



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 40MHz                                                                     |
| Connectivity               | CANbus, I <sup>2</sup> C, SPI, UART/USART                                 |
| Peripherals                | Brown-out Detect/Reset, HLVD, POR, PWM, WDT                               |
| Number of I/O              | 25                                                                        |
| Program Memory Size        | 96KB (48K x 16)                                                           |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | 1K x 8                                                                    |
| RAM Size                   | 3.25K x 8                                                                 |
| Voltage - Supply (Vcc/Vdd) | 4.2V ~ 5.5V                                                               |
| Data Converters            | A/D 8x10b                                                                 |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 28-SOIC (0.295", 7.50mm Width)                                            |
| Supplier Device Package    | 28-SOIC                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18f2685-i-so |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
  mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

#### Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC<sup>32</sup> logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.



### QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

### 4.5 Device Reset Timers

PIC18F2682/2685/4682/4685 devices incorporate three separate on-chip timers that help regulate the Power-on Reset process. Their main function is to ensure that the device clock is stable before code is executed. These timers are:

- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- PLL Lock Time-out

#### 4.5.1 POWER-UP TIMER (PWRT)

The Power-up Timer (PWRT) of PIC18F2682/2685/ 4682/4685 devices is an 11-bit counter which uses the INTRC source as the clock input. This yields an approximate time interval of 2048 x 32  $\mu$ s = 65.6 ms. While the PWRT is counting, the device is held in Reset.

The power-up time delay depends on the INTRC clock and will vary from chip-to-chip due to temperature and process variation. See DC parameter 33 for details.

The PWRT is enabled by clearing the PWRTEN Configuration bit.

#### 4.5.2 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter 33). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP, HS and HSPLL modes and only on Power-on Reset or on exit from most power-managed modes.

### 4.5.3 PLL LOCK TIME-OUT

With the PLL enabled in its PLL mode, the time-out sequence following a Power-on Reset is slightly different from other oscillator modes. A separate timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator start-up time-out.

#### 4.5.4 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows:

- 1. After the POR pulse has cleared, PWRT time-out is invoked (if enabled).
- 2. Then, the OST is activated.

The total time-out will vary based on oscillator configuration and the status of the PWRT. Figure 4-3, Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 all depict time-out sequences on power-up, with the Power-up Timer enabled and the device operating in HS Oscillator mode. Figures 4-3 through 4-6 also apply to devices operating in XT or LP modes. For devices in RC mode and with the PWRT disabled, on the other hand, there will be no time-out at all.

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, all time-outs will expire. Bringing MCLR high will begin execution immediately (Figure 4-5). This is useful for testing purposes or to synchronize more than one PIC18FXXXX device operating in parallel.

| Oscillator     | Power-up <sup>(2)</sup> an                             | Exit From                       |                                 |  |
|----------------|--------------------------------------------------------|---------------------------------|---------------------------------|--|
| Configuration  | <b>PWRTEN</b> = 0                                      | PWRTEN = 1                      | Power-Managed Mode              |  |
| HSPLL          | 66 ms <sup>(1)</sup> + 1024 Tosc + 2 ms <sup>(2)</sup> | 1024 Tosc + 2 ms <sup>(2)</sup> | 1024 Tosc + 2 ms <sup>(2)</sup> |  |
| HS, XT, LP     | 66 ms <sup>(1)</sup> + 1024 Tosc                       | 1024 Tosc                       | 1024 Tosc                       |  |
| EC, ECIO       | 66 ms <sup>(1)</sup>                                   |                                 | —                               |  |
| RC, RCIO       | 66 ms <sup>(1)</sup>                                   | —                               | —                               |  |
| INTIO1, INTIO2 | 66 ms <sup>(1)</sup>                                   | _                               | —                               |  |

TABLE 4-2: TIME-OUT IN VARIOUS SITUATIONS

**Note 1:** 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.

2: 2 ms is the nominal time required for the PLL to lock.



### FIGURE 4-7: TIME-OUT SEQUENCE ON POR w/PLL ENABLED (MCLR TIED TO VDD)



### 4.6 Reset State of Registers

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register,  $\overline{RI}$ ,  $\overline{TO}$ ,

PD, POR and BOR, are set or cleared differently in different Reset situations, as indicated in Table 4-3. These bits are used in software to determine the nature of the Reset.

Table 4-4 describes the Reset states for all of the Special Function Registers. These are categorized by Power-on and Brown-out Resets, Master Clear and WDT Resets and WDT wake-ups.

### TABLE 4-3:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR<br/>RCON REGISTER

| Condition                                                  | Program               |              | RCC | STKPTR Register |    |     |     |        |        |
|------------------------------------------------------------|-----------------------|--------------|-----|-----------------|----|-----|-----|--------|--------|
| Condition                                                  | Counter               | SBOREN       | RI  | то              | PD | POR | BOR | STKFUL | STKUNF |
| Power-on Reset                                             | 0000h                 | 1            | 1   | 1               | 1  | 0   | 0   | 0      | 0      |
| RESET instruction                                          | 0000h                 | u <b>(2)</b> | 0   | u               | u  | u   | u   | u      | u      |
| Brown-out Reset                                            | 0000h                 | u <b>(2)</b> | 1   | 1               | 1  | u   | 0   | u      | u      |
| MCLR during power-managed Run modes                        | 0000h                 | u <b>(2)</b> | u   | 1               | u  | u   | u   | u      | u      |
| MCLR during power-managed Idle modes and Sleep mode        | 0000h                 | u <b>(2)</b> | u   | 1               | 0  | u   | u   | u      | u      |
| WDT time-out during full power or power-managed Run modes  | 0000h                 | u <b>(2)</b> | u   | 0               | u  | u   | u   | u      | u      |
| MCLR during full power execution                           | 0000h                 | u <b>(2)</b> | u   | u               | u  | u   | u   | u      | u      |
| Stack Full Reset (STVREN = 1)                              | 0000h                 | u <b>(2)</b> | u   | u               | u  | u   | u   | 1      | u      |
| Stack Underflow Reset<br>(STVREN = 1)                      | 0000h                 | u <b>(2)</b> | u   | u               | u  | u   | u   | u      | 1      |
| Stack Underflow Error (not an actual<br>Reset, STVREN = 0) | 0000h                 | u <b>(2)</b> | u   | u               | u  | u   | u   | u      | 1      |
| WDT time-out during power-managed Idle or Sleep modes      | PC + 2                | u <b>(2)</b> | u   | 0               | 0  | u   | u   | u      | u      |
| Interrupt exit from power-managed modes                    | PC + 2 <sup>(1)</sup> | u <b>(2)</b> | u   | u               | 0  | u   | u   | u      | u      |

**Legend:** u = unchanged

**Note 1:** When the wake-up is due to an interrupt and the GIEH or GIEL bit is set, the PC is loaded with the interrupt vector (008h or 0018h).

