

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	96KB (48K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2685t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

PIC18F2682/2685/4682/4685

FIGURE 4-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 4-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt		
TXB2D6	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	Ouuu uuuu
TXB2D5	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	Ouuu uuuu
TXB2D4	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	Ouuu uuuu
TXB2D3	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	Ouuu uuuu
TXB2D2	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	0uuu uuuu
TXB2D1	2682	2685	4682	4685	XXXX XXXX	นนนน นนนน	Ouuu uuuu
TXB2D0	2682	2685	4682	4685	XXXX XXXX	นนนน นนนน	0uuu uuuu
TXB2DLC	2682	2685	4682	4685	-x xxxx	-u uuuu	-u uuuu
TXB2EIDL	2682	2685	4682	4685	XXXX XXXX	นนนน นนนน	นนนน นนนน
TXB2EIDH	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	นนนน นนนน
TXB2SIDL	2682	2685	4682	4685	хххх х-хх	uuuu u-uu	uuuu u-uu
TXB2SIDH	2682	2685	4682	4685	xxx- x-xx	uuu- u-uu	uuu- u-uu
TXB2CON	2682	2685	4682	4685	0000 0-00	0000 0-00	uuuu u-uu
RXM1EIDL	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս
RXM1EIDH	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	นนนน นนนน
RXM1SIDL	2682	2685	4682	4685	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXM1SIDH	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս
RXM0EIDL	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս
RXM0EIDH	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս
RXM0SIDL	2682	2685	4682	4685	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXM0SIDH	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	นนนน นนนน
RXF5EIDL	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	นนนน นนนน
RXF5EIDH	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս
RXF5SIDL	2682	2685	4682	4685	XXX- X-XX	uuu- u-uu	uuu- u-uu
RXF5SIDH	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս
RXF4EIDL	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս
RXF4EIDH	2682	2685	4682	4685	XXXX XXXX	นนนน นนนน	นนนน นนนน
RXF4SIDL	2682	2685	4682	4685	XXX- X-XX	uuu- u-uu	uuu- u-uu
RXF4SIDH	2682	2685	4682	4685	XXXX XXXX	นนนน นนนน	սսսս սսսս
RXF3EIDL	2682	2685	4682	4685	XXXX XXXX	นนนน นนนน	นนนน นนนน
RXF3EIDH	2682	2685	4682	4685	XXXX XXXX	นนนน นนนน	นนนน นนนน

TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

- 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.
- 4: See Table 4-3 for Reset value for specific condition.
- **5:** Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.
- 6: This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2.

9.1 INTCON Registers

The INTCON registers are readable and writable registers, which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE/GIEH: Global Interrupt Enable bit <u>When IPEN = 0:</u> 1 = Enables all unmasked interrupts 0 = Disables all interrupts <u>When IPEN = 1:</u> 1 = Enables all high priority interrupts 0 = Disables all high priority interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit When IPEN = 0: 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts When IPEN = 1: 1 = Enables all low priority peripheral interrupts 0 = Disables all low priority peripheral interrupts 0 = Disables all low priority peripheral interrupts
bit 5	<pre>TMR0IE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt</pre>
bit 4	INTOIE: INTO External Interrupt Enable bit 1 = Enables the INTO external interrupt 0 = Disables the INTO external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt
bit 2	 TMR0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow
bit 1	INTOIF: INTO External Interrupt Flag bit 1 = The INTO external interrupt occurred (must be cleared in software) 0 = The INTO external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾ 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state

Note 1: A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared.

9.4 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Priority registers (IPR1, IPR2). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

