

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	96KB (48K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2685-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7 Clock Sources and Oscillator Switching

Like previous PIC18 devices, the PIC18F2682/2685/ 4682/4685 family includes a feature that allows the device clock source to be switched from the main oscillator to an alternate low-frequency clock source. PIC18F2682/2685/4682/4685 devices offer two alternate clock sources. When an alternate clock source is enabled, the various power-managed operating modes are available.

Essentially, there are three clock sources for these devices:

- Primary oscillators
- · Secondary oscillators
- · Internal oscillator block

The **primary oscillators** include the External Crystal and Resonator modes, the External RC modes, the External Clock modes and the internal oscillator block. The particular mode is defined by the FOSC3:FOSC0 Configuration bits. The details of these modes are covered earlier in this chapter. The **secondary oscillators** are those external sources not connected to the OSC1 or OSC2 pins. These sources may continue to operate even after the controller is placed in a power-managed mode.

PIC18F2682/2685/4682/4685 devices offer the Timer1 oscillator as a secondary oscillator. In all power-managed modes, this oscillator is often the time base for functions such as a Real-Time Clock.

Most often, a 32.768 kHz watch crystal is connected between the RC0/T1OSO/T13CKI and RC1/T1OSI pins. Like the LP mode oscillator circuit, loading capacitors are also connected from each pin to ground.

The Timer1 oscillator is discussed in greater detail in **Section 12.3 "Timer1 Oscillator"**.

In addition to being a primary clock source, the **internal oscillator block** is available as a power-managed mode clock source. The INTRC source is also used as the clock source for several special features, such as the WDT and Fail-Safe Clock Monitor.

The clock sources for the PIC18F2682/2685/4682/4685 devices are shown in Figure 2-8. See **Section 24.0 "Special Features of the CPU"** for Configuration register details.

3.5.4 EXIT WITHOUT AN OSCILLATOR START-UP DELAY

Certain exits from power-managed modes do not invoke the OST at all. There are two cases:

- PRI_IDLE mode where the primary clock source is not stopped
- The primary clock source is not any of the LP, XT, HS or HSPLL modes

In these instances, the primary clock source either does not require an oscillator start-up delay, since it is already running (PRI_IDLE), or normally does not require an oscillator start-up delay (RC, EC and INTIO Oscillator modes). However, a fixed delay of interval TCSD following the wake event is still required when leaving the Sleep and Idle modes to allow the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

TABLE 3-2:EXIT DELAY ON WAKE-UP BY RESET FROM SLEEP MODE OR ANY IDLE MODE
(BY CLOCK SOURCES)

Clock Source Before Wake-up	Clock Source After Wake-up	Exit Delay	Clock Ready Status Bit (OSCCON)	
	LP, XT, HS			
	HSPLL		OSTS	
(PRI_IDLE mode)	EC, RC	TCSD ⁽²⁾		
	INTRC ⁽¹⁾		—	
	INTOSC ⁽³⁾		IOFS	
	LP, XT, HS	Tost ⁽⁴⁾		
	HSPLL	Tost + t _{rc} (4)	OSTS	
T1OSC or INTRC ⁽¹⁾	EC, RC	теср(2)		
	INTRC ⁽¹⁾	105047	—	
	INTOSC ⁽³⁾	TIOBST ⁽⁵⁾	IOFS	
	LP, XT, HS	Tost ⁽⁴⁾		
	HSPLL	Tost + t _{rc} (4)	OSTS	
INTOSC ⁽³⁾	EC, RC	Tccp(2)	1	
	INTRC ⁽¹⁾	10.50, 7	—	
	INTOSC ⁽³⁾	None	IOFS	
	LP, XT, HS	Tost ⁽⁴⁾		
News	HSPLL	Tost + t _{rc} (4)	OSTS	
None (Sleep mode)	EC, RC	Toop(2)		
	INTRC ⁽¹⁾		—	
	INTOSC ⁽³⁾	TIOBST ⁽⁵⁾	IOFS	

Note 1: In this instance, refers specifically to the 31 kHz INTRC clock source.

2: TCSD (parameter 38) is a required delay when waking from Sleep and all Idle modes and runs concurrently with any other required delays (see Section 3.4 "Idle Modes").

3: Includes both the INTOSC 8 MHz source and postscaler derived frequencies.

4: TOST is the Oscillator Start-up Timer (parameter 32). t_{rc} is the PLL Lock-out Timer (parameter F12); it is also designated as TPLL.

5: Execution continues during TIOBST (parameter 39), the INTOSC stabilization period.

4.2 Master Clear Reset (MCLR)

The MCLR pin provides a method for triggering an external Reset of the device. A Reset is generated by holding the pin low. These devices have a noise filter in the MCLR Reset path which detects and ignores small pulses.