2: Reset state is '1' for POR and unchanged for all other Resets when software BOR is enabled (BOREN1:BOREN0 Configuration bits = 01 and SBOREN = 1); otherwise, the Reset state is '0'.

| Register | Ар   | plicabl | e Devi | ces  | Power-on Reset,<br>Brown-out Reset | MCLR Resets,<br>WDT Reset,<br>RESET Instruction,<br>Stack Resets | Wake-up via WDT<br>or Interrupt |
|----------|------|---------|--------|------|------------------------------------|------------------------------------------------------------------|---------------------------------|
| TOSU     | 2682 | 2685    | 4682   | 4685 | 0 0000                             | 0 0000                                                           | 0 uuuu <sup>(3)</sup>           |
| TOSH     | 2682 | 2685    | 4682   | 4685 | 0000 0000                          | 0000 0000                                                        | uuuu uuuu <sup>(3)</sup>        |
| TOSL     | 2682 | 2685    | 4682   | 4685 | 0000 0000                          | 0000 0000                                                        | uuuu uuuu <sup>(3)</sup>        |
| STKPTR   | 2682 | 2685    | 4682   | 4685 | 00-0 0000                          | uu-0 0000                                                        | uu-u uuuu <sup>(3)</sup>        |
| PCLATU   | 2682 | 2685    | 4682   | 4685 | 0 0000                             | 0 0000                                                           | u uuuu                          |
| PCLATH   | 2682 | 2685    | 4682   | 4685 | 0000 0000                          | 0000 0000                                                        | นนนน นนนน                       |
| PCL      | 2682 | 2685    | 4682   | 4685 | 0000 0000                          | 0000 0000                                                        | PC + 2 <sup>(2)</sup>           |
| TBLPTRU  | 2682 | 2685    | 4682   | 4685 | 00 0000                            | 00 0000                                                          | uu uuuu                         |
| TBLPTRH  | 2682 | 2685    | 4682   | 4685 | 0000 0000                          | 0000 0000                                                        | นนนน นนนน                       |
| TBLPTRL  | 2682 | 2685    | 4682   | 4685 | 0000 0000                          | 0000 0000                                                        | սսսս սսսս                       |
| TABLAT   | 2682 | 2685    | 4682   | 4685 | 0000 0000                          | 0000 0000                                                        | นนนน นนนน                       |
| PRODH    | 2682 | 2685    | 4682   | 4685 | XXXX XXXX                          | นนนน นนนน                                                        | นนนน นนนน                       |
| PRODL    | 2682 | 2685    | 4682   | 4685 | XXXX XXXX                          | นนนน นนนน                                                        | սսսս սսսս                       |
| INTCON   | 2682 | 2685    | 4682   | 4685 | x000 0000x                         | 0000 000u                                                        | uuuu uuuu <sup>(1)</sup>        |
| INTCON2  | 2682 | 2685    | 4682   | 4685 | 1111 -1-1                          | 1111 -1-1                                                        | uuuu -u-u <b>(1)</b>            |
| INTCON3  | 2682 | 2685    | 4682   | 4685 | 11-0 0-00                          | 11-0 0-00                                                        | uu-u u-uu <sup>(1)</sup>        |
| INDF0    | 2682 | 2685    | 4682   | 4685 | N/A                                | N/A                                                              | N/A                             |
| POSTINC0 | 2682 | 2685    | 4682   | 4685 | N/A                                | N/A                                                              | N/A                             |
| POSTDEC0 | 2682 | 2685    | 4682   | 4685 | N/A                                | N/A                                                              | N/A                             |
| PREINC0  | 2682 | 2685    | 4682   | 4685 | N/A                                | N/A                                                              | N/A                             |
| PLUSW0   | 2682 | 2685    | 4682   | 4685 | N/A                                | N/A                                                              | N/A                             |
| FSR0H    | 2682 | 2685    | 4682   | 4685 | 0000                               | 0000                                                             | uuuu                            |
| FSR0L    | 2682 | 2685    | 4682   | 4685 | XXXX XXXX                          | นนนน นนนน                                                        | นนนน นนนน                       |
| WREG     | 2682 | 2685    | 4682   | 4685 | XXXX XXXX                          | นนนน นนนน                                                        | นนนน นนนน                       |
| INDF1    | 2682 | 2685    | 4682   | 4685 | N/A                                | N/A                                                              | N/A                             |
| POSTINC1 | 2682 | 2685    | 4682   | 4685 | N/A                                | N/A                                                              | N/A                             |
| POSTDEC1 | 2682 | 2685    | 4682   | 4685 | N/A                                | N/A                                                              | N/A                             |
| PREINC1  | 2682 | 2685    | 4682   | 4685 | N/A                                | N/A                                                              | N/A                             |
| PLUSW1   | 2682 | 2685    | 4682   | 4685 | N/A                                | N/A                                                              | N/A                             |
| FSR1H    | 2682 | 2685    | 4682   | 4685 | 0000                               | 0000                                                             | uuuu                            |
| FSR1L    | 2682 | 2685    | 4682   | 4685 | XXXX XXXX                          | นนนน นนนน                                                        | นนนน นนนน                       |

#### TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS

**Legend:** u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

- **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.
- 4: See Table 4-3 for Reset value for specific condition.
- **5:** Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.
- 6: This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2.

| TABLE 5-1: | SPECIAL FUNCTION REGISTER MAP FOR             |
|------------|-----------------------------------------------|
|            | PIC18F2682/2685/4682/4685 DEVICES (CONTINUED) |

| Address | Name      |
|---------|-----------|
| D7Fh    | —         |
| D7Eh    | —         |
| D7Dh    | —         |
| D7Ch    | —         |
| D7Bh    | RXF11EIDL |
| D7Ah    | RXF11EIDH |
| D79h    | RXF11SIDL |
| D78h    | RXF11SIDH |
| D77h    | RXF10EIDL |
| D76h    | RXF10EIDH |
| D75h    | RXF10SIDL |
| D74h    | RXF10SIDH |
| D73h    | RXF9EIDL  |
| D72h    | RXF9EIDH  |
| D71h    | RXF9SIDL  |
| D70h    | RXF9SIDH  |
| D6Fh    | —         |
| D6Eh    | —         |
| D6Dh    | —         |
| D6Ch    | —         |
| D6Bh    | RXF8EIDL  |
| D6Ah    | RXF8EIDH  |
| D69h    | RXF8SIDL  |
| D68h    | RXF8SIDH  |
| D67h    | RXF7EIDL  |
| D66h    | RXF7EIDH  |
| D65h    | RXF7SIDL  |
| D64h    | RXF7SIDH  |
| D63h    | RXF6EIDL  |
| D62h    | RXF6EIDH  |
| D61h    | RXF6SIDL  |
| D60h    | RXF6SIDH  |
|         |           |

**Note 1:** Registers available only on PIC18F4X8X devices; otherwise, the registers read as '0'.

2: When any TX\_ENn bit in RX\_TX\_SELn is set, then the corresponding bit in this register has transmit properties.

3: This is not a physical register.