REGISTER 9-10: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP
bit 7							bit (
Legend:	a hit	VV - VV/ritabla	hit	II – Unimplo	monted hit rea	d oo 'O'	
	R = Readable bit $V = Writable bit$ $U = Unimplemented bit, read$				uas u		
-n = value at	PUR	I = BILIS SE	L		areo	x = Bit is unki	IOWN
bit 7	PSPIP: Para	allel Slave Port I	Read/Write In	terrupt Priority	bit ⁽¹⁾		
	1 = High pri	iority		. ,			
	0 = Low prie	ority					
bit 6	ADIP: A/D C	Converter Interru	upt Priority bit				
	1 = High pri	iority					
	0 = Low prie	ority					
bit 5	RCIP: EUSA	ART Receive Int	errupt Priority	/ bit			
	1 = High pri	iority					
L:1 4							
DIT 4	IXIP: EUSART Transmit Interrupt Priority bit						
	1 = High priority						
hit 2		uniy tar Synabranau	o Coriol Dort I	ntarrunt Driarit	/ hit		
DILS	Jorr: Master Synchronous Serial Port Interrupt Priority bit						
	0 = Low prie	oritv					
bit 2	CCP1IP: CC	CP1 Interrupt Pr	iority bit				
	1 = High priority						
	0 = Low prie	ority					
bit 1	TMR2IP: TMR2 to PR2 Match Interrupt Priority bit						
	1 = High priority						
	0 = Low prie	ority					
bit 0	TMR1IP: TN	/IR1 Overflow In	terrupt Priorit	y bit			
	1 = High pri	iority					
	0 = Low prie	ority					

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
Mode 0	IRXIP	WAKIP	ERRIP	TXB2IP	TXB1IP ⁽¹⁾	TXB0IP ⁽¹⁾	RXB1IP	RXB0IP	
Mode 1.2	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	IRXIP	WAKIP	ERRIP	TXBnIP	TXB1IP ⁽¹⁾	TXB0IP ⁽¹⁾	RXBnIP	FIFOWMIP	
	bit 7 bit								
Legend:									
R = Readal	ble bit		W = Writable	e bit	U = Unimple	emented bit. r	ead as '0'		
-n = Value a	at POR		'1' = Bit is se	et	'0' = Bit is cl	eared	x = Bit is un	known	
bit 7	IRXIP: CAN	Invalid Rece	ived Message	e Interrupt P	riority bit				
	0 = Low prior	ority							
bit 6	WAKIP: CA	N bus Activity	Wake-up Int	errupt Priori	ty bit				
	1 = High prid 0 = Low prid	ority prity							
bit 5	ERRIP: CAN	N bus Error In	terrupt Priori	ty bit					
	1 = High pric	ority							
L 11 A	0 = Low prio	ority							
DIT 4	TXB2IP: CA	<u>IS IN MODE U:</u> N Transmit E	Suffer 2 Interri	upt Priority b	oit				
	1 = High price	ority							
	0 = Low prio	ority in in Made 1 (O.						
	TXBnIP: CAN	N Transmit E	<u>or 2.</u> Buffer Interrup	t Priority bit					
	1 = High pric	ority		,					
h :+ 0		ority		unt Dui suitus h	.: ₄ (1)				
DIT 3	1 = High price	an Transmit E prity	suffer 1 Interru	upt Priority t	olt(")				
	0 = Low prior	ority							
bit 2	TXB0IP: CA	N Transmit B	Suffer 0 Interro	upt Priority b	oit ⁽¹⁾				
	1 = High price	ority							
bit 1	When CAN i	is in Mode 0.							
	RXB1IP: CA	N Receive B	uffer 1 Interru	upt Priority b	it				
	1 = High price	ority							
	When CAN i	is in Mode 1 o	or 2:						
	RXBnIP: CA	N Receive B	uffer Interrup	ts Priority bi	t				
	1 = High priority								
bit 0	When CAN i	is in Mode 0:							
	RXB0IP: CAN Receive Buffer 0 Interrupt Priority bit								
	1 = High priority								
	When CAN i	is in Mode 1:							
	Unimpleme	nted: Read a	is '0'						
	When CAN i	is in Mode 2: FIFO Waterr	nark Interrunt	Priority bit					
	1 = High price	ority	nan menupi	i nonty olt					
	0 = Low priority								

REGISTER 9-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

Note 1: In CAN Mode 1 and 2, these bits are forced to '0'.

