority of all buffers that are queued for transmission is compared. The transmit buffer with the highest priority will be sent first. If two buffers have the same priority setting, the buffer with the highest buffer number will be sent first. There are four levels of transmit priority. If TXP bits for a particular message buffer are set to '11', that buffer has the highest possible priority. If TXP bits for a particular message buffer are set to '00', that buffer has the lowest possible priority.

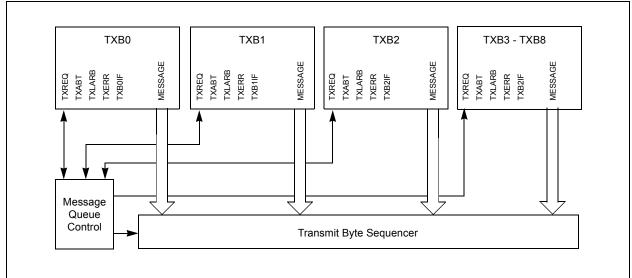


FIGURE 23-2: TRANSMIT BUFFERS

REGISTER 24-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	
_	_	—	BORV1	BORV0	BOREN1 ⁽¹⁾	BOREN0 ⁽¹⁾	PWRTEN ⁽¹⁾	
bit 7				•			bit 0	
Legend:								
R = Readabl	e bit	P = Program	nable bit	U = Unimpler	mented bit, read	as '0'		
-n = Value wl	hen device is unp	programmed		u = Unchang	ed from progran	nmed state		
bit 7-5	Unimplement	ted: Read as '	0'					
bit 4-3	4-3 BORV1:BORV0: Brown-out Reset Voltage bits							
	11 = Minimum	11 = Minimum setting						
	•							
	•							
	00 = Maximur	n setting						
bit 2-1		REN0: Brown-	out Posot End	blo bite(1)				
DIL 2-1					EN is disabled)			
					abled in Sleep r	node (SBORE	N is disabled)	
					re (SBOREN is			
		ut Reset disab		•		,		
	bit 0 PWRTEN : Power-up Timer Enable bit ⁽¹⁾							
bit 0	PWRTEN : Po	wer-up Timer	Enable bit ⁽¹⁾					
bit 0	PWRTEN: Po 1 = PWRT dis	•	Enable bit ⁽¹⁾					

© 2009 Microchip Technology Inc.

controlled.

IORLW	Inclusive	OR Lite	eral w	ith \	w	
Syntax:	IORLW k	IORLW k				
Operands:	$0 \le k \le 255$	5				
Operation:	(W) .OR. k	$\to W$				
Status Affected:	N, Z	N, Z				
Encoding:	0000	1001	kkk	k	kkkk	
Description:	The conter eight-bit lite in W.					
Words:	1	1				
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	3		Q4	
Decode	Read literal 'k'	Proce Data		Wri	te to W	
Example:	IORLW	35h				
Before Instruction W = 9Ah						

BFh

After Instruction W

=

IORWF	Inclusive OR W with f					
Syntax:	IORWF f	IORWF f {,d {,a}}				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	d ∈ [0,1]				
Operation:	(W) .OR. (f	$) \rightarrow dest$				
Status Affected:	N, Z					
Encoding:	0001 00da ffff ffff					
Description:	Inclusive O '0', the result is (default). If 'a' is '0', t If 'a' is '1', t GPR bank If 'a' is '0' a set is enabl in Indexed mode when Section 25 Bit-Oriente Literal Offs	It is placed by the Access the BSR is (default). It default). Ind the exact the the formula of the exact the e	ed in W. I back in reg ss Bank is is used to xtended in nstruction ffset Addro 95 (5Fh). te-Oriento	f 'd' is '1', gister 'f' selected. select the struction operates essing See ed and Indexed		
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	3	Q4		
Decode	Read register 'f'	Proce Data		Vrite to stination		
Example:	IORWF R	ESULT,	0, 1			

ampie.	10	RWP
Before Instruct	tion	
RESULT	=	13h
W	=	91h
After Instructio	n	
RESULT	=	13h
W	=	93h

DS39761C-page 388

MO	/FF	Move f to	f				
Synta	ax:	MOVFF fg	MOVFF f _s ,f _d				
Oper	ands:		$\begin{array}{l} 0 \leq f_s \leq 4095 \\ 0 \leq f_d \leq 4095 \end{array}$				
Oper	ation:	$(f_s) \to f_d$					
Statu	s Affected:	None					
Enco	ding:						
	vord (source) word (destin.)	1100 1111	ffff ffff	ffff ffff	ffff _s ffff _d		
Desc	ription:	moved to d Location of in the 4096 FFFh) and can also be FFFh. Either sour (a useful sp MOVFF is p transferring peripheral i buffer or ar The MOVFF	The contents of source register 'f _s ' are moved to destination register 'f _s '. Location of source 'f _s ' can be anywhere in the 4096-byte data space (000h to FFFh) and location of destination 'f _d ' can also be anywhere from 000h to FFFh. Either source or destination can be W (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port). The MOVFF instruction cannot use the PCL, TOSU, TOSH or TOSL as the				
Word	ls:	2	2				
Cycle	es:	2 (3)					
QC	ycle Activity:						
	Q1	Q2	Q3	}	Q4		
	Decode	Read register 'f' (src)	Proce Data		No operation		
	Decode	No operation No dummy	No operat		Write register 'f' (dest)		

MOVLB	Move Lite	eral to L	ow Nibbl	le in BS
Syntax:	MOVLW I	(
Operands:	$0 \le k \le 255$	5		
Operation:	$k \to BSR$			
Status Affected:	None			
Encoding:	0000	0001	kkkk	kkkk
Description:	The eight-t Bank Selec of BSR<7:4 regardless	ct Registe 4> always	er (BSR). s remains	The value
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	5	Q4
Decode	Read literal 'k'	Proce Data		ite literal to BSR
Example:	MOVLB	5		
Before Instruc BSR Reg		2h		

05h

After Instruction

BSR Register =

Example:	MOVFF	REG1,	REG2

read

Before Instruction REG1	=	33h
REG2	=	11h
After Instruction		
REG1 REG2	= =	33h 33h

26.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

26.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

26.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

26.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

26.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB IDE compatibility