| -                                      | -       |         |               | ,       |         |               |         |         | /                    |                     |
|----------------------------------------|---------|---------|---------------|---------|---------|---------------|---------|---------|----------------------|---------------------|
| File Name                              | Bit 7   | Bit 6   | Bit 5         | Bit 4   | Bit 3   | Bit 2         | Bit 1   | Bit 0   | Value on<br>POR, BOR | Details<br>on page: |
| B0DLC <sup>(8)</sup><br>Transmit mode  | -       | TXRTR   | —             | —       | DLC3    | DLC2          | DLC1    | DLC0    | -x xxxx              | 58, 304             |
| B0EIDL <sup>(8)</sup>                  | EID7    | EID6    | EID5          | EID4    | EID3    | EID2          | EID1    | EID0    | XXXX XXXX            | 61, 301             |
| B0EIDH <sup>(8)</sup>                  | EID15   | EID14   | EID13         | EID12   | EID11   | EID10         | EID9    | EID8    | XXXX XXXX            | 61, 301             |
| B0SIDL <sup>(8)</sup><br>Receive mode  | SID2    | SID1    | SID0          | SRR     | EXID    | —             | EID17   | EID16   | XXXX X-XX            | 58, 300             |
| B0SIDL <sup>(8)</sup><br>Transmit mode | SID2    | SID1    | SID0          | —       | EXIDE   | —             | EID17   | EID16   | xxx- x-xx            | 58, 300             |
| B0SIDH(8)                              | SID10   | SID9    | SID8          | SID7    | SID6    | SID5          | SID4    | SID3    | XXXX XXXX            | 61, 299             |
| B0CON <sup>(8)</sup><br>Receive mode   | RXFUL   | RXM1    | RXRTRRO       | FILHIT4 | FILHIT3 | FILHIT2       | FILHIT1 | FILHIT0 | 0000 0000            | 60, 298             |
| B0CON <sup>(8)</sup><br>Transmit mode  | TXBIF   | TXABT   | TXLARB        | TXERR   | TXREQ   | RTREN         | TXPRI1  | TXPRI0  | 0000 0000            | 60, 298             |
| TXBIE                                  |         | —       | —             | TXB2IE  | TXB1IE  | TXB0IE        | _       |         | 0 00                 | 61, 321             |
| BIE0                                   | B5IE    | B4IE    | B3IE          | B2IE    | B1IE    | B0IE          | RXB1IE  | RXB0IE  | 0000 0000            | 61, 321             |
| BSEL0                                  | B5TXEN  | B4TXEN  | <b>B3TXEN</b> | B2TXEN  | B1TXEN  | <b>B0TXEN</b> | —       |         | 0000 00              | 61, 304             |
| MSEL3                                  | FIL15_1 | FIL15_0 | FIL14_1       | FIL14_0 | FIL13_1 | FIL13_0       | FIL12_1 | FIL12_0 | 0000 0000            | 61, 313             |
| MSEL2                                  | FIL11_1 | FIL11_0 | FIL10_1       | FIL10_0 | FIL9_1  | FIL9_0        | FIL8_1  | FIL8_0  | 0000 0000            | 61, 312             |
| MSEL1                                  | FIL7_1  | FIL7_0  | FIL6_1        | FIL6_0  | FIL5_1  | FIL5_0        | FIL4_1  | FIL4_0  | 0000 0101            | 61, 311             |
| MSEL0                                  | FIL3_1  | FIL3_0  | FIL2_1        | FIL2_0  | FIL1_1  | FIL1_0        | FIL0_1  | FIL0_0  | 0101 0000            | 61, 310             |
| RXFBCON7                               | F15BP_3 | F15BP_2 | F15BP_1       | F15BP_0 | F14BP_3 | F14BP_2       | F14BP_1 | F14BP_0 | 0000 0000            | 61, 309             |
| RXFBCON6                               | F13BP_3 | F13BP_2 | F13BP_1       | F13BP_0 | F12BP_3 | F12BP_2       | F12BP_1 | F12BP_0 | 0000 0000            | 61, 309             |
| RXFBCON5                               | F11BP_3 | F11BP_2 | F11BP_1       | F11BP_0 | F10BP_3 | F10BP_2       | F10BP_1 | F10BP_0 | 0000 0000            | 61, 309             |
| RXFBCON4                               | F9BP_3  | F9BP_2  | F9BP_1        | F9BP_0  | F8BP_3  | F8BP_2        | F8BP_1  | F8BP_0  | 0000 0000            | 61, 309             |
| RXFBCON3                               | F7BP_3  | F7BP_2  | F7BP_1        | F7BP_0  | F6BP_3  | F6BP_2        | F6BP_1  | F6BP_0  | 0000 0000            | 61, 309             |
| RXFBCON2                               | F5BP_3  | F5BP_2  | F5BP_1        | F5BP_0  | F4BP_3  | F4BP_2        | F4BP_1  | F4BP_0  | 0001 0001            | 61, 309             |
| RXFBCON1                               | F3BP_3  | F3BP_2  | F3BP_1        | F3BP_0  | F2BP_3  | F2BP_2        | F2BP_1  | F2BP_0  | 0001 0001            | 61, 309             |
| RXFBCON0                               | F1BP_3  | F1BP_2  | F1BP_1        | F1BP_0  | F0BP_3  | F0BP_2        | F0BP_1  | F0BP_0  | 0000 0000            | 61, 309             |
| SDFLC                                  | _       | _       | _             | FLC4    | FLC3    | FLC2          | FLC1    | FLC0    | 0 0000               | 61, 308             |
| RXFCON1                                | RXF15EN | RXF14EN | RXF13EN       | RXF12EN | RXF11EN | RXF10EN       | RXF9EN  | RXF8EN  | 0000 0000            | 61, 308             |
| RXFCON0                                | RXF7EN  | RXF6EN  | RXF5EN        | RXF4EN  | RXF3EN  | RXF2EN        | RXF1EN  | RXF0EN  | 0000 0000            | 61, 308             |
| RXF15EIDL                              | EID7    | EID6    | EID5          | EID4    | EID3    | EID2          | EID1    | EID0    | XXXX XXXX            | 61, 306             |
| RXF15EIDH                              | EID15   | EID14   | EID13         | EID12   | EID11   | EID10         | EID9    | EID8    | XXXX XXXX            | 61, 306             |
| RXF15SIDL                              | SID2    | SID1    | SID0          | —       | EXIDEN  | —             | EID17   | EID16   | xxx- x-xx            | 61, 305             |
| RXF15SIDH                              | SID10   | SID9    | SID8          | SID7    | SID6    | SID5          | SID4    | SID3    | XXXX XXXX            | 61, 305             |
| RXF14EIDL                              | EID7    | EID6    | EID5          | EID4    | EID3    | EID2          | EID1    | EID0    | XXXX XXXX            | 61, 306             |
| RXF14EIDH                              | EID15   | EID14   | EID13         | EID12   | EID11   | EID10         | EID9    | EID8    | XXXX XXXX            | 61, 306             |
| RXF14SIDL                              | SID2    | SID1    | SID0          | —       | EXIDEN  |               | EID17   | EID16   | xxx- x-xx            | 61, 305             |
| RXF14SIDH                              | SID10   | SID9    | SID8          | SID7    | SID6    | SID5          | SID4    | SID3    | XXXX XXXX            | 61, 305             |
| RXF13EIDL                              | EID7    | EID6    | EID5          | EID4    | EID3    | EID2          | EID1    | EID0    | XXXX XXXX            | 62, 306             |
| RXF13EIDH                              | EID15   | EID14   | EID13         | EID12   | EID11   | EID10         | EID9    | EID8    | XXXX XXXX            | 62, 306             |
| RXF13SIDL                              | SID2    | SID1    | SID0          | —       | EXIDEN  | —             | EID17   | EID16   | xxx- x-xx            | 62, 305             |
| RXF13SIDH                              | SID10   | SID9    | SID8          | SID7    | SID6    | SID5          | SID4    | SID3    | XXXX XXXX            | 62, 305             |

#### TABLE 5-2:REGISTER FILE SUMMARY (PIC18F2682/2685/4682/4685) (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented, read as '0'.

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

3: These registers and/or bits are not implemented on PIC18F2682/2685 devices and are read as '0'. Reset values are shown for PIC18F4682/4685 devices; individual unimplemented bits should be interpreted as '---'.

4: The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN<sup>™</sup> technology is set up in Mode 1 or Mode 2.

**9:** These registers and/or bits are available on PIC18F4682/4685 devices only.

#### 5.4 Data Addressing Modes

Note: The execution of some instructions in the core PIC18 instruction set are changed when the PIC18 extended instruction set is enabled. See Section 5.6 "Data Memory and the Extended Instruction Set" for more information.

While the program memory can be addressed in only one way – through the program counter – information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). Its operation is discussed in greater detail in **Section 5.6.1 "Indexed Addressing with Literal Offset**".