Pin Name	Function	I/O	TRIS	Buffer	Description
RB0/INT0/FLT0/AN10	RB0	OUT	0	DIG	LATB<0> data output.
		IN	1	TTL	PORTB<0> data input. Weak pull-up available only in this mode.
	INT0	IN	1	ST	External interrupt 0 input.
	FLT0 ⁽¹⁾	IN	1	ST	Enhanced PWM Fault input.
	AN10	IN	1	ANA	A/D input channel 10. Enabled on POR, this analog input overrides the digital input (read as clear – low level).
RB1/INT1/AN8	RB1	OUT	0	DIG	LATB<1> data output.
		IN	1	TTL	PORTB<1> data input. Weak pull-up available only in this mode.
	INT1	IN	1	ST	External interrupt 1 input.
	AN8	IN	1	ANA	A/D input channel 8. Enabled on POR, this analog input overrides the digital input (read as clear – low level).
RB2/INT2/CANTX	RB2	OUT	х	DIG	LATB<2> data output.
		IN	1	TTL	PORTB<2> data input. Weak pull-up available only in this mode.
	INT2	IN	1	ST	External interrupt 2 input.
	CANTX	OUT	1	DIG	CAN transmit signal output. The CAN interface overrides the TRIS<2> control when enabled.
RB3/CANRX	RB3	OUT	0	DIG	LATB<3> data output.
		IN	1	TTL	PORTB<3> data input. Weak pull-up available only in this mode.
	CANRX	IN	1	ST	CAN receive signal input. Pin must be configured as a digital input by setting TRISB<3>.
RB4/KBI0/AN9	RB4	OUT	0	DIG	LATB<4> data output.
		IN	1	TTL	PORTB<4> data input. Weak pull-up available only in this mode.
	KBI0	IN	1	TTL	Interrupt-on-pin change.
	AN9	IN	1	ANA	A/D input channel 9. Enabled on POR, this analog input overrides the digital input (read as clear – low level).
RB5/KBI1/PGM	RB5	OUT	0	DIG	LATB<5> data output.
		IN	1	TTL	PORTB<5> data input. Weak pull-up available only in this mode.
	KBI1	IN	1	TTL	Interrupt-on-pin change.
	PGM	IN	х	ST	Low-Voltage Programming mode entry (ICSP™). Enabling this function overrides digital output.
RB6/KBI2/PGC	RB6	OUT	0	DIG	LATB<6> data output.
		IN	1	TTL	PORTB<6> data input. Weak pull-up available only in this mode.
	KBI2	IN	1	TTL	Interrupt-on-pin change.
	PGC	IN	х	ST	Low-Voltage Programming mode entry (ICSP) clock input.
RB7/KBI3/PGD	RB7	OUT	0	DIG	LATB<7> data output.
		IN	1	TTL	PORTB<7> data input. Weak pull-up available only in this mode.
	KBI3	IN	1	TTL	Interrupt-on-pin change.
	PGD	OUT	х	DIG	Low-Voltage Programming mode entry (ICSP) clock output.
		IN	x	ST	Low-Voltage Programming mode entry (ICSP) clock input.

TABLE 10-3: PO	RTB I/O SUMMARY
----------------	-----------------

Legend: OUT = Output; IN = Input; ANA = Analog Signal; DIG = Digital Output; ST = Schmitt Buffer Input; TTL – TTL Buffer Input Note 1: This bit is unimplemented on PIC18F2682/2685 devices.

10.4 PORTD, TRISD and LATD Registers

Note:	PORTD is only available on PIC18F4682/
	4685 devices.

PORTD is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Three of the PORTD pins are multiplexed with outputs P1A, P1B, P1C and P1D of the Enhanced CCP1 (ECCP1) module. The operation of these additional PWM output pins is covered in greater detail in Section 16.0 "Enhanced Capture/Compare/PWM (ECCP1) Module".

Note: On a Power-on Reset, these pins are configured as digital inputs.

PORTD can also be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit, PSPMODE (TRISE<4>). In this mode, the input buffers are TTL. See **Section 10.6 "Parallel Slave Port"** for additional information on the Parallel Slave Port (PSP).

Note:	When the Enhanced PWM mode is used					
	with either dual or quad outputs, the PSP					
	functions of PORTD are automatically					
	disabled.					