The MCLR pin is not driven low by any internal Resets, including the WDT.

In PIC18F2682/2685/4682/4685 devices, the $\overline{\text{MCLR}}$ input can be disabled with the MCLRE Configuration bit. When $\overline{\text{MCLR}}$ is disabled, the pin becomes a digital input. See **Section 10.5 "PORTE, TRISE and LATE Registers"** for more information.

4.3 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.

To take advantage of the POR circuitry, tie the $\overline{\text{MCLR}}$ pin through a resistor (1 k Ω to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 4-2.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

POR events are captured by the POR bit (RCON<1>). The state of the bit is set to '0' whenever a Power-on Reset occurs; it does not change for any other Reset event. POR is not reset to '1' by any hardware event. To capture multiple events, the user manually resets the bit to '1' in software following any Power-on Reset.

-	-			,					/	
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
B0DLC ⁽⁸⁾ Transmit mode	-	TXRTR	—	—	DLC3	DLC2	DLC1	DLC0	-x xxxx	58, 304
B0EIDL ⁽⁸⁾	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	61, 301
B0EIDH ⁽⁸⁾	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	61, 301
B0SIDL ⁽⁸⁾ Receive mode	SID2	SID1	SID0	SRR	EXID	—	EID17	EID16	XXXX X-XX	58, 300
B0SIDL ⁽⁸⁾ Transmit mode	SID2	SID1	SID0	—	EXIDE	—	EID17	EID16	xxx- x-xx	58, 300
B0SIDH(8)	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	61, 299
B0CON ⁽⁸⁾ Receive mode	RXFUL	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	0000 0000	60, 298
B0CON ⁽⁸⁾ Transmit mode	TXBIF	TXABT	TXLARB	TXERR	TXREQ	RTREN	TXPRI1	TXPRI0	0000 0000	60, 298
TXBIE		—	—	TXB2IE	TXB1IE	TXB0IE	_		0 00	61, 321
BIE0	B5IE	B4IE	B3IE	B2IE	B1IE	B0IE	RXB1IE	RXB0IE	0000 0000	61, 321
BSEL0	B5TXEN	B4TXEN	B3TXEN	B2TXEN	B1TXEN	B0TXEN	—		0000 00	61, 304
MSEL3	FIL15_1	FIL15_0	FIL14_1	FIL14_0	FIL13_1	FIL13_0	FIL12_1	FIL12_0	0000 0000	61, 313
MSEL2	FIL11_1	FIL11_0	FIL10_1	FIL10_0	FIL9_1	FIL9_0	FIL8_1	FIL8_0	0000 0000	61, 312
MSEL1	FIL7_1	FIL7_0	FIL6_1	FIL6_0	FIL5_1	FIL5_0	FIL4_1	FIL4_0	0000 0101	61, 311
MSEL0	FIL3_1	FIL3_0	FIL2_1	FIL2_0	FIL1_1	FIL1_0	FIL0_1	FIL0_0	0101 0000	61, 310
RXFBCON7	F15BP_3	F15BP_2	F15BP_1	F15BP_0	F14BP_3	F14BP_2	F14BP_1	F14BP_0	0000 0000	61, 309
RXFBCON6	F13BP_3	F13BP_2	F13BP_1	F13BP_0	F12BP_3	F12BP_2	F12BP_1	F12BP_0	0000 0000	61, 309
RXFBCON5	F11BP_3	F11BP_2	F11BP_1	F11BP_0	F10BP_3	F10BP_2	F10BP_1	F10BP_0	0000 0000	61, 309
RXFBCON4	F9BP_3	F9BP_2	F9BP_1	F9BP_0	F8BP_3	F8BP_2	F8BP_1	F8BP_0	0000 0000	61, 309
RXFBCON3	F7BP_3	F7BP_2	F7BP_1	F7BP_0	F6BP_3	F6BP_2	F6BP_1	F6BP_0	0000 0000	61, 309
RXFBCON2	F5BP_3	F5BP_2	F5BP_1	F5BP_0	F4BP_3	F4BP_2	F4BP_1	F4BP_0	0001 0001	61, 309
RXFBCON1	F3BP_3	F3BP_2	F3BP_1	F3BP_0	F2BP_3	F2BP_2	F2BP_1	F2BP_0	0001 0001	61, 309
RXFBCON0	F1BP_3	F1BP_2	F1BP_1	F1BP_0	F0BP_3	F0BP_2	F0BP_1	F0BP_0	0000 0000	61, 309
SDFLC	_	_	_	FLC4	FLC3	FLC2	FLC1	FLC0	0 0000	61, 308
RXFCON1	RXF15EN	RXF14EN	RXF13EN	RXF12EN	RXF11EN	RXF10EN	RXF9EN	RXF8EN	0000 0000	61, 308
RXFCON0	RXF7EN	RXF6EN	RXF5EN	RXF4EN	RXF3EN	RXF2EN	RXF1EN	RXF0EN	0000 0000	61, 308
RXF15EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	61, 306
RXF15EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	61, 306
RXF15SIDL	SID2	SID1	SID0	—	EXIDEN	—	EID17	EID16	xxx- x-xx	61, 305
RXF15SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	61, 305
RXF14EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	61, 306
RXF14EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	61, 306
RXF14SIDL	SID2	SID1	SID0	—	EXIDEN		EID17	EID16	xxx- x-xx	61, 305
RXF14SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	61, 305
RXF13EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	62, 306
RXF13EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	62, 306
RXF13SIDL	SID2	SID1	SID0	—	EXIDEN	—	EID17	EID16	xxx- x-xx	62, 305
RXF13SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	62, 305