### 5.4.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all. They either perform an operation that globally affects the device or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way but require an additional explicit argument in the opcode. This is known as Literal Addressing mode because they require some literal value as an argument. Examples include ADDLW and MOVLW which, respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

#### 5.4.2 DIRECT ADDRESSING

Direct Addressing mode specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byteoriented instructions use some version of Direct Addressing by default. All of these instructions include some 8-bit literal address as their Least Significant Byte. This address specifies either a register address in one of the banks of data RAM (Section 5.3.3 "General **Purpose Register File**") or a location in the Access Bank (Section 5.3.2 "Access Bank") as the data source for the instruction.

The Access RAM bit 'a' determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 5.3.1 "Bank Select Register (BSR)") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In those cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction. Their destination is either the target register being operated on or the W register.

#### 5.4.3 INDIRECT ADDRESSING

Indirect Addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations to be read or written to. Since the FSRs are themselves located in RAM as Special Function Registers, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures, such as tables and arrays in data memory.

The registers for Indirect Addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code, using loops, such as the example of clearing an entire RAM bank in Example 5-5.

#### EXAMPLE 5-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

|   |        | LFSR  | FSR0,  | l00h | ; |                |
|---|--------|-------|--------|------|---|----------------|
| N | IEXT   | CLRF  | POSTIN | 20   | ; | Clear INDF     |
|   |        |       |        |      | ; | register then  |
|   |        |       |        |      | ; | inc pointer    |
|   |        | BTFSS | FSROH, | 1    | ; | All done with  |
|   |        |       |        |      | ; | Bank1?         |
|   |        | BRA   | NEXT   |      | ; | NO, clear next |
| С | ONTINU | E     |        |      | ; | YES, continue  |
|   |        |       |        |      |   |                |

### 5.5 Program Memory and the Extended Instruction Set

The operation of program memory is unaffected by the use of the extended instruction set.

Enabling the extended instruction set adds eight additional two-word commands to the existing PIC18 instruction set: ADDFSR, ADDULNK, CALLW, MOVSF, MOVSS, PUSHL, SUBFSR and SUBULNK. These instructions are executed as described in Section 5.2.4 "Two-Word Instructions".

# 5.6 Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many of the core PIC18 instructions is different. This is due to the introduction of a new addressing mode for the data memory space. This mode also alters the behavior of Indirect Addressing using FSR2 and its associated operands.

What does not change is just as important. The size of the data memory space is unchanged, as well as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all. Indirect Addressing with FSR0 and FSR1 also remains unchanged.

#### 5.6.1 INDEXED ADDRESSING WITH LITERAL OFFSET

Enabling the PIC18 extended instruction set changes the behavior of Indirect Addressing using the FSR2 register pair and its associated file operands. Under the proper conditions, instructions that use the Access Bank – that is, most bit-oriented and byte-oriented – instructions – can invoke a form of Indexed Addressing using an offset specified in the instruction. This special addressing mode is known as Indexed Addressing with Literal Offset or Indexed Literal Offset mode. When using the extended instruction set, this addressing mode requires the following:

- The use of the Access Bank is forced ('a' = 0); and
- The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used with the BSR in Direct Addressing), or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an offset value to an Address Pointer, specified by FSR2. The offset and the contents of FSR2 are added to obtain the target address of the operation.

#### 5.6.2 INSTRUCTIONS AFFECTED BY INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use Direct Addressing are potentially affected by the Indexed Literal Offset Addressing mode. This includes all byteoriented and bit-oriented instructions, or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions are not affected if they use the Access Bank (Access RAM bit is '1'), or include a file address of 60h or above. Instructions meeting these criteria will continue to execute as before. A comparison of the different possible addressing modes when the extended instruction set is enabled in shown in Figure 5-8.

Those who desire to use byte-oriented or bit-oriented instructions in the Indexed Literal Offset mode should note the changes to assembler syntax for this mode. This is described in more detail in **Section 25.2.1** "Extended Instruction Syntax".

| Pin Name    | Function | I/O | TRIS | Buffer               | Description                                                                                                                                       |  |  |  |  |
|-------------|----------|-----|------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| RC0/T1OSO/  | RC0      | OUT | 0    | DIG                  | LATC<0> data output.                                                                                                                              |  |  |  |  |
| T13CKI      |          | IN  | 1    | ST                   | PORTC<0> data input.                                                                                                                              |  |  |  |  |
|             | T10S0    | OUT | х    | ANA                  | Timer1 oscillator output – overrides the TRIS<0> control when enabled.                                                                            |  |  |  |  |
|             | T13CKI   | IN  | 1    | ST                   | Timer1/Timer3 clock input.                                                                                                                        |  |  |  |  |
| RC1/T10SI   | RC1      | OUT | 0    | DIG                  | LATC<1> data output.                                                                                                                              |  |  |  |  |
|             |          | IN  | 1    | ST                   | PORTC<1> data input.                                                                                                                              |  |  |  |  |
|             | T10SI    | IN  | х    | ANA                  | Timer1 oscillator input – overrides the TRIS<1> control when enabled.                                                                             |  |  |  |  |
| RC2/CCP1    | RC2      | OUT | 0    | DIG                  | LATC<2> data output.                                                                                                                              |  |  |  |  |
|             |          | IN  | 1    | ST                   | PORTC<2> data input.                                                                                                                              |  |  |  |  |
|             | CCP1     | OUT | 0    | DIG                  | CCP1 compare output.                                                                                                                              |  |  |  |  |
|             |          | IN  | 1    | ST                   | CCP1 capture input.                                                                                                                               |  |  |  |  |
| RC3/SCK/SCL | RC3      | OUT | 0    | DIG                  | LATC<3> data output.                                                                                                                              |  |  |  |  |
|             |          | IN  | 1    | ST                   | PORTC<3> data input.                                                                                                                              |  |  |  |  |
|             | SCK      | OUT | 0    | DIG                  | SPI clock output (MSSP module) – must have TRIS set to '1' to allow the MSSP module to control the bidirectional communication.                   |  |  |  |  |
|             |          | IN  | 1    | ST                   | SPI clock input (MSSP module).                                                                                                                    |  |  |  |  |
|             | SCL      | OUT | 0    | DIG                  | $I^2C^{TM}$ /SMBus clock output (MSSP module) – must have TRIS set to '1' to allow the MSSP module to control the bidirectional communication.    |  |  |  |  |
|             |          | IN  | 1    | I <sup>2</sup> C/SMB | I <sup>2</sup> C/SMBus clock input.                                                                                                               |  |  |  |  |
| RC4/SDI/SDA | RC4      | OUT | 0    | DIG                  | LATC<4> data output.                                                                                                                              |  |  |  |  |
|             |          | IN  | 1    | ST                   | PORTC<4> data input.                                                                                                                              |  |  |  |  |
|             | SDI      | IN  | 1    | ST                   | SPI data input (MSSP module).                                                                                                                     |  |  |  |  |
|             | SDA      | OUT | 1    | DIG                  | I <sup>2</sup> C/SMBus data output (MSSP module) – must have TRIS set to '1' to allow the MSSP module to control the bidirectional communication. |  |  |  |  |
|             |          | IN  | 1    | I <sup>2</sup> C/SMB | I <sup>2</sup> C/SMBus data input (MSSP module) – must have TRIS set to '1' to allow the MSSP module to control the bidirectional communication.  |  |  |  |  |
| RC5/SDO     | RC5      | OUT | 0    | DIG                  | LATC<5> data output.                                                                                                                              |  |  |  |  |
|             |          | IN  | 1    | ST                   | PORTC<5> data input.                                                                                                                              |  |  |  |  |
|             | SDO      | OUT | 0    | DIG                  | SPI data output (MSSP module).                                                                                                                    |  |  |  |  |
| RC6/TX/CK   | RC6      | OUT | 0    | DIG                  | LATC<6> data output.                                                                                                                              |  |  |  |  |
|             |          | IN  | 1    | ST                   | PORTC<6> data input.                                                                                                                              |  |  |  |  |
|             | TX       | OUT | 0    | DIG                  | EUSART data output.                                                                                                                               |  |  |  |  |
|             | СК       | OUT | 1    | DIG                  | EUSART synchronous clock output – must have TRIS set to '1' to enable EUSART to control the bidirectional communication.                          |  |  |  |  |
|             |          | IN  | 1    | ST                   | EUSART synchronous clock input.                                                                                                                   |  |  |  |  |
| RC7/RX/DT   | RC7      | OUT | 0    | DIG                  | LATC<7> data output.                                                                                                                              |  |  |  |  |
|             |          | IN  | 1    | ST                   | PORTC<7> data input.                                                                                                                              |  |  |  |  |
|             | RX       | IN  | 1    | ST                   | EUSART asynchronous data input.                                                                                                                   |  |  |  |  |
|             | DT       | OUT | 1    | DIG                  | EUSART synchronous data output – must have TRIS set to '1' to enable EUSART to control the bidirectional communication.                           |  |  |  |  |
|             |          | IN  | 1    | ST                   | EUSART synchronous data input.                                                                                                                    |  |  |  |  |