EXAMPLE 10-4: INITIALIZING PORTD

CLRF POR	TD ; Initialize PORTD by ; clearing output
CLRF LAT	; data latches D ; Alternate method ; to clear output
MOVLW OCF	; data latches h ; Value used to ; initialize data
MOVWF TRI	; direction SD ; Set RD<3:0> as inputs ; RD<5:4> as outputs ; RD<7:6> as inputs
1	

TABLE 10-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTD ⁽¹⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	54
LATD ⁽¹⁾	LATD Data	Output Regist	ter						54
TRISD ⁽¹⁾	PORTD Dat	a Direction R	egister						54
TRISE ⁽¹⁾	IBF	OBF	IBOV	PSPMODE		TRISE2	TRISE1	TRISE0	54
ECCP1CON ⁽¹⁾	EPWM1M1	EPWM1M0	EDC1B1	EDC1B0	ECCP1M3	ECCP1M2	ECCP1M1	ECCP1M0	53

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTD.

Note 1: These registers are available on PIC18F4682/4685 devices only.

PIC18F2682/2685/4682/4685

NOTES:

11.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable; its value is set by the PSA and T0PS2:T0PS0 bits (T0CON<3:0>) which determine the prescaler assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the Timer0 module. When it is assigned, prescale values from 1:2 through 1:256 in power-of-2 increments are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) clear the prescaler count.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count but will not change the prescaler assignment.

11.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control and can be changed "on-the-fly" during program execution.

11.4 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit (INTCON<5>). Before reenabling the interrupt, the TMR0IF bit must be cleared in software by the Interrupt Service Routine.

Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
TMR0L	Timer0 Reg	ister Low By	te						52
TMR0H	Timer0 Reg	ister High By	/te						52
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	51
TOCON	TMR0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0	52
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA Da	ta Direction	Register				54

TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER0

Legend: x = unknown, u = unchanged, — = unimplemented locations, read as '0'. Shaded cells are not used by Timer0.

Note 1: RA7:RA6 and their associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as '0'.

20.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 20-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this

range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CMCON ⁽³⁾	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	53
CVRCON ⁽³⁾	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	53
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	54
IPR2	OSCFIP	CMIP ⁽²⁾	—	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP ⁽²⁾	53
PIR2	OSCFIF	CMIF ⁽²⁾	—	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽²⁾	54
PIE2	OSCFIE	CMIE ⁽²⁾	—	EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE ⁽²⁾	54
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	54
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	LATA Data	LATA Data Output Register					54
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA Da	ata Directio	n Register				54

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

Note 1: PORTA pins are enabled based on oscillator configuration.

2: These bits are available in PIC18F4682/4685 devices and reserved in PIC18F2682/2685 devices.

3: These registers are unimplemented on PIC18F2682/2685 devices.

REGISTER 23-6: TXBnSIDH: TRANSMIT BUFFER n STANDARD IDENTIFIER REGISTERS, HIGH BYTE [0 \leq n \leq 2]

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID10 | SID9 | SID8 | SID7 | SID6 | SID5 | SID4 | SID3 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 SID10:SID3: Standard Identifier bits (if EXIDE (TXBnSIDL<3>) = 0) Extended Identifier bits EID28:EID21 (if EXIDE = 1).

REGISTER 23-7: TXBnSIDL: TRANSMIT BUFFER n STANDARD IDENTIFIER REGISTERS, LOW BYTE [0 \leq n \leq 2]

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	EXIDE	—	EID17	EID16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	SID2:SID0: Standard Identifier bits (if EXIDE (TXBnSIDL<3>) = 0)
	Extended Identifier bits EID20:EID18 (if EXIDE = 1).
bit 4	Unimplemented: Read as '0'
bit 3	EXIDE: Extended Identifier Enable bit
	1 = Message will transmit extended ID, SID10:SID0 become EID28:EID18 0 = Message will transmit standard ID, EID17:EID0 are ignored
bit 2	Unimplemented: Read as '0'
bit 1-0	EID17:EID16: Extended Identifier bits

REGISTER 23-8: TXBnEIDH: TRANSMIT BUFFER n EXTENDED IDENTIFIER REGISTERS, HIGH BYTE [0 \leq n \leq 2]

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9 | EID8 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **EID15:EID8:** Extended Identifier bits (not used when transmitting standard identifier message)