TABLE 5-2:REGISTER FILE SUMMARY (PIC18F2682/2685/4682/4685) (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented, read as '0'.

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

3: These registers and/or bits are not implemented on PIC18F2682/2685 devices and are read as '0'. Reset values are shown for PIC18F4682/4685 devices; individual unimplemented bits should be interpreted as '---'.

4: The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN[™] technology is set up in Mode 1 or Mode 2.

9: These registers and/or bits are available on PIC18F4682/4685 devices only.

9.1 INTCON Registers

The INTCON registers are readable and writable registers, which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE/GIEH: Global Interrupt Enable bit <u>When IPEN = 0:</u> 1 = Enables all unmasked interrupts 0 = Disables all interrupts <u>When IPEN = 1:</u> 1 = Enables all high priority interrupts 0 = Disables all high priority interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit When IPEN = 0: 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts When IPEN = 1: 1 = Enables all low priority peripheral interrupts 0 = Disables all low priority peripheral interrupts 0 = Disables all low priority peripheral interrupts
bit 5	<pre>TMR0IE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt</pre>
bit 4	INTOIE: INTO External Interrupt Enable bit 1 = Enables the INTO external interrupt 0 = Disables the INTO external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt
bit 2	 TMR0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow
bit 1	INTOIF: INTO External Interrupt Flag bit 1 = The INTO external interrupt occurred (must be cleared in software) 0 = The INTO external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾ 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state

Note 1: A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared.

FIGURE 10-4: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 10-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page			
PORTD ⁽¹⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	54			
LATD ⁽¹⁾	LATD Data	LATD Data Output Register										
TRISD ⁽¹⁾	PORTD Da	ta Direction R	egister						54			
PORTE ⁽¹⁾	—	_	_	_	RE3	RE2	RE1	RE0	54			
LATE ⁽¹⁾	—	_	_	_	_	LATE Data	54					
TRISE ⁽¹⁾	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0	54			
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	51			
PIR1	PSPIF ⁽²⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	54			
PIE1	PSPIE ⁽²⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	54			
IPR1	PSPIP ⁽²⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	54			
ADCON1	_		VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	52			
CMCON ⁽¹⁾	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	53			

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.

Note 1: These registers are available on PIC18F4682/4685 devices only.

2: These bits are unimplemented on PIC18F2682/2685 devices and read as '0'.

12.3.3 TIMER1 OSCILLATOR LAYOUT CONSIDERATIONS

The Timer1 oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

The oscillator circuit, shown in Figure 12-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than Vss or VDD.

If a high-speed circuit must be located near the oscillator (such as the CCP1 pin in Output Compare or PWM mode, or the primary oscillator using the OSC2 pin), a grounded guard ring around the oscillator circuit, as shown in Figure 12-4, may be helpful when used on a single-sided PCB or in addition to a ground plane.

FIGURE 12-4: OSCILLATOR CIRCUIT WITH GROUNDED GUARD RING

12.4 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled or disabled by setting or clearing the Timer1 Interrupt Enable bit, TMR1IE (PIE1<0>).

12.5 Resetting Timer1 Using the CCP1 Special Event Trigger

If either of the CCP1 modules is configured in Compare mode to generate a Special Event Trigger (CCP1M3:CCP1M0 or CCP2M3:CCP2M0 = 1011), this signal will reset Timer1. The trigger from ECCP1 will also start an A/D conversion if the A/D module is enabled (see **Section 15.3.4 "Special Event Trigger"** for more information.).

The module must be configured as either a timer or a synchronous counter to take advantage of this feature. When used this way, the CCPR1H:CCPR1L register pair effectively becomes a period register for Timer1.

If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a Special Event Trigger, the write operation will take precedence.

Note: The Special Event Triggers from the ECCP1 module will not set the TMR1IF interrupt flag bit (PIR1<0>).