### TABLE 10-5: PORTC I/O SUMMARY

**Legend:** OUT = Output; IN = Input; ANA = Analog Signal; DIG = Digital Output; ST = Schmitt Buffer Input; TTL = TTL Buffer Input; I<sup>2</sup>C = Inter-Integrated Circuit; SMBus = System Management Bus

| Name                    | Bit 7                                   | Bit 6                 | Bit 5        | Bit 4         | Bit 3    | Bit 2   | Bit 1   | Bit 0   | Reset<br>Values<br>on page |  |
|-------------------------|-----------------------------------------|-----------------------|--------------|---------------|----------|---------|---------|---------|----------------------------|--|
| INTCON                  | GIE/GIEH                                | PEIE/GIEL             | TMR0IE       | INT0IE        | RBIE     | TMR0IF  | INT0IF  | RBIF    | 51                         |  |
| RCON                    | IPEN                                    | SBOREN <sup>(2)</sup> | _            | RI            | TO       | PD      | POR     | BOR     | 52                         |  |
| PIR1                    | PSPIF <sup>(1)</sup>                    | ADIF                  | RCIF         | TXIF          | SSPIF    | CCP1IF  | TMR2IF  | TMR1IF  | 54                         |  |
| PIE1                    | PSPIE <sup>(1)</sup>                    | ADIE                  | RCIE         | TXIE          | SSPIE    | CCP1IE  | TMR2IE  | TMR1IE  | 54                         |  |
| IPR1                    | PSPIP <sup>(1)</sup>                    | ADIP                  | RCIP         | TXIP          | SSPIP    | CCP1IP  | TMR2IP  | TMR1IP  | 54                         |  |
| TRISB                   | PORTB Data Direction Register           |                       |              |               |          |         |         |         |                            |  |
| TRISC                   | PORTC Data Direction Register           |                       |              |               |          |         |         |         |                            |  |
| TMR2                    | Timer2 Register                         |                       |              |               |          |         |         |         |                            |  |
| PR2                     | Timer2 Peri                             | od Register           |              |               |          |         |         |         | 52                         |  |
| T2CON                   | —                                       | T2OUTPS3              | T2OUTPS2     | T2OUTPS1      | T2OUTPS0 | TMR2ON  | T2CKPS1 | T2CKPS0 | 52                         |  |
| CCPR1L                  | Capture/Compare/PWM Register 1 Low Byte |                       |              |               |          |         |         |         |                            |  |
| CCPR1H                  | Capture/Co                              | mpare/PWM             | Register 1 H | igh Byte      |          |         |         |         | 53                         |  |
| CCP1CON                 |                                         | —                     | DC1B1        | DC1B0         | CCP1M3   | CCP1M2  | CCP1M1  | CCP1M0  | 53                         |  |
| ECCPR1L <sup>(1)</sup>  | Enhanced (                              | Capture/Comp          | bare/PWM R   | egister 1 Lov | v Byte   |         |         |         | 53                         |  |
| ECCPR1H <sup>(1)</sup>  | Enhanced (                              | Capture/Comp          | pare/PWM R   | egister 1 Hig | h Byte   |         |         |         | 53                         |  |
| ECCP1CON <sup>(1)</sup> | EPWM1M1                                 | EPWM1M0               | EDC1B1       | EDC1B0        | ECCP1M3  | ECCP1M2 | ECCP1M1 | ECCP1M0 | 53                         |  |

**Legend:** — = unimplemented, read as '0'. Shaded cells are not used by PWM or Timer2.

**Note 1:** These bits or registers are available on PIC18F4682/4685 devices only.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'.

### REGISTER 23-34: BnDLC: TX/RX BUFFER n DATA LENGTH CODE REGISTERS IN RECEIVE MODE $[0 \le n \le 5, TXnEN (BSEL \le n) = 0]^{(1)}$

| U-0   | R-x   | R-x | R-x | R-x  | R-x  | R-x  | R-x   |
|-------|-------|-----|-----|------|------|------|-------|
|       | RXRTR | RB1 | RB0 | DLC3 | DLC2 | DLC1 | DLC0  |
| bit 7 |       |     |     |      |      |      | bit 0 |

| Legend:           |                      |                                                              |                        |                    |
|-------------------|----------------------|--------------------------------------------------------------|------------------------|--------------------|
| R = Readat        | ole bit              | W = Writable bit                                             | U = Unimplemented bit. | , read as '0'      |
| -n = Value at POR |                      | '1' = Bit is set                                             | '0' = Bit is cleared   | x = Bit is unknown |
|                   |                      |                                                              |                        |                    |
| bit 7             | Unimple              | mented: Read as '0'                                          |                        |                    |
| bit 6             | RXRTR:               | Receiver Remote Transmiss                                    | sion Request bit       |                    |
|                   | 1 = This<br>0 = This | is a remote transmission req<br>is not a remote transmission | luest<br>request       |                    |
| bit 5             | <b>RB1:</b> Re       | served bit 1                                                 |                        |                    |
|                   | Reserved             | d by CAN Spec and read as                                    | ʻ0'.                   |                    |
| bit 4             | <b>RB0</b> : Re      | served bit 0                                                 |                        |                    |
|                   | Reserved             | d by CAN Spec and read as                                    | ʻ0'.                   |                    |
| bit 3-0           | DLC3:DI              | <b>_C0:</b> Data Length Code bits                            |                        |                    |
|                   | 1111 <b>= F</b>      | Reserved                                                     |                        |                    |
|                   | 1110 <b>= F</b>      | Reserved                                                     |                        |                    |
|                   | 1101 <b>= F</b>      | Reserved                                                     |                        |                    |
|                   | 1100 <b>= F</b>      | Reserved                                                     |                        |                    |
|                   | 1011 <b>= F</b>      | Reserved                                                     |                        |                    |
|                   | 1010 <b>= F</b>      | Reserved                                                     |                        |                    |
|                   | 1001 <b>= F</b>      | Reserved                                                     |                        |                    |
|                   | 1000 = L             | Data length = 8 bytes                                        |                        |                    |
|                   | 0111 = L             | Data length = 7 bytes                                        |                        |                    |
|                   | 0110 <b>- L</b>      | Data length = 5 bytes                                        |                        |                    |
|                   | 0101 = L             | $a_{12} = 0$ bytes                                           |                        |                    |
|                   | 00100 <b>– L</b>     | )ata length = 3 bytes                                        |                        |                    |
|                   | 0010 = [             | )ata length = 2 bytes                                        |                        |                    |
|                   | 0001 = <b>[</b>      | )ata length = $1 \text{ bytes}$                              |                        |                    |
|                   | 0000 = 0             | Data length = 0 bytes                                        |                        |                    |

Note 1: These registers are available in Mode 1 and 2 only.