'1' = Bit is set

REGISTER 23-9: TXBnEIDL: TRANSMIT BUFFER n EXTENDED IDENTIFIER REGISTERS, LOW BYTE $[0 \le n \le 2]$

		•	•				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	

'0' = Bit is cleared

x = Bit is unknown

bit 7-0 **EID7:EID0:** Extended Identifier bits (not used when transmitting standard identifier message)

REGISTER 23-10: TXBnDm: TRANSMIT BUFFER n DATA FIELD BYTE m REGISTERS $[0 \le n \le 2, 0 \le m \le 7]$

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TXBnDm7 | TXBnDm6 | TXBnDm5 | TXBnDm4 | TXBnDm3 | TXBnDm2 | TXBnDm1 | TXBnDm0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0**TXBnDm7:TXBnDm0:** Transmit Buffer n Data Field Byte m bits (where 0 ≤ n < 3 and 0 ≤ m < 8)</th>Each transmit buffer has an array of registers. For example, Transmit Buffer 0 has 7 registers: TXB0D0 to TXB0D7.

-n = Value at POR

EXAMPLE 23-3: TRANSMITTING A CAN MESSAGE USING BANKED METHOD

; Need to transmit Standard Identifier message 123h using TXBO buffer. ; To successfully transmit, CAN module must be either in Normal or Loopback mode. ; TXBO buffer is not in access bank. And since we want banked method, we need to make sure ; that correct bank is selected. BANKSEL TXBOCON ; One BANKSEL in beginning will make sure that we are ; in correct bank for rest of the buffer access. ; Now load transmit data into TXB0 buffer. MOVLW MY_DATA_BYTE1 ; Load first data byte into buffer ; Compiler will automatically set "BANKED" bit MOVWF TXB0D0 ; Load rest of data bytes - up to 8 bytes into TXBO buffer. . . . ; Load message identifier MOVLW 60H ; Load SID2:SID0, EXIDE = 0 MOVWF TXB0SIDL MOVLW 24H ; Load SID10:SID3 MOVWF TXB0SIDH ; No need to load TXB0EIDL:TXB0EIDH, as we are transmitting Standard Identifier Message only. ; Now that all data bytes are loaded, mark it for transmission. MOVLW B'00001000' ; Normal priority; Request transmission MOVWF TXB0CON ; If required, wait for message to get transmitted BTFSC TXB0CON, TXREQ ; Is it transmitted? BRA \$-2 ; No. Continue to wait... ; Message is transmitted.

REGISTER 23-16: RXBnSIDL: RECEIVE BUFFER n STANDARD IDENTIFIER REGISTERS,

R-x	R-x	R-x	R-x	R-x	U-0	R-x	R-x	
SID2	SID1	SID0	SRR	EXID	—	EID17	EID16	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown	
bit 7-5	SID2:SID0: S	tandard Identifi	ier bits (if EXI	D = 0)				
	Extended Ide	ntifier bits EID2	0:EID18 (if E	XID = 1).				
bit 4	SRR: Substitu	ute Remote Re	quest bit					
	This bit is alwa	ays '0' when EX	ID = 1 or equa	al to the value o	f RXRTRRO (RE	3XnCON<3>) w	hen EXID = 0.	
bit 3	EXID: Extend	ed Identifier bit	t					
	1 = Received message is an extended data frame, SID10:SID0 are EID28:EID18							
	0 = Received	message is a s	standard data	frame				
bit 2	Unimplemen	ted: Read as '	0'					
bit 1-0	EID17:EID16	Extended Ide	ntifier bits					

LOW BYTE $[0 \le n \le 1]$

REGISTER 23-17: RXBnEIDH: RECEIVE BUFFER n EXTENDED IDENTIFIER REGISTERS, HIGH BYTE [0 \leq n \leq 1]

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 EID15:EID8: Extended Identifier bits

REGISTER 23-18: RXBnEIDL: RECEIVE BUFFER n EXTENDED IDENTIFIER REGISTERS, LOW BYTE [0 \leq n \leq 1]

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 EID7:EID0: Extended Identifier bits

REGISTER 23-59: TXBIE: TRANSMIT BUFFERS INTERRUPT ENABLE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0
—	—	—	TXB2IE ⁽²⁾	TXB1IE ⁽²⁾	TXB0IE ⁽²⁾	—	—
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5	Unimplemented: Read as '0'
bit 4-2	TXB2IE:TXB0IE: Transmit Buffer 2-0 Interrupt Enable bit ⁽²⁾
	1 = Transmit buffer interrupt is enabled
	0 = Transmit buffer interrupt is disabled
bit 1-0	Unimplemented: Read as '0'

Note 1: This register is available in Mode 1 and 2 only.