12.6 Using Timer1 as a Real-Time Clock

Adding an external LP oscillator to Timer1 (such as the one described in **Section 12.3 "Timer1 Oscillator**") gives users the option to include RTC functionality to their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time base and several lines of application code to calculate the time. When operating in Sleep mode and using a battery or supercapacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup.

The application code routine, RTCisr, shown in Example 12-1, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow triggers the interrupt and calls the routine, which increments the seconds counter by one; additional counters for minutes and hours are incremented as the previous counter overflow.

Since the register pair is 16 bits wide, counting up to overflow the register directly from a 32.768 kHz clock would take 2 seconds. To force the overflow at the required one-second intervals, it is necessary to preload it. The simplest method is to set the MSb of TMR1H with a BSF instruction. Note that the TMR1L register is never preloaded or altered; doing so may introduce cumulative error over many cycles.

For this method to be accurate, Timer1 must operate in Asynchronous mode and the Timer1 overflow interrupt must be enabled (PIE1<0> = 1) as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times.

16.0 ENHANCED CAPTURE/ COMPARE/PWM (ECCP1) MODULE

Note: The ECCP1 module is implemented only in PIC18F4682/4685 (40/44-pin) devices.

In PIC18F4682/4685 devices, ECCP1 is implemented as a standard CCP1 module with Enhanced PWM capabilities. These include the provision for 2 or 4 output channels, user-selectable polarity, dead-band control and automatic shutdown and restart. The enhanced features are discussed in detail in **Section 16.4 "Enhanced PWM Mode"**. Capture, Compare and single output PWM functions of the ECCP1 module are the same as described for the standard CCP1 module.

The control register for the Enhanced CCP1 module is shown in Register 16-1. It differs from the CCP1CON register in the PIC18F2682/2685 devices in that the two Most Significant bits are implemented to control PWM functionality.

REGISTER 16-1: ECCP1CON: ENHANCED CAPTURE/COMPARE/PWM CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EPWM1M1	EPWM1M0	EDC1B1	EDC1B0	ECCP1M3	ECCP1M2	ECCP1M1	ECCP1M0
bit 7							bit 0

Legend:				
R = Readable b	bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7-6	EPWM1M1:E	PWM1M0: Enhanced PW	M Output Configuration bit	s
	If ECCP1M3:E	<u>ECCP1M2 = 00, 01, 10:</u> igned as Capture/Compar	e input/output; P1B, P1C,	P1D assigned as port pins
	If ECCP1M3:E 00 = Single ou 01 = Full-bridg 10 = Half-bridg 11 = Full-bridg	<u>CCP1M2 = 11:</u> utput: P1A modulated; P1 ge output forward: P1D mo ge output: P1A, P1B modu ge output reverse: P1B m	B, P1C, P1D assigned as p odulated; P1A active; P1B llated with dead-band cont odulated; P1C active; P1A	port pins , P1C inactive rol; P1C, P1D assigned as port pins , P1D inactive
bit 5-4	EDC1B1:EDC Capture mode Unused.	: 1B0 : ECCP1 Module PW <u>::</u>	M Duty Cycle bit 1 and bit	0
	Compare mod Unused. <u>PWM mode:</u> These bits are	the two LSbs of the 10-bi	t PWM duty cycle. The eig	ht MSbs of the duty cycle are found
hit 2 0	in ECCPR1L.	CD1M0: Enhanced CCD	Mada Salaat hita	
DIL 3-0	0000 = Captu	re/Compare/PWM off (res	sets ECCP1 module)	
	0010 = Comp	ved pare mode; toggle output o rved	on match	
	0100 = Captu 0101 = Captu 0110 = Captu 0111 = Captu	rre mode; every falling edg rre mode; every rising edg rre mode; every 4th rising rre mode; every 16th rising	ge e edge g edge	
	1000 = Comp 1001 = Comp 1010 = Comp 1011 = Comp	are mode; initialize ECCF are mode; initialize ECCP pare mode; generate softw pare mode; trigger special	¹ 1 pin low; set output on co 1 pin high; clear output on co rare interrupt only; ECCP1 event (ECCP1 resets TMF	ompare match (set ECCP1IF) compare match (set ECCP1IF) pin reverts to I/O state R1 or TMR3, sets ECCP1IF bit and
	starts 1100 = PWM 1101 = PWM 1110 = PWM 1111 = PWM	the A/D conversion on EC mode; P1A, P1C active-h mode; P1A, P1C active-h mode; P1A, P1C active-la mode; P1A, P1C active-la	CCP1 match) igh; P1B, P1D active-high igh; P1B, P1D active-low ow; P1B, P1D active-high ow; P1B, P1D active-low	

16.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the ECCPR1L register and to the ECCP1CON<5:4> bits. Up to 10-bit resolution is available. The ECCPR1L contains the eight MSbs and the ECCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by ECCPR1L:ECCP1CON<5:4>. The PWM duty cycle is calculated by the following equation.

EQUATION 16-2:

PWM Duty Cycle	=	(ECCPR1L:ECCP1CON<5:4> •
		TOSC • (TMR2 Prescale Value)

ECCPR1L and ECCP1CON<5:4> can be written to at any time, but the duty cycle value is not copied into ECCPR1H until a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, ECCPR1H is a read-only register.

The ECCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation. When the ECCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or two bits of the TMR2 prescaler, the ECCP1 pin is cleared. The maximum PWM resolution (bits) for a given PWM frequency is given by the following equation.

EQUATION 16-3:

PWM Resolution (max) =
$$\frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the ECCP1 pin will not be cleared.

16.4.3 PWM OUTPUT CONFIGURATIONS

The EPWM1M1:EPWM1M0 bits in the ECCP1CON register allow one of four configurations:

- Single Output
- · Half-Bridge Output
- Full-Bridge Output, Forward mode
- Full-Bridge Output, Reverse mode

The Single Output mode is the standard PWM mode discussed in **Section 16.4 "Enhanced PWM Mode"**. The Half-Bridge and Full-Bridge Output modes are covered in detail in the sections that follow.

The general relationship of the outputs in all configurations is summarized in Figure 16-2.

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h
Maximum Resolution (bits)	10	10	10	8	7	6.58

TABLE 16-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

FIGURE 18-7: ASYNCHRONOUS RECEPTION

TABLE 18-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	51	
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	54	
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	54	
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	54	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	53	
RCREG	EUSART F	Receive Regi	ster						53	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	53	
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	53	
SPBRGH	EUSART Baud Rate Generator Register High Byte									
SPBRG	EUSART E	Baud Rate G	enerator Re	gister Low	Byte				53	

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

Note 1: Reserved in PIC18F2682/2685 devices; always maintain these bits clear.

REGISTER 23-42: RXMnSIDL: RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK REGISTERS, LOW BYTE [0 \leq n \leq 1]

R/W-x	R/W-x	R/W-x	U-0	R/W-0	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	EXIDEN ⁽¹⁾	—	EID17	EID16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	SID2:SID0: Standard Identifier Mask bits or Extended Identifier Mask bits EID20:EID18
h:+ 4	Unimplemented, Deed es (o)

	Ommplemented. Acad as 0
bit 3	Mode 0:
	Unimplemented: Read as '0'
	<u>Mode 1, 2</u> :
	EXIDEN: Extended Identifier Filter Enable Mask bit ⁽¹⁾
	 1 = Messages selected by the EXIDEN bit in RXFnSIDL will be accepted 0 = Both standard and extended identifier messages will be accepted
bit 2	Unimplemented: Read as '0'
bit 1-0	EID17:EID16: Extended Identifier Mask bits

Note 1: This bit is available in Mode 1 and 2 only.

REGISTER 23-43: RXMnEIDH: RECEIVE ACCEPTANCE MASK n EXTENDED IDENTIFIER MASK REGISTERS, HIGH BYTE [0 \leq n \leq 1]

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID15:EID8: Extended Identifier Mask bits

REGISTER 23-44: RXMnEIDL: RECEIVE ACCEPTANCE MASK n EXTENDED IDENTIFIER MASK REGISTERS, LOW BYTE [0 \leq n \leq 1]

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID7:EID0: Extended Identifier Mask bits

23.2.4 CAN BAUD RATE REGISTERS

This section describes the CAN Baud Rate registers.

Note:	These	registers	are	writable	in
	Configu	ration mode	only.		

REGISTER 23-52: BRGCON1: BAUD RATE CONTROL REGISTER 1

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 |
| bit 7 | | | | | | | bit 0 |

Legend:

- J			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	SJW1:SJW0: Synchronized Jump Width bits
	11 = Synchronization jump width time = $4 \times TQ$
	10 = Synchronization jump width time = $3 \times TQ$
	01 = Synchronization jump width time = $2 \times T_Q$
	00 = Synchronization jump width time = 1 x TQ
bit 5-0	BRP5:BRP0: Baud Rate Prescaler bits
	111111 = Tq = (2 x 64)/Fosc
	111110 = TQ = (2 x 63)/Fosc
	:
	:
	000001 = Tq = (2 x 2)/Fosc
	000000 = Tq = (2 x 1)/Fosc

23.15.1 INTERRUPT CODE BITS

To simplify the interrupt handling process in user firmware, the ECAN module encodes a special set of bits. In Mode 0, these bits are ICODE<3:1> in the CANSTAT register. In Mode 1 and 2, these bits are EICODE<4:0> in the CANSTAT register. Interrupts are internally prioritized such that the higher priority interrupts are assigned lower values. Once the highest priority interrupt condition has been cleared, the code for the next highest priority interrupt that is pending (if any) will be reflected by the ICODE bits (see Table 23-5). Note that only those interrupt sources that have their associated interrupt enable bit set will be reflected in the ICODE bits.

In Mode 2, when a receive message interrupt occurs, the EICODE bits will always consist of '10000'. User firmware may use FIFO Pointer bits to actually access the next available buffer.

23.15.2 TRANSMIT INTERRUPT

When the transmit interrupt is enabled, an interrupt will be generated when the associated transmit buffer becomes empty and is ready to be loaded with a new message. In Mode 0, there are separate interrupt enable/disable and flag bits for each of the three dedicated transmit buffers. The TXBnIF bit will be set to indicate the source of the interrupt. The interrupt is cleared by the MCU, resetting the TXBnIF bit to a '0'. In Mode 1 and 2, all transmit buffers share one interrupt enable/ disable bit and one flag bit. In Mode 1 and 2, TXBnIE in PIE3 and TXBnIF in PIR3 indicate when a transmit buffer has completed transmission of its message. TXBnIF, TXBnIE and TXBnIP in PIR3, PIE3 and IPR3, respectively, are not used in Mode 1 and 2. Individual transmit buffer interrupts can be enabled or disabled by setting or clearing TXBIE and BIE0 register bits. When a shared interrupt occurs, user firmware must poll the TXREQ bit of all transmit buffers to detect the source of interrupt.

23.15.3 **RECEIVE INTERRUPT**

When the receive interrupt is enabled, an interrupt will be generated when a message has been successfully received and loaded into the associated receive buffer. This interrupt is activated immediately after receiving the End-Of-Frame (EOF) field.

In Mode 0, the RXBnIF bit is set to indicate the source of the interrupt. The interrupt is cleared by the MCU, resetting the RXBnIF bit to a '0'.

In Mode 1 and 2, all receive buffers share RXBIE, RXBIF and RXBIP in PIE3, PIR3 and IPR3, respectively. Bits RXBnIE, RXBnIF and RXBnIP are not used. Individual receive buffer interrupts can be controlled by the TXBIE and BIE0 registers. In Mode 1, when a shared receive interrupt occurs, user firmware must poll the RXFUL bit of each receive buffer to detect the source of interrupt. In Mode 2, a receive interrupt indicates that the new message is loaded into FIFO. FIFO can be read by using FIFO Pointer bits, FP.

000 None ERR•WAK•TX0•TX1•TX2•RX0•RX1 001 Error ERR 010 TXB2 ERR•TX0•TX1•TX2 011 TXB1 ERR•TX0•TX1 100 TXB0 ERR•TX0•TX1 101 RXB1 ERR•TX0•TX1•TX2•RX0•RX1	ICODE <2:0>	Interrupt	Boolean Expression
001 Error ERR 010 TXB2 ERR•TX0•TX1•TX2 011 TXB1 ERR•TX0•TX1 100 TXB0 ERR•TX0 101 RXB1 ERR•TX0•TX1•TX2•RX0•RX1	000	None	ERR•WAK•TX0•TX1•TX2•RX0•RX1
010 TXB2 ERR•TX0•TX1•TX2 011 TXB1 ERR•TX0•TX1 100 TXB0 ERR•TX0 101 RXB1 ERR•TX0•TX1•TX2•RX0•RX1	001	Error	ERR
011 TXB1 ERR•TX0•TX1 100 TXB0 ERR•TX0 101 RXB1 ERR•TX0•TX1•TX2•RX0•RX1	010	TXB2	ERR•TX0•TX1•TX2
100 TXB0 ERR•TX0 101 RXB1 ERR•TX0•TX1•TX2•RX0•RX1	011	TXB1	ERR•TX0•TX1
101 RXB1 ERR•TX0•TX1•TX2•RX0•RX1	100	TXB0	ERR•TX0
	101	RXB1	ERR•TX0•TX1•TX2•RX0•RX1
110 RXB0 ERR•TX0•TX1•TX2•RX0	110	RXB0	ERR•TX0•TX1•TX2•RX0
111 Wake on Interrupt ERR•TX0•TX1•TX2•RX0•RX1•WAK	111	Wake on Interrupt	ERR•TX0•TX1•TX2•RX0•RX1•WAK

TABLE 23-5: VALUES FOR ICODE<3:1>

Legend:

ERR = ERRIF * ERRIE RX0 = RXB0IF * RXB0IE TX0 = TXB0IF * TXB0IE RX1 = RXB1IF * RXB1IE TX1 = TXB1IF * TXB1IE WAK = WAKIF * WAKIE TX2 = TXB2IF * TXB2IE

23.15.4 MESSAGE ERROR INTERRUPT

When an error occurs during transmission or reception of a message, the message error flag, IRXIF, will be set and if the IRXIE bit is set, an interrupt will be generated. This is intended to be used to facilitate baud rate determination when used in conjunction with Listen Only mode.

24.2 Watchdog Timer (WDT)

For PIC18F2682/2685/4682/4685 devices, the WDT is driven by the INTRC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: a SLEEP or CLRWDT instruction is executed, the IRCF bits (OSCCON<6:4>) are changed or a clock failure has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: Changing the setting of the IRCF bits (OSCCON<6:4>) clears the WDT and postscaler counts.
 - **3:** When a CLRWDT instruction is executed, the postscaler count will be cleared.

24.2.1 CONTROL REGISTER

Register 24-14 shows the WDTCON register. This is a readable and writable register which contains a control bit that allows software to override the WDT enable Configuration bit, but only if the Configuration bit has disabled the WDT.

FIGURE 24-1: WDT BLOCK DIAGRAM

24.4.3 FSCM INTERRUPTS IN POWER-MANAGED MODES

By entering a power-managed mode, the clock multiplexer selects the clock source selected by the OSCCON register. Fail-Safe Monitoring of the powermanaged clock source resumes in the power-managed mode.

If an oscillator failure occurs during power-managed operation, the subsequent events depend on whether or not the oscillator failure interrupt is enabled. If enabled (OSCFIF = 1), code execution will be clocked by the INTOSC multiplexer. An automatic transition back to the failed clock source will not occur.

If the interrupt is disabled, subsequent interrupts while in Idle mode will cause the CPU to begin executing instructions while being clocked by the INTOSC source.

24.4.4 POR OR WAKE-UP FROM SLEEP

The FSCM is designed to detect oscillator failure at any point after the device has exited Power-on Reset (POR) or low-power Sleep mode. When the primary device clock is EC, RC or INTRC, monitoring can begin immediately following these events.

For oscillator modes involving a crystal or resonator (HS, HSPLL, LP or XT), the situation is somewhat different. Since the oscillator may require a start-up

time considerably longer than the FCSM sample clock time, a false clock failure may be detected. To prevent this, the internal oscillator block is automatically configured as the device clock and functions until the primary clock is stable (the OST and PLL timers have timed out). This is identical to Two-Speed Start-up mode. Once the primary clock is stable, the INTRC returns to its role as the FSCM source.

Note: The same logic that prevents false oscillator failure interrupts on POR, or wake from Sleep, will also prevent the detection of the oscillator's failure to start at all following these events. This can be avoided by monitoring the OSTS bit and using a timing routine to determine if the oscillator is taking too long to start. Even so, no oscillator failure interrupt will be flagged.

As noted in Section 24.3.1 "Special Considerations for Using Two-Speed Start-up", it is also possible to select another clock configuration and enter an alternate power-managed mode while waiting for the primary clock to become stable. When the new power-managed mode is selected, the primary clock is disabled.

25.1.1 STANDARD INSTRUCTION SET

ADD	DLW	ADD Lite	ral to W	1				
Synta	ax:	ADDLW	k					
Oper	ands:	$0 \le k \le 255$	5					
Oper	ation:	(W) + k \rightarrow	W					
Statu	s Affected:	N, OV, C, DC, Z						
Encoding: 0000 1111 kkkk kk					kkkk			
Desc	ription:	The conter 8-bit literal in W.	nts of W a 'k' and th	are adde ie result	d to the is placed			
Word	ls:	1	1					
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read literal 'k'	Proce Data	ess V a	Vrite to W			
Example: ADDLW 15h								
	Before Instruc W =	tion 10h						
	After Instruction	n						

W = 25h

ADD	WF	ADD W to	ADD W to f				
Synta	ax:	ADDWF	ADDWF f {,d {,a}}				
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$				
Oper	ation:	$(W) + (f) \rightarrow$	dest				
Statu	s Affected:	N, OV, C, D	C, Z				
Enco	ding:	0010	01da	ffff	ffff		
Desc	ription:	Add W to re result is sto result is sto (default). If 'a' is '0', th GPR bank (If 'a' is '0' an set is enable in Indexed I mode when Section 25. Bit-Oriente Literal Offs	Add W to register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed				
Word	ls:	1					
Cycle	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q3	5	Q4		
	Decode	Read register 'f'	Proce Data	ess a d	Write to estination		

Example:	AI	DWF	REG,	Ο,	0	
Before Instruc	tion					
W REG	= =	17h 0C2h				
After Instruction	n					
W REG	= =	0D9h 0C2h				

Note:	All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in
	symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

MULLW Multiply Literal with W							
Syntax:	MULLW	k					
Operands:	$0 \le k \le 255$	5					
Operation:	(W) x k \rightarrow	PRODH:I	PRODL				
Status Affected:	None						
Encoding:	0000	0000 1101 kkkk kkkk					
Description:	An unsigned multiplication is carried out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in the PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged. None of the Status flags are affected. Note that neither Overflow nor Carry is possible in this operation. A Zero result is possible but not detected.						
Words:	1	1					
Cycles:	1	1					
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read literal 'k'	Proce: Data	ss P F	Write egisters RODH: PRODL			
Example:	MULLW	0C4h					

W	=	E2h
PRODH	=	?
PRODL	=	?
After Instruction		
W	=	E2h
PRODH	=	ADh
PRODL	=	08h

MULWF	Multiply	W with f	
Syntax:	MULWF	f {,a}	
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	5	
Operation:	(W) x (f) –	> PRODH:PR	ODL
Status Affected:	None		
Encoding:	0000	001a ff	ff ffff
Description:	An unsign out betwee register file result is st register pa high byte. unchange None of th Note that r possible ir result is po If 'a' is '0', selected. I to select th If 'a' is '0' instruction Offset Add $f \le 95$ (5FH "Byte-Ori Instruction Mode" for	ed multiplication en the contents e location 'f'. T ored in the PR air. PRODH co Both W and 'f d. the Status flags heither Overfloon the Access B f 'a' is '1', the en GPR bank and the extension set is enables operates in In dressing mode n). See Section ented and Bit ns in Indexed details.	on is carried s of W and the The 16-bit CODH:PRODI Intains the are affected. w nor Carry is n. A Zero at detected. ank is BSR is used (default). ded d, this ndexed Litera whenever n 25.2.3 -Oriented Literal Offse
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	Write registers PRODH: PRODL
Example: Before Instruc	MULWF	REG, 1	
	- 04	ni Sh	

=	C4h
=	B5h
=	?
=	?
=	C4h
=	B5h
=	8Ah
=	94h

RLNCF	Rotate Left f (No Carry)	RRCF	Rotate Right f throu	igh Carry	
Syntax:	RLNCF f {,d {,a}}	Syntax:	RRCF f {,d {,a}}		
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	Operands:	$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$		
Operation:	$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow dest < 0 >$	Operation:	$(f < n >) \rightarrow dest < n - 1 >,$ $(f < 0 >) \rightarrow C,$ $(C) \rightarrow dest < 7 >$		
Status Affected:	N, Z	Status Affected:			
Encoding:	0100 01da ffff ffff	Encoding:			
Description:	The contents of register 'f' are rotated one bit to the left. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the	Encoding: Description:	0011 00da ffff ffff The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in W If 'd' is '1', the result is placed back in register 'f' (default).		
Words: Cycles: Q Cycle Activity: Q1 Decode	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. register f cycles: 1 cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to 		If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operated in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. titeral Offset Mode" for details. 1 1 1 1 02 03 04		
	register t Data destination	Decode	Q2 Q3 Read Process	Q4 Write to	
Example:	RLNCF REG, 1, 0	200000	register 'f' Data	destination	
Before Instruc REG After Instructio REG	ction = 1010 1011 on = 0101 0111	Example: Before Instruct REG C After Instructio REG W	RRCF REG, 0, tion = 1110 0110 = 0 on = 1110 0110 = 0111 0011	0	

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4		10	MHz	HS mode only
F11	Fsys	On-Chip VCO System Frequency	16	—	40	MHz	HS mode only
F12	t _{rc}	PLL Start-up Time (Lock Time)	—	—	2	ms	
F13	ΔCLK	CLKO Stability (Jitter)	-2	—	+2	%	

TABLE 27-7: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2V TO 5.5V)

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 27-8: AC CHARACTERISTICS: INTERNAL RC ACCURACY PIC18F2682/2685/4682/4685 (INDUSTRIAL) PIC18LF2682/2685/4682/4685 (INDUSTRIAL)

PIC18LI (Indu	PIC18LF2682/2685/4682/4685 Standard Operating Conditions (unless otherwise stated) (Industrial) Operating temperature -40°C ≤ TA ≤ +85°C for industrial						ted) strial		
PIC18F2 (Indu	PIC18F2682/2685/4682/4685 (Industrial)Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					ted) strial			
Param No.	Device	Min	Тур	Мах	Units	Conditions			
INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz,					Hz, 500 kHz, 250 kHz,	125 kHz ⁽¹⁾			
	PIC18LF268X/468X	-2	+/-1	2	%	+25°C	VDD = 2.7-3.3V		
		-5		5	%	-10°C to +85°C	VDD = 2.7-3.3V		
		-10	+/-1	10	%	-40°C to +85°C VDD = 2.7-3.3V			
	INTRC Accuracy @ Freq = 31 kHz ⁽²⁾								
	PIC18LF268X/468X	26.562		35.938	kHz	-40°C to +85°C	VDD = 2.7-3.3V		

Legend: Shading of rows is to assist in readability of the table.

Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.

2: INTRC frequency after calibration.