#### TABLE 23-1: CAN CONTROLLER REGISTER MAP (CONTINUED)

| Address <sup>(1)</sup> | Name      |
|------------------------|-----------|
| D7Fh                   | (4)       |
| D7Eh                   | (4)       |
| D7Dh                   | (4)       |
| D7Ch                   | (4)       |
| D7Bh                   | RXF11EIDL |
| D7Ah                   | RXF11EIDH |
| D79h                   | RXF11SIDL |
| D78h                   | RXF11SIDH |
| D77h                   | RXF10EIDL |
| D76h                   | RXF10EIDH |
| D75h                   | RXF10SIDL |
| D74h                   | RXF10SIDH |
| D73h                   | RXF9EIDL  |
| D72h                   | RXF9EIDH  |
| D71h                   | RXF9SIDL  |
| D70h                   | RXF9SIDH  |
| D6Fh                   | (4)       |
| D6Eh                   | (4)       |
| D6Dh                   | (4)       |
| D6Ch                   | (4)       |
| D6Bh                   | RXF8EIDL  |
| D6Ah                   | RXF8EIDH  |
| D69h                   | RXF8SIDL  |
| D68h                   | RXF8SIDH  |
| D67h                   | RXF7EIDL  |
| D66h                   | RXF7EIDH  |
| D65h                   | RXF7SIDL  |
| D64h                   | RXF7SIDH  |
| D63h                   | RXF6EIDL  |
| D62h                   | RXF6EIDH  |
| D61h                   | RXF6SIDL  |
| D60h                   | RXF6SIDH  |

**Note 1:** Shaded registers are available in Access Bank low area while the rest are available in Bank 15.

- **2:** CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the controller register due to the Microchip header file requirement.
- 3: These registers are not CAN registers.
- 4: Unimplemented registers are read as '0'.

BRA MYFUNC

BC MYFUNC

#### FIGURE 25-1: **GENERAL FORMAT FOR INSTRUCTIONS** Byte-oriented file register operations **Example Instruction** 15 10 9 8 7 0 OPCODE d f (FILE #) ADDWF MYREG, W, B а d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address Byte to Byte move operations (2-word) 15 12 11 0 OPCODE f (Source FILE #) MOVFF MYREG1, MYREG2 15 12 11 0 f (Destination FILE #) 1111 f = 12-bit file register address Bit-oriented file register operations 987 15 12 11 0 f (FILE #) OPCODE b (BIT #) а BSF MYREG, bit, B b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address Literal operations 15 8 7 0 OPCODE k (literal) MOVLW 7Fh k = 8-bit immediate value **Control** operations CALL, GOTO and Branch operations 15 8 7 0 OPCODE n<7:0> (literal) GOTO Label 12 11 15 0 1111 n<19:8> (literal) n = 20-bit immediate value 15 8 7 0 CALL MYFUNC OPCODE S n<7:0> (literal) 15 12 11 0 n<19:8> (literal) 1111 S = Fast bit 15 11 10 0

n<10:0> (literal)

n<7:0> (literal)

0

8 7

OPCODE

OPCODE

15

| ΒZ           |                          | Branch if                                                                              | Zero                                                                         |                                                       |                                                                 |  |  |  |
|--------------|--------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
| Synta        | ax:                      | BZ n                                                                                   |                                                                              |                                                       |                                                                 |  |  |  |
| Oper         | ands:                    | -128 $\leq$ n $\leq$                                                                   | $-128 \le n \le 127$                                                         |                                                       |                                                                 |  |  |  |
| Oper         | ation:                   | if Zero bit is<br>(PC) + 2 +                                                           | if Zero bit is '1'<br>(PC) + 2 + 2n $\rightarrow$ PC                         |                                                       |                                                                 |  |  |  |
| Statu        | s Affected:              | None                                                                                   | None                                                                         |                                                       |                                                                 |  |  |  |
| Encoding:    |                          | 1110                                                                                   | 0000                                                                         | nnn                                                   | n nnnn                                                          |  |  |  |
| Description: |                          | If the Zero will branch                                                                | bit is '1',                                                                  | then th                                               | ne program                                                      |  |  |  |
|              |                          | The 2's cor<br>added to th<br>incremente<br>instruction,<br>PC + 2 + 2<br>two-cycle in | mplement<br>le PC. Sir<br>ed to fetch<br>the new<br>n. This in<br>nstruction | t numb<br>nce the<br>n the no<br>addres<br>struction. | er '2n' is<br>PC will have<br>ext<br>ss will be<br>on is then a |  |  |  |
| Word         | ls:                      | 1                                                                                      | 1                                                                            |                                                       |                                                                 |  |  |  |
| Cycle        | es:                      | 1(2)                                                                                   | 1(2)                                                                         |                                                       |                                                                 |  |  |  |
| QC           | ycle Activity:           |                                                                                        |                                                                              |                                                       |                                                                 |  |  |  |
| lf Ju        | mp:                      |                                                                                        |                                                                              |                                                       |                                                                 |  |  |  |
|              | Q1                       | Q2                                                                                     | Q3                                                                           | ;<br>                                                 | Q4                                                              |  |  |  |
|              | Decode                   | Read literal<br>'n'                                                                    | Proce<br>Data                                                                | SS<br>a                                               | Write to PC                                                     |  |  |  |
|              | No                       | No                                                                                     | No                                                                           | ion                                                   | No                                                              |  |  |  |
| If No        |                          | operation                                                                              | operation                                                                    |                                                       | operation                                                       |  |  |  |
|              | Q1                       | Q2                                                                                     | Q3                                                                           |                                                       | Q4                                                              |  |  |  |
|              | Decode                   | Read literal                                                                           | Proce                                                                        | SS                                                    | No                                                              |  |  |  |
|              |                          | 'n'                                                                                    | Data                                                                         | à                                                     | operation                                                       |  |  |  |
| <u>Exan</u>  | <u>nple:</u>             | HERE                                                                                   | ΒZ                                                                           | Jump                                                  |                                                                 |  |  |  |
|              | PC<br>After Instruction  | = ad                                                                                   | ldress (1                                                                    | HERE)                                                 |                                                                 |  |  |  |
|              | If Zero<br>PC<br>If Zero | = 1;<br>= ac<br>= 0;                                                                   | ldress (                                                                     | Jump)                                                 |                                                                 |  |  |  |
|              | PC                       | = ad                                                                                   | Idress (1                                                                    | HERE                                                  | + 2)                                                            |  |  |  |