2: TXBnIE in PIE3 register must be set to get an interrupt.

REGISTER 23-60: BIE0: BUFFER INTERRUPT ENABLE REGISTER 0⁽¹⁾

R/W-0	R/W-0						
B5IE ⁽²⁾	B4IE ⁽²⁾	B3IE ⁽²⁾	B2IE ⁽²⁾	B1IE ⁽²⁾	B0IE ⁽²⁾	RXB1IE ⁽²⁾	RXB0IE ⁽²⁾
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-2 B5IE:B0IE: Programmable Transmit/Receive Buffer 5-0 Interrupt Enable bit⁽²⁾ 1 = Interrupt is enabled 0 = Interrupt is disabled bit 1-0 RXB1IE:RXB0IE: Dedicated Receive Buffer 1-0 Interrupt Enable bit⁽²⁾ 1 = Interrupt is enabled 0 = Interrupt is disabled

Note 1: This register is available in Mode 1 and 2 only.

2: Either TXBnIE or RXBnIE in PIE3 register must be set to get an interrupt.

23.15.5 BUS ACTIVITY WAKE-UP INTERRUPT

When the PIC18F2682/2685/4682/4685 devices are in Sleep mode and the bus activity wake-up interrupt is enabled, an interrupt will be generated and the WAKIF bit will be set when activity is detected on the CAN bus. This interrupt causes the PIC18F2682/2685/4682/ 4685 devices to exit Sleep mode. The interrupt is reset by the MCU, clearing the WAKIF bit.

23.15.6 ERROR INTERRUPT

When the error interrupt is enabled, an interrupt is generated if an overflow condition occurs or if the error state of the transmitter or receiver has changed. The error flags in COMSTAT will indicate one of the following conditions.

23.15.6.1 Receiver Overflow

An overflow condition occurs when the MAB has assembled a valid received message (the message meets the criteria of the acceptance filters) and the receive buffer associated with the filter is not available for loading of a new message. The associated RXBnOVFL bit in the COMSTAT register will be set to indicate the overflow condition. This bit must be cleared by the MCU.

23.15.6.2 Receiver Warning

The receive error counter has reached the MCU warning limit of 96.

23.15.6.3 Transmitter Warning

The transmit error counter has reached the MCU warning limit of 96.

23.15.6.4 Receiver Bus Passive

The receive error counter has exceeded the errorpassive limit of 127 and the device has gone to error-passive state.

23.15.6.5 Transmitter Bus Passive

The transmit error counter has exceeded the errorpassive limit of 127 and the device has gone to error-passive state.

23.15.6.6 Bus-Off

The transmit error counter has exceeded 255 and the device has gone to bus-off state.

23.15.6.7 Interrupt Acknowledge

Interrupts are directly associated with one or more status flags in the PIR register. Interrupts are pending as long as one of the flags is set. Once an interrupt flag is set by the device, the flag can not be reset by the microcontroller until the interrupt condition is removed.

PIC18F2682/2685/4682/4685

ANDWF	AND W with f					
Syntax:	ANDWF	f {,d {,a}}				
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$					
Operation:	(W) .AND. (f) \rightarrow dest					
Status Affected:	N, Z	N, Z				
Encoding:	0001	01da f	fff	ffff		
Description:	The contents of W are ANDed with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read	Process	N.	/rite to		
	register 'f'	Data	des	stination		
Example:	ANDWF	REG, 0,	0			
Before Instruct W REG After Instructio W	ion = 17h = C2h n = 02h					

вс		Branch if	Carry					
Synta	ax:	BC n	BC n					
Oper	ands:	-128 ≤ n ≤ 1	$-128 \le n \le 127$					
Oper	ation:	if Carry bit (PC) + 2 +	if Carry bit is '1' (PC) + 2 + 2n → PC					
Statu	is Affected:	d: None						
Enco	oding:	1110 0010 nnnn nnnn						
Desc	cription:	If the Carry will branch.	e Carry bit is '1', then the program branch.					
		added to th incremente instruction, PC + 2 + 2 two-cycle ir	The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.					
Word	ls:	1	1					
Cycle	es:	1(2)						
Q Cycle Activity:								
lf Ju	imp:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'n'	Proce Data	ess V a	Vrite to PC			
	No	No	No		No			
	operation	operation	operat	ion	operation			
lf No	o Jump:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal	Process		No			
		'n	Data	a	operation			
Example:		HERE	BC	5				
	Before Instruction	ction = ad	dress (1	HERE)				

1; address (HERE + 12) 0; address (HERE + 2)

If Carry PC If Carry PC

= = =

PIC18F2682/2685/4682/4685

SUBLW	W Subtract W from Literal					
Syntax:	;	SUBLW	k			
Operands:	($0 \le k \le 255$				
Operation:	I	$k-(W)\toW$				
Status Affected:	N, OV, C, DC, Z					
Encoding:	ſ	0000	1000	kk}	< k	kkkk
Description:	W is subtracted from the eight-bit literal 'k'. The result is placed in W.				t-bit in W.	
Words:		1				
Cycles:		1				
Q Cycle Activity:						
Q1	0	Q2	Q3			Q4
Decode	lit	Read æral 'k'	Process Data		Write to W	
Example 1:	:	SUBLW	02h			
Before Instruc	tion					
W C	=	01h ?				
After Instructio	n	046				
C VV	=	= 01h = 1 : result is positive				
Z N	=	0 0				
Example 2:	SUBLW 02h					
Before Instruc	tion					
W	=	02h ?				
After Instruction	n	•				
W	=	00h	rocult is z	oro		
Z	=	1,	result is z	eiu		
N Example 2:	=	0	0.01			
Example 3.		SOBTM	U∠n			
Before Instruc	tion =	03h				
Ċ	=	?				
After Instructio	n _	FFh ·	(2's comr	امما	nt)	
C = 0; result is negative						
Z N	=	0 1				

SUE	BWF		Subtract W from f			
Synta	ax:		SUBWF	f {,d {,a}]	•	
Oper	ands:		$0 \leq f \leq 255$			
			d ∈ [0,1] a ∈ [0,1]			
Oper	ation:		(f) – (W)	\rightarrow dest		
Statu	is Affected:		N. OV. C	. DC. Z		
Enco	odina:		0101 11da ffff ffff			
Desc	cription:		Subtract	W from re	aister	ʻf' (2's
			complem result is result is (default).	nent metho stored in V stored bac	d). If /. If 'd k in re	d' is '0', the ' is '1', the egister 'f'
			If 'a' is '0' If 'a' is '1' GPR bar	, the Acces , the BSR i ik (default)	s Bar s use	nk is selected. d to select the
			If 'a' is '0	and the e	xtend	ed instruction
			in Indexe	d Literal O	ffset A	Addressing
			mode wh	enever f ≤	95 (5	Fh). See
			Section Bit-Orier	25.2.3 "By nted Instru	te-Or	iented and s in Indexed
			Literal O	ffset Mod	e" for	details.
Word	ds:		1			
Cycle	es:		1			
QC	ycle Activity:					
	Q1	<u> </u>	Q2	Q3		Q4
	Decode	re	Read	Proce	SS	Write to
F ires						acountation
Exar	<u>npie i.</u> Refore Instruc	tion	SORME.	REG, I	, 0	
	REG	=	3			
	W C	=	2 ?			
	After Instruction	on				
	REG W	=	1			
	Ç	=	1;	result is p	ositiv	e
	Z N	=	0			
<u>Exan</u>	nple 2:		SUBWF	REG, 0	, 0	
	Before Instruc	tion				
	REG W	=	2 2			
	C	=	?			
	REG	on =	2			
	W	=	0			
	z	=	1,	result is z	ero	
N =			0			
Example 3: SUBWF REG, 1, 0						
	REG	=	1			
	W	=	2			
	After Instructio	- on	-			
	REG	=	FFh	; (2's comp	leme	nt)
	C VV	=	2 0 ;	result is n	egativ	/e
	ZN	=	0 1			