|                                           | Subrouti                                                                                                          | ne Call                                 |                     |                                                 |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------|-------------------------------------------------|
| Syntax:                                   | CALL k {,                                                                                                         | s}                                      |                     |                                                 |
| Operands:                                 | $0 \le k \le 104$<br>s $\in [0,1]$                                                                                | 18575                                   |                     |                                                 |
| Operation:                                | $\begin{array}{l} (PC) + 4 - \\ k \to PC < 2 \\ if \ s = 1, \\ (W) \to WS \\ (STATUS) \\ (BSR) \to E \end{array}$ | → TOS,<br>0:1>;<br>→ STATU<br>3SRS      | JSS,                |                                                 |
| Status Affected:                          | None                                                                                                              |                                         |                     |                                                 |
| Encoding:                                 |                                                                                                                   |                                         |                     |                                                 |
| 1st word (k<7:0>)                         | 1110                                                                                                              | 110s                                    | k <sub>7</sub> kk   | k kkkk <sub>0</sub>                             |
| 2nd word(k<19:8>)                         | 1111                                                                                                              | k <sub>19</sub> kkk                     | kkkl                | k kkkk <sub>8</sub>                             |
| Words:                                    | 20-bit valu<br>CALL is a 1                                                                                        | curs (defa<br>e 'k' is loa<br>two-cycle | ided int<br>instruc | en, me<br>o PC<20:1><br>tion.                   |
| Cycles:                                   | 2                                                                                                                 |                                         |                     |                                                 |
| Q Cycle Activity:                         |                                                                                                                   |                                         |                     |                                                 |
| Q1<br>Decode                              | Q2<br>Read literal<br>'k'<7:0>,                                                                                   | Push P<br>stac                          | C to<br>k           | Q4<br>Read literal<br>'k'<19:8>,<br>Write to PC |
| No<br>operation                           | No<br>operation                                                                                                   | No<br>operat                            | ion                 | No<br>operation                                 |
| Example:                                  | HERE                                                                                                              | CALL                                    | THER                | E, 1                                            |
| Before Instruc                            | tion                                                                                                              |                                         |                     |                                                 |
| PC<br>After Instructio<br>PC<br>TOS<br>WS | = addres<br>on<br>= addres<br>= addres<br>= W                                                                     | S (HERE<br>S (THER<br>S (HERE           | )<br>E)<br>+ 4)     |                                                 |
| BSRS                                      | = BSR                                                                                                             | _                                       |                     |                                                 |

| ADD              | <b>WF</b>                                                                                           | AI<br>(Ir         | DD W to<br>dexed                         | lnde<br>Liter     | exed<br>al Of                          | fset mo                 | ode         | e)                              |  |
|------------------|-----------------------------------------------------------------------------------------------------|-------------------|------------------------------------------|-------------------|----------------------------------------|-------------------------|-------------|---------------------------------|--|
| Synta            | ax:                                                                                                 | AD                | DWF                                      | [k] {,            | d}                                     |                         |             |                                 |  |
| Oper             | ands:                                                                                               | 0 ⊴<br>d ∉<br>a = | ≤ <b>k ≤ 95</b><br>≡ <b>[0,1]</b><br>= 0 |                   |                                        |                         |             |                                 |  |
| Oper             | ation:                                                                                              | (W                | ') + ((FSI                               | R2) +             | k) $\rightarrow$                       | dest                    |             |                                 |  |
| Status Affected: |                                                                                                     | N,                | N, OV, C, DC, Z                          |                   |                                        |                         |             |                                 |  |
| Enco             | oding:                                                                                              |                   | 0010                                     | 01                | d0                                     | kkkk                    |             | kkkk                            |  |
| Desc             | ription:                                                                                            | Th<br>of<br>va    | e conten<br>the regist<br>ue 'k'.        | ts of V<br>er ind | V are a licated                        | added to<br>by FSR      | the<br>2, o | e contents<br>ffset by the      |  |
|                  |                                                                                                     | lf 'e             | d' is '0', tl<br>e result is             | he res<br>store   | ult is s<br>d back                     | stored in<br>( in regis | W.<br>ter ' | lf 'd' is '1',<br>f' (default). |  |
| Words:           |                                                                                                     | 1                 |                                          |                   |                                        |                         |             |                                 |  |
| Cycles:          |                                                                                                     | 1                 |                                          |                   |                                        |                         |             |                                 |  |
| Q Cycle Activit  |                                                                                                     | y:                |                                          |                   |                                        |                         |             |                                 |  |
|                  | Q1                                                                                                  |                   | Q2                                       |                   | 1                                      | Q3                      |             | Q4                              |  |
|                  | Decode                                                                                              |                   | Read                                     | 'k'               | Pro<br>D                               | ocess<br>ata            | ۱<br>de     | Write to<br>estination          |  |
| <u>Exan</u>      | nple:                                                                                               |                   | ADDWI                                    | E                 | [OFS]                                  | ],0                     |             |                                 |  |
|                  | Before Instru<br>W<br>OFST<br>FSR2<br>Conten<br>of 0A20<br>After Instruct<br>W<br>Conten<br>of 0A20 |                   | tion<br>1<br>9n                          | =<br>=<br>=<br>=  | 17h<br>2Ch<br>0A0<br>20h<br>37h<br>20h | า<br>วOh<br>เ<br>เ      |             |                                 |  |

| BSF Bit Set Indexed<br>(Indexed Literal Offset mode) |                                                                           |                                              |                                                                             |              |                        |  |  |  |
|------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------|--------------|------------------------|--|--|--|
| Syntax:                                              |                                                                           | BSF [k],                                     | b                                                                           |              |                        |  |  |  |
| Operands:                                            |                                                                           | $0 \le f \le 95$<br>$0 \le b \le 7$<br>a = 0 |                                                                             |              |                        |  |  |  |
| Operation:                                           |                                                                           | $1 \rightarrow ((FSF))$                      | $1 \rightarrow ((FSR2 + k)) < b >$                                          |              |                        |  |  |  |
| Status Affect                                        | cted:                                                                     | None                                         |                                                                             |              |                        |  |  |  |
| Encoding:                                            |                                                                           | 1000                                         | bbb0                                                                        | kkkk         | kkkk                   |  |  |  |
| Description                                          | :                                                                         | Bit 'b' of th<br>offset by t                 | Bit 'b' of the register indicated by FSR2, offset by the value 'k', is set. |              |                        |  |  |  |
| Words:                                               |                                                                           | 1                                            | 1                                                                           |              |                        |  |  |  |
| Cycles:                                              |                                                                           | 1                                            | 1                                                                           |              |                        |  |  |  |
| Q Cycle A                                            | ctivity:                                                                  |                                              |                                                                             |              |                        |  |  |  |
| (                                                    | Q1                                                                        | Q2                                           | Q3                                                                          |              | Q4                     |  |  |  |
| Dec                                                  | code                                                                      | Read<br>register 'f'                         | Proce<br>Data                                                               | ss \<br>a de | Write to<br>estination |  |  |  |
| Example:                                             |                                                                           | BSF                                          | [FLAG_O                                                                     | FST], 7      | 7                      |  |  |  |
| Before<br>F<br>C<br>o<br>After II                    | e Instruc<br>LAG_O<br>SR2<br>Contents<br>f 0A0Ah<br>nstructic<br>Contents | tion<br>FST =<br>=<br>=<br>on                | : 0Ah<br>: 0A00h<br>: 55h                                                   | 1            |                        |  |  |  |
| 0                                                    | f 0A0Ah                                                                   | =                                            | D5h                                                                         |              |                        |  |  |  |

| SET               | F                                                        | Set Indexed<br>(Indexed Literal Offset mode) |                |                             |                  |                  |                    |  |  |
|-------------------|----------------------------------------------------------|----------------------------------------------|----------------|-----------------------------|------------------|------------------|--------------------|--|--|
| Synta             | ax:                                                      | SETF [                                       | [k]            |                             |                  |                  |                    |  |  |
| Oper              | ands:                                                    | $0 \le k \le 9$                              | 95             |                             |                  |                  |                    |  |  |
| Oper              | ation:                                                   | FFh  ightarrow (                             | (FS            | SR2) + k)                   |                  |                  |                    |  |  |
| Status Affected:  |                                                          | None                                         |                |                             |                  |                  |                    |  |  |
| Enco              | oding:                                                   | 0110                                         |                | 1000                        | kkk              | k                | kkkk               |  |  |
| Desc              | ription:                                                 | The con<br>FSR2, o                           | ten<br>ffse    | ts of the r<br>et by 'k', a | egiste<br>are se | er ind<br>t to l | licated by<br>FFh. |  |  |
| Word              | ls:                                                      | 1                                            | 1              |                             |                  |                  |                    |  |  |
| Cycles:           |                                                          | 1                                            |                |                             |                  |                  |                    |  |  |
| Q Cycle Activity: |                                                          |                                              |                |                             |                  |                  |                    |  |  |
|                   | Q1                                                       | Q2                                           |                | Q3                          |                  |                  | Q4                 |  |  |
|                   | Decode                                                   | Read 'k'                                     |                | Proce<br>Data               | SS<br>A          | re               | Write<br>egister   |  |  |
| Exan              | nple:                                                    | SETF                                         |                | [OFST]                      |                  |                  |                    |  |  |
|                   | Before Instructi<br>OFST<br>FSR2<br>Contents<br>of 0A2Ch | on<br>=<br>=<br>=                            | 2C<br>0A<br>00 | Ch<br>100h<br>11            |                  |                  |                    |  |  |
|                   | After Instructior<br>Contents<br>of 0A2Ch                | )<br>=                                       | FF             | ħ                           |                  |                  |                    |  |  |





FIGURE 27-2: PIC18LF2682/2685/4682/4685 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

#### 27.4.3 TIMING DIAGRAMS AND SPECIFICATIONS



#### TABLE 27-6: EXTERNAL CLOCK TIMING REQUIREMENTS

| Param.<br>No. | Symbol | Characteristic                         | Min  | Мах   | Units | Conditions              |
|---------------|--------|----------------------------------------|------|-------|-------|-------------------------|
| 1A            | Fosc   | External CLKI Frequency <sup>(1)</sup> | DC   | 1     | MHz   | XT, RC Oscillator modes |
|               |        |                                        | DC   | 25    | MHz   | HS Oscillator mode      |
|               |        |                                        | DC   | 31.25 | kHz   | LP Oscillator mode      |
|               |        |                                        | DC   | 40    | MHz   | EC Oscillator mode      |
|               |        | Oscillator Frequency <sup>(1)</sup>    | DC   | 4     | MHz   | RC Oscillator mode      |
|               |        |                                        | 0.1  | 4     | MHz   | XT Oscillator mode      |
|               |        |                                        | 4    | 25    | MHz   | HS Oscillator mode      |
|               |        |                                        | 4    | 10    | MHz   | HSPLL Oscillator mode   |
|               |        |                                        | 5    | 200   | kHz   | LP Oscillator mode      |
| 1             | Tosc   | External CLKI Period <sup>(1)</sup>    | 1000 | —     | ns    | XT, RC Oscillator modes |
|               |        |                                        | 40   | —     | ns    | HS Oscillator mode      |
|               |        |                                        | 32   | —     | μS    | LP Oscillator mode      |
|               |        |                                        | 25   | —     | ns    | EC Oscillator mode      |
|               |        | Oscillator Period <sup>(1)</sup>       | 250  | —     | ns    | RC Oscillator mode      |
|               |        |                                        | 250  | 1     | μS    | XT Oscillator mode      |
|               |        |                                        | 40   | 250   | ns    | HS Oscillator mode      |
|               |        |                                        | 100  | 250   | ns    | HSPLL Oscillator mode   |
|               |        |                                        | 5    | 200   | μS    | LP Oscillator mode      |
| 2             | Тсү    | Instruction Cycle Time <sup>(1)</sup>  | 100  | —     | ns    | Tcy = 4/Fosc            |
| 3             | TosL,  | External Clock in (OSC1)               | 30   | —     | ns    | XT Oscillator mode      |
|               | TosH   | High or Low Time                       | 2.5  | —     | μS    | LP Oscillator mode      |
|               |        |                                        | 10   | —     | ns    | HS Oscillator mode      |
| 4             | TosR,  | External Clock in (OSC1)               | —    | 20    | ns    | XT Oscillator mode      |
|               | TosF   | Rise or Fall Time                      | —    | 50    | ns    | LP Oscillator mode      |
|               |        |                                        | —    | 7.5   | ns    | HS Oscillator mode      |

**Note 1:** Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.



| TABLE 21-11: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CRE = | TABLE 27-17: | <b>EXAMPLE SPI SLAVE MODE REQUIREMENTS (</b> | <b>CKE =</b> 1 |
|---------------------------------------------------------|--------------|----------------------------------------------|----------------|
|---------------------------------------------------------|--------------|----------------------------------------------|----------------|

| Param<br>No. | Symbol                | Characteristic                                                         |                      | Min           | Max | Units    | Conditions |
|--------------|-----------------------|------------------------------------------------------------------------|----------------------|---------------|-----|----------|------------|
| 70           | TssL2scH,<br>TssL2scL | $\overline{SS} \downarrow$ to SCK $\downarrow$ or SCK $\uparrow$ Input |                      | Тсү           |     | ns       |            |
| 71           | TscH                  | SCK Input High Time                                                    | Continuous           | 1.25 Tcy + 30 | _   | ns       |            |
| 71A          |                       |                                                                        | Single Byte          | 40            |     | ns       | (Note 1)   |
| 72           | TscL                  | SCK Input Low Time                                                     | Continuous           | 1.25 Tcy + 30 |     | ns       |            |
| 72A          |                       |                                                                        | Single Byte          | 40            | _   | ns       | (Note 1)   |
| 73A          | Тв2в                  | Last Clock Edge of Byte 1 to the first                                 | 1.5 Tcy + 40         |               | ns  | (Note 2) |            |
| 74           | TscH2DIL,<br>TscL2DIL | Hold Time of SDI Data Input to SC                                      | 100                  |               | ns  |          |            |
| 75           | TDOR                  | SDO Data Output Rise Time                                              | PIC18FXXXX           | —             | 25  | ns       |            |
|              |                       |                                                                        | PIC18LFXXXX          | —             | 45  | ns       | VDD = 2.0V |
| 76           | TDOF                  | SDO Data Output Fall Time                                              |                      | —             | 25  | ns       |            |
| 77           | TssH2doZ              | SS↑ to SDO Output High-Impedan                                         | ce                   | 10            | 50  | ns       |            |
| 80           | TscH2doV,             | SDO Data Output Valid after SCK                                        | PIC18FXXXX           | —             | 50  | ns       |            |
|              | TscL2DoV              | Edge                                                                   | PIC18 <b>LF</b> XXXX | —             | 100 | ns       | VDD = 2.0V |
| 82           | TssL2doV              | SDO Data Output Valid after $\overline{\text{SS}}\downarrow$           | PIC18FXXXX           | _             | 50  | ns       |            |
|              |                       | Edge                                                                   | PIC18 <b>LF</b> XXXX | —             | 100 | ns       | VDD = 2.0V |
| 83           | TscH2ssH,<br>TscL2ssH | SS ↑ after SCK Edge                                                    |                      | 1.5 Tcy + 40  |     | ns       |            |

**Note 1:** Requires the use of parameter 73A.

2: Only if parameter 71A and 72A are used.

NOTES: