

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	80KB (40K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4682-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number PDIP, SOIC	Pin Type	Buffer Type	Description
				PORTA is a bidirectional I/O port.
RA0/AN0	2			
RA0		I/O	TTL	Digital I/O.
AN0		I	Analog	Analog input 0.
RA1/AN1	3			
RA1		I/O	TTL	Digital I/O.
AN1		I	Analog	Analog input 1.
RA2/AN2/VREF-	4			
RA2		I/O	TTL	Digital I/O.
AN2		I	Analog	Analog input 2.
VREF-		I	Analog	A/D reference voltage (low) input.
RA3/AN3/VREF+	5			
RA3		I/O	TTL	Digital I/O.
AN3		I	Analog	Analog input 3.
VREF+		I	Analog	A/D reference voltage (high) input.
RA4/T0CKI	6			
RA4		I/O	TTL	Digital I/O.
TOCKI		I	ST	Timer0 external clock input.
RA5/AN4/SS/HLVDIN	7			
RA5		I/O	TTL	Digital I/O.
AN4		I	Analog	Analog input 4.
SS		I	TTL	SPI slave select input.
HLVDIN		I	Analog	High/Low-Voltage Detect input.
RA6				See the OSC2/CLKO/RA6 pin.
RA7				See the OSC1/CLKI/RA7 pin.
Legend: TTL = TTL cor	npatible in	put		CMOS = CMOS compatible input or output
ST = Schmitt	Trigger in	out with	n CMOS le	evels I = Input
O = Output				P = Power

TABLE 1-2:	PIC18F2682/2685 PINOUT I/O DESCRIPTIONS ((CONTINUED)

ST = Schmitt O = Output = Schmitt Trigger input with CMOS levels

2.0 OSCILLATOR CONFIGURATIONS

2.1 Oscillator Types

PIC18F2682/2685/4682/4685 devices can be operated in ten different oscillator modes. The user can program the Configuration bits, FOSC3:FOSC0, in Configuration Register 1H to select one of these ten modes:

- 1. LP Low-Power Crystal
- 2. XT Crystal/Resonator
- 3. HS High-Speed Crystal/Resonator
- 4. HSPLL High-Speed Crystal/Resonator with PLL enabled
- 5. RC External Resistor/Capacitor with Fosc/4 output on RA6
- 6. RCIO External Resistor/Capacitor with I/O on RA6
- 7. INTIO1 Internal Oscillator with Fosc/4 output on RA6 and I/O on RA7
- 8. INTIO2 Internal Oscillator with I/O on RA6 and RA7
- 9. EC External Clock with Fosc/4 output
- 10. ECIO External Clock with I/O on RA6

2.2 Crystal Oscillator/Ceramic Resonators

In XT, LP, HS or HSPLL Oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 2-1 shows the pin connections.

The oscillator design requires the use of a parallel cut crystal.

Note: Use of a series cut crystal may give a frequency out of the crystal manufacturer's specifications.

FIGURE 2-1:

CRYSTAL/CERAMIC RESONATOR OPERATION (XT, LP, HS OR HSPLL CONFIGURATION)

3: RF varies with the oscillator mode chosen.

TABLE 2-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Typical Capacitor Values Used: Mode OSC1 OSC2 Freq XT 455 kHz 56 pF 56 pF 2.0 MHz 47 pF 47 pF 4.0 MHz 33 pF 33 pF 8.0 MHz 27 pF 27 pF HS 16.0 MHz 22 pF 22 pF

Capacitor values are for design guidance only.

These capacitors were tested with the resonators listed below for basic start-up and operation. **These values are not optimized**.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes on page 26 for additional information.

Resonators Used:								
455 kHz	4.0 MHz							
2.0 MHz	8.0 MHz							
16.0 MHz								

Note: When using resonators with frequencies above 3.5 MHz, the use of HS mode, rather than XT mode, is recommended. HS mode may be used at any VDD for which the controller is rated. If HS is selected, it is possible that the gain of the oscillator will overdrive the resonator. Therefore, a series resistor should be placed between the OSC2 pin and the resonator. As a good starting point, the recommended value of Rs is 330Ω.

3.4.3 RC_IDLE MODE

In RC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator block using the INTOSC multiplexer. This mode allows for controllable power conservation during Idle periods.

From RC_RUN, this mode is entered by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, first set IDLEN, then set the SCS1 bit and execute SLEEP. Although its value is ignored, it is recommended that SCS0 also be cleared; this is to maintain software compatibility with future devices. The INTOSC multiplexer may be used to select a higher clock frequency, by modifying the IRCF bits, before executing the SLEEP instruction. When the clock source is switched to the INTOSC multiplexer, the primary oscillator is shut down and the OSTS bit is cleared.

If the IRCF bits are set to any non-zero value or the INTSRC bit is set, the INTOSC output is enabled. The IOFS bit becomes set, after the INTOSC output becomes stable, after an interval of TIOBST (parameter 39, Table 27-10). Clocks to the peripherals continue while the INTOSC source stabilizes. If the IRCF bits were previously at a non-zero value, or INTSRC was set before the SLEEP instruction was executed and the INTOSC source was already stable, the IOFS bit will remain set. If the IRCF bits and INTSRC are all clear, the INTOSC output will not be enabled, the IOFS bit will remain clear and there will be no indication of the current clock source.

When a wake event occurs, the peripherals continue to be clocked from the INTOSC multiplexer. After a delay of TCSD following the wake event, the CPU begins executing code being clocked by the INTOSC multiplexer. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

3.5 Exiting Idle and Sleep Modes

An exit from Sleep mode or any of the Idle modes is triggered by an interrupt, a Reset or a WDT time-out. This section discusses the triggers that cause exits from power-managed modes. The clocking subsystem actions are discussed in each of the power-managed modes (see Section 3.2 "Run Modes", Section 3.3 "Sleep Mode" and Section 3.4 "Idle Modes").

3.5.1 EXIT BY INTERRUPT

Any of the available interrupt sources can cause the device to exit from an Idle mode or the Sleep mode to a Run mode. To enable this functionality, an interrupt source must be enabled by setting its enable bit in one of the INTCON or PIE registers. The exit sequence is initiated when the corresponding interrupt flag bit is set.

On all exits from Idle or Sleep modes by interrupt, code execution branches to the interrupt vector if the GIE/ GIEH bit (INTCON<7>) is set. Otherwise, code execution continues or resumes without branching (see Section 9.0 "Interrupts").

A fixed delay of interval TCSD following the wake event is required when leaving the Sleep and Idle modes. This delay is required for the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

3.5.2 EXIT BY WDT TIME-OUT

A WDT time-out will cause different actions depending on which power-managed mode the device is in when the time-out occurs.

If the device is not executing code (all Idle modes and Sleep mode), the time-out will result in an exit from the power-managed mode (see Section 3.2 "Run Modes" and Section 3.3 "Sleep Mode"). If the device is executing code (all Run modes), the time-out will result in a WDT Reset (see Section 24.2 "Watchdog Timer (WDT)").

The WDT timer and postscaler are cleared by executing a SLEEP or CLRWDT instruction, the loss of a currently selected clock source (if the Fail-Safe Clock Monitor is enabled) and modifying the IRCF bits in the OSCCON register if the internal oscillator block is the device clock source.

3.5.3 EXIT BY RESET

Normally, the device is held in Reset by the Oscillator Start-up Timer (OST) until the primary clock becomes ready. At that time, the OSTS bit is set and the device begins executing code. If the internal oscillator block is the new clock source, the IOFS bit is set instead.

The exit delay time from Reset to the start of code execution depends on both the clock sources before and after the wake-up and the type of oscillator if the new clock source is the primary clock. Exit delays are summarized in Table 3-2.

Code execution can begin before the primary clock becomes ready. If either the Two-Speed Start-up (see **Section 24.3 "Two-Speed Start-up"**) or Fail-Safe Clock Monitor (see **Section 24.4 "Fail-Safe Clock Monitor**") is enabled, the device may begin execution as soon as the Reset source has cleared. Execution is clocked by the INTOSC multiplexer driven by the internal oscillator block. Execution is clocked by the internal oscillator block until either the primary clock becomes ready or a power-managed mode is entered before the primary clock becomes ready; the primary clock is then shut down.

PIC18F2682/2685/4682/4685

TADLE 4-4.		IALIZ	AIIOr									
Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt							
PIR2	2682	2685	4682	4685	00-0 0000	00-0 0000	uu-u uuuu (1)					
	2682	2685	4682	4685	00 000-	00 000-	uu uuu-(1)					
PIE2	2682	2685	4682	4685	00-0 0000	00-0 0000	uu-u uuuu					
	2682	2685	4682	4685	00 000-	00 000-	uu uuu-					
IPR1	2682	2685	4682	4685	1111 1111	1111 1111	սսսս սսսս					
	2682	2685	4682	4685	-111 1111	-111 1111	-uuu uuuu					
PIR1	2682	2685	4682	4685	0000 0000	0000 0000	uuuu uuuu (1)					
	2682	2685	4682	4685	-000 0000	-000 0000	-uuu uuuu					
PIE1	2682	2685	4682	4685	0000 0000	0000 0000	นนนน นนนน					
	2682	2685	4682	4685	-000 0000	-000 0000	-uuu uuuu					
OSCTUNE	2682	2685	4682	4685	0q-0 0000	0q-0 0000	uu-u uuuu					
TRISE	2682	2685	4682	4685	0000 -111	0000 -111	uuuu -uuu					
TRISD	2682	2685	4682	4685	1111 1111	1111 1111	սսսս սսսս					
TRISC	2682	2685	4682	4685	1111 1111	1111 1111	սսսս սսսս					
TRISB	2682	2685	4682	4685	1111 1111	1111 1111	սսսս սսսս					
TRISA ⁽⁵⁾	2682	2685	4682	4685	1111 1111 (5)	1111 1111 (5)	uuuu uuuu ⁽⁵⁾					
LATE	2682	2685	4682	4685	xxx	uuu	uuu					
LATD	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս					
LATC	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս					
LATB	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս					
LATA ⁽⁵⁾	2682	2685	4682	4685	xxxx xxxx (5)	uuuu uuuu ⁽⁵⁾	uuuu uuuu ⁽⁵⁾					
PORTE	2682	2685	4682	4685	x000	x000	uuuu					
PORTD	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս					
PORTC	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս					
PORTB	2682	2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս					
PORTA ⁽⁵⁾	2682	2685	4682	4685	xx0x 0000 (5)	uu0u 0000 (5)	uuuu uuuu ⁽⁵⁾					
ECANCON	2682	2685	4682	4685	0001 0000	0001 0000	นนนน นนนน					
TXERRCNT	2682	2685	4682	4685	0000 0000	0000 0000	սսսս սսսս					
RXERRCNT	2682	2685	4682	4685	0000 0000	0000 0000	นนนน นนนน					
COMSTAT	2682	2685	4682	4685	0000 0000	0000 0000	սսսս սսսս					
CIOCON	2682	2685	4682	4685	00	00	uu					

TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: This register reads all '0's until the ECAN[™] technology is set up in Mode 1 or Mode 2.

7.6 Operation During Code-Protect

Data EEPROM memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if code protection is enabled.

The microcontroller itself can both read and write to the internal Data EEPROM, regardless of the state of the code-protect Configuration bit. Refer to Section 24.0 "Special Features of the CPU" for additional information.

7.7 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT, parameter 33).

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

EVAMPLE 7 2.

7.8 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). Frequently changing values will typically be updated more often than specification D124. If this is not the case, an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

A simple data EEPROM refresh routine is shown in Example 7-3.

Note: If data EEPROM is only used to store constants and/or data that changes rarely, an array refresh is likely not required. See specification D124.

EARIVIFLE /-3.	DATA EEPKOW KEFKESH KOUTINE								
GLDE			01			0			

DATA EEDDOM DEEDEQU DOUTINE

CLRF	LLADK	; Start at address U
CLRF	EEADRH	;
BCF	EECON1, CFGS	; Set for memory
BCF	EECON1, EEPGD	; Set for Data EEPROM
BCF	INTCON, GIE	; Disable interrupts
BSF	EECON1, WREN	; Enable writes
Loop		; Loop to refresh array
BSF	EECON1, RD	; Read current address
MOVLW	55h	;
MOVWF	EECON2	; Write 55h
MOVLW	0AAh	;
MOVWF	EECON2	; Write OAAh
BSF	EECON1, WR	; Set WR bit to begin write
BTFSC	EECON1, WR	; Wait for write to complete
BRA	\$-2	
INCFSZ	EEADR, F	; Increment address
BRA	LOOP	; Not zero, do it again
INCFSZ	EEADRH, F	; Increment the high address
BRA	LOOP	; Not zero, do it again
BCF	EECON1, WREN	; Disable writes
BSF	INTCON, GIE	; Enable interrupts
BRA INCFSZ BRA BCF BSF	LOOP EEADRH, F LOOP EECON1, WREN INTCON, GIE	<pre>; Not zero, do it again ; Increment the high address ; Not zero, do it again ; Disable writes ; Enable interrupts</pre>

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page		
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	54		
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	LATA Data	_ATA Data Output Register							
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA Da	PORTA Data Direction Register							
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	52		
CMCON ⁽²⁾	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	53		
CVRCON ⁽²⁾	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	53		

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTA.

Note 1: RA7:RA6 and their associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as '0'.

2: These registers are unimplemented on PIC18F2682/2685 devices.

16.0 ENHANCED CAPTURE/ COMPARE/PWM (ECCP1) MODULE

Note: The ECCP1 module is implemented only in PIC18F4682/4685 (40/44-pin) devices.

In PIC18F4682/4685 devices, ECCP1 is implemented as a standard CCP1 module with Enhanced PWM capabilities. These include the provision for 2 or 4 output channels, user-selectable polarity, dead-band control and automatic shutdown and restart. The enhanced features are discussed in detail in **Section 16.4 "Enhanced PWM Mode"**. Capture, Compare and single output PWM functions of the ECCP1 module are the same as described for the standard CCP1 module.

The control register for the Enhanced CCP1 module is shown in Register 16-1. It differs from the CCP1CON register in the PIC18F2682/2685 devices in that the two Most Significant bits are implemented to control PWM functionality.

REGISTER 16-1: ECCP1CON: ENHANCED CAPTURE/COMPARE/PWM CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EPWM1M1	EPWM1M0	EDC1B1	EDC1B0	ECCP1M3	ECCP1M2	ECCP1M1	ECCP1M0
bit 7							bit 0

Legend:										
R = Readable b	bit	W = Writable bit	U = Unimplemented bi	t, read as '0'						
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 7-6	EPWM1M1:E	PWM1M0: Enhanced PW	M Output Configuration bit	s						
	If ECCP1M3:E	<u>ECCP1M2 = 00, 01, 10:</u> igned as Capture/Compar	e input/output; P1B, P1C,	P1D assigned as port pins						
	It ECCP1M3:ECCP1M2 = 11: 00 = Single output: P1A modulated; P1B, P1C, P1D assigned as port pins 01 = Full-bridge output forward: P1D modulated; P1A active; P1B, P1C inactive 10 = Half-bridge output: P1A, P1B modulated with dead-band control; P1C, P1D assigned as port 11 = Full-bridge output reverse: P1B modulated; P1C active; P1A, P1D inactive EDC1B1:EDC1B0: ECCP1 Module PWM Duty Cycle bit 1 and bit 0									
bit 5-4	EDC1B1:EDC Capture mode Unused.	: 1B0 : ECCP1 Module PW <u>::</u>	M Duty Cycle bit 1 and bit	0						
	Compare mod Unused. <u>PWM mode:</u> These bits are	the two LSbs of the 10-bi	t PWM duty cycle. The eig	ht MSbs of the duty cycle are found						
hit 2 0	in ECCPR1L.	CD1M0: Enhanced CCD	Mada Salaat hita							
DIL 3-0	0000 = Captu	re/Compare/PWM off (res	sets ECCP1 module)							
	0010 = Comp	ved pare mode; toggle output o rved	on match							
	0100 = Captu 0101 = Captu 0110 = Captu 0111 = Captu	ire mode; every falling edg ire mode; every rising edg ire mode; every 4th rising ire mode; every 16th rising	ge e edge g edge							
	1000 = Comp 1001 = Comp 1010 = Comp 1011 = Comp	are mode; initialize ECCF are mode; initialize ECCP pare mode; generate softw pare mode; trigger special	¹ 1 pin low; set output on co 1 pin high; clear output on co rare interrupt only; ECCP1 event (ECCP1 resets TMF	ompare match (set ECCP1IF) compare match (set ECCP1IF) pin reverts to I/O state R1 or TMR3, sets ECCP1IF bit and						
	starts 1100 = PWM 1101 = PWM 1110 = PWM 1111 = PWM	the A/D conversion on EC mode; P1A, P1C active-h mode; P1A, P1C active-h mode; P1A, P1C active-la mode; P1A, P1C active-la	CCP1 match) igh; P1B, P1D active-high igh; P1B, P1D active-low ow; P1B, P1D active-high ow; P1B, P1D active-low							

17.4.12 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge sequence enable bit. ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 17-23).

17.4.12.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

17.4.13 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2<2>). At the end of a receive/ transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to 0. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 17-24).

17.4.13.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 17-23: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 17-24: STOP CONDITION RECEIVE OR TRANSMIT MODE

	SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD	Fosc	= 40.000) MHz	Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	_						_			_			
1.2	—	—	—	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103	
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51	
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12	
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	—	_	_	
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_	
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	_	—	—	

TABLE 18-3: BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0										
BAUD	Fosc = 4.000 MHz			Fos	c = 2.000	MHz	Fosc = 1.000 MHz					
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)			
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51			
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12			
2.4	2.404	0.16	25	2.403	-0.16	12	_	_	_			
9.6	8.929	-6.99	6	_	_	_	_	_	_			
19.2	20.833	8.51	2	_	_	_	_	_	_			
57.6	62.500	8.51	0	_	_	_	_	_	_			
115.2	62.500	-45.75	0	—	—	_	_	—				

					SYNC	= 0, BRGH	i = 1, BRG	616 = 0				
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	—	_			_	_	_	_	_	_	_	_
1.2	—	—	—	_	_	_	—	—	—	—	—	—
2.4	—	_	_	—	_	_	2.441	1.73	255	2.403	-0.16	207
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_

		SYNC = 0, BRGH = 1, BRG16 = 0										
BAUD	Fosc = 4.000 MHz			Fos	c = 2.000	MHz	Fosc = 1.000 MHz					
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)			
0.3		_	_		_	_	0.300	-0.16	207			
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51			
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25			
9.6	9.615	0.16	25	9.615	-0.16	12	—	—	—			
19.2	19.231	0.16	12	—	—	—	—	—	—			
57.6	62.500	8.51	3	—	—	—	—	—	—			
115.2	125.000	8.51	1	—	_	—	_	_	—			

19.6 A/D Conversions

Figure 19-3 shows the operation of the A/D converter after the GO/DONE bit has been set and the ACQT2:ACQT0 bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 19-4 shows the operation of the A/D converter after the GO/DONE bit has been set, the ACQT2:ACQT0 bits are set to '010' and a 4 TAD acquisition time is selected before the conversion starts. Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers).

After the A/D conversion is completed or aborted, a 2 TAD wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

FIGURE 19-3: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 19-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

Mode 0	R/C-0	R/C-0	R-0	R-0	R-0	R-0	R-0	R-0			
inoue e	RXB00VFL	RXB10VFL	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN			
		D/0.0	D 0		D 0	D 0					
Mode 1	R/C-0		R-0	R-0	R-0						
	—	RXBNOVFL	I XBU	TXBP	RXBP	TXWARN	RXWARN	EWARN			
	R/C-0 R/C-0		R-0	R-0	R-0	R-0	R-0	R-0			
Mode 2	FIFOFMPTY	RXBnOVFI	TXBO	TXBP	RXBP	TXWARN	RXWARN	FWARN			
	bit 7							bit 0			
Legend:											
R = Read	lable bit		C = Clearabl	le bit	U = Unimple	emented bit, r	ead as '0'				
-n = Value	e at POR		'1' = Bit is se	et	'0' = Bit is c	leared	x = Bit is unk	nown			
bit 7	<u>Mode 0:</u> RXB0OVFL: 1 = Receive	Receive Buffe Buffer 0 overfl	er 0 Overflow owed	bit							
	 0 = Receive Buffer 0 has not overflowed <u>Mode 1:</u> Unimplemented: Read as '0' <u>Mode 2:</u> FIFOEMPTY: FIFO Not Empty bit 1 = Receive FIFO is not empty 										
bit 6	Mode 0: RXB10VFL: 1 = Receive 0 = Receive Mode 1, 2: RXBn0VFL: 1 = Receive 0 = Receive	Receive Buffe Buffer 1 overfl Buffer 1 has n Receive Buffe Buffer n has o Buffer n has n	er 1 Overflow owed ot overflowed er n Overflow verflowed ot overflowed	bit bit							
bit 5	TXBO: Trans	smitter Bus-Of	f bit								
	1 = Transmit 0 = Transmit	error counter error counter	> 255 ≤ 255								
bit 4	TXBP: Trans 1 = Transmit 0 = Transmit	mitter Bus Pa error counter error counter	ssive bit > 127 ≤ 127								
bit 3	RXBP: Receive of 1 = Receive of 0 = Receive of	iver Bus Pass error counter a error counter a	ive bit > 127 ≤ 127								
bit 2	TXWARN: Transmitter Warning bit 1 = Transmit error counter > 95 0 = Transmit error counter ≤ 95										
bit 1	RXWARN: Receiver Warning bit $1 = 127 \ge$ Receive error counter > 95 $0 =$ Receive error counter ≤ 95										
bit 0	EWARN: Erro This bit is a fl 1 = The RXW	or Warning bit lag of the RXV VARN or the T	· VARN and TX XWARN bits	WARN bits. are set							

REGISTER 23-4: COMSTAT: COMMUNICATION STATUS REGISTER

EXAMPLE 23-3: TRANSMITTING A CAN MESSAGE USING BANKED METHOD

; Need to transmit Standard Identifier message 123h using TXBO buffer. ; To successfully transmit, CAN module must be either in Normal or Loopback mode. ; TXBO buffer is not in access bank. And since we want banked method, we need to make sure ; that correct bank is selected. BANKSEL TXBOCON ; One BANKSEL in beginning will make sure that we are ; in correct bank for rest of the buffer access. ; Now load transmit data into TXB0 buffer. MOVLW MY_DATA_BYTE1 ; Load first data byte into buffer ; Compiler will automatically set "BANKED" bit MOVWF TXB0D0 ; Load rest of data bytes - up to 8 bytes into TXBO buffer. . . . ; Load message identifier MOVLW 60H ; Load SID2:SID0, EXIDE = 0 MOVWF TXB0SIDL MOVLW 24H ; Load SID10:SID3 MOVWF TXB0SIDH ; No need to load TXB0EIDL:TXB0EIDH, as we are transmitting Standard Identifier Message only. ; Now that all data bytes are loaded, mark it for transmission. MOVLW B'00001000' ; Normal priority; Request transmission MOVWF TXB0CON ; If required, wait for message to get transmitted BTFSC TXB0CON, TXREQ ; Is it transmitted? BRA \$-2 ; No. Continue to wait... ; Message is transmitted.

PIC18F2682/2685/4682/4685

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FIL11_1	FIL11_0	FIL10_1	FIL10_0	FIL9_1	FIL9_0	FIL8_1	FIL8_0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-6	FIL11_1:FIL1	1_0: Filter 11 \$	Select bits 1 a	nd 0			
	11 = No masł	k					
	10 = Filter 15	and Martin 1					
	01 = Accepta	nce Mask I					
bit 5-4	FII 10 1.FII 1	0 0 . Filter 10	Select hits 1 a	nd 0			
	11 = No mas	k					
	10 = Filter 15						
	01 = Accepta	nce Mask 1					
	00 = Accepta	nce Mask 0					
bit 3-2	FIL9_1:FIL9_	0: Filter 9 Sele	ect bits 1 and 0)			
	11 = No mas	k					
	10 = Filter 15	nco Mack 1					
	01 = Accepta 00 = Accepta	nce Mask 0					
bit 1-0	FIL8 1:FIL8	0: Filter 8 Sele	ect bits 1 and ()			
	11 = No mas	<u>.</u>		-			
	10 = Filter 15						
	01 = Accepta	nce Mask 1					
	00 = Accepta	nce Mask 0					

REGISTER 23-50: MSEL2: MASK SELECT REGISTER 2⁽¹⁾

Note 1: This register is available in Mode 1 and 2 only.

Address ⁽¹⁾	Name	Address	Name	Address	Name	Address	Name
EFFh	(4)	EDFh	(4)	EBFh	(4)	E9Fh	(4)
EFEh	(4)	EDEh	(4)	EBEh	(4)	E9Eh	(4)
EFDh	(4)	EDDh	(4)	EBDh	(4)	E9Dh	(4)
EFCh	(4)	EDCh	(4)	EBCh	(4)	E9Ch	(4)
EFBh	(4)	EDBh	(4)	EBBh	(4)	E9Bh	(4)
EFAh	(4)	EDAh	(4)	EBAh	(4)	E9Ah	(4)
EF9h	(4)	ED9h	(4)	EB9h	(4)	E99h	(4)
EF8h	(4)	ED8h	(4)	EB8h	(4)	E98h	(4)
EF7h	(4)	ED7h	(4)	EB7h	(4)	E97h	(4)
EF6h	(4)	ED6h	(4)	EB6h	(4)	E96h	(4)
EF5h	(4)	ED5h	(4)	EB5h	(4)	E95h	(4)
EF4h	(4)	ED4h	(4)	EB4h	(4)	E94h	(4)
EF3h	(4)	ED3h	(4)	EB3h	(4)	E93h	(4)
EF2h	(4)	ED2h	(4)	EB2h	(4)	E92h	(4)
EF1h	(4)	ED1h	(4)	EB1h	(4)	E91h	(4)
EF0h	(4)	ED0h	(4)	EB0h	(4)	E90h	(4)
EEFh	(4)	ECFh	(4)	EAFh	(4)	E8Fh	(4)
EEEh	(4)	ECEh	(4)	EAEh	(4)	E8Eh	(4)
EEDh	(4)	ECDh	(4)	EADh	(4)	E8Dh	(4)
EECh	(4)	ECCh	(4)	EACh	(4)	E8Ch	(4)
EEBh	(4)	ECBh	(4)	EABh	(4)	E8Bh	(4)
EEAh	(4)	ECAh	(4)	EAAh	(4)	E8Ah	(4)
EE9h	(4)	EC9h	(4)	EA9h	(4)	E89h	(4)
EE8h	(4)	EC8h	(4)	EA8h	(4)	E88h	(4)
EE7h	(4)	EC7h	(4)	EA7h	(4)	E87h	(4)
EE6h	(4)	EC6h	(4)	EA6h	(4)	E86h	(4)
EE5h	(4)	EC5h	(4)	EA5h	(4)	E85h	(4)
EE4h	(4)	EC4h	(4)	EA4h	(4)	E84h	(4)
EE3h	(4)	EC3h	(4)	EA3h	(4)	E83h	(4)
EE2h	(4)	EC2h	(4)	EA2h	(4)	E82h	(4)
EE1h	(4)	EC1h	(4)	EA1h	(4)	E81h	(4)
EE0h	(4)	EC0h	(4)	EA0h	(4)	E80h	(4)

TABLE 23-1: CAN CONTROLLER REGISTER MAP (CONTINUED)

Note 1: Shaded registers are available in Access Bank low area, while the rest are available in Bank 15.

2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the controller register due to the Microchip header file requirement.

3: These registers are not CAN registers.

4: Unimplemented registers are read as '0'.

REGISTER 24-12: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F2682/2685/4682/4685

R	R	R	R	R	R	R	R	
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	
bit 7							bit 0	
Legend:								
R = Read-only bit P = Programmable bit U = Unimplemented bit, read as '0'								
-n = Value whe	n device is unp	programmed		u = Unchange	ed from program	nmed state		
bit 7-5	DEV2:DEV0:	Device ID bits						
	000 = PIC18	-2682						
	001 = PIC18F	-2685						
010 = PIC18F4682								
	011 = PIC18F	-4685						
bit 4-0	REV3:REV0:	Revision ID bit	s					
	These bits are	e used to indica	ate the device	revision.				

REGISTER 24-13: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F2682/2685/4682/4685

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7			•				bit 0

Legend:		
R = Read-only bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unp	programmed	u = Unchanged from programmed state

bit 7-0 DEV10:DEV3: Device ID bits These bits are used with the DEV2:DEV0 bits in Device ID Register 1 to identify the part number. 0010 0111 = PIC18F2682/2685/4682/4685 devices

Note 1: These values for DEV10:DEV3 may be shared with other devices. The specific device is always identified by using the entire DEV10:DEV0 bit sequence.

FIGURE 24-8: EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED

27.2 DC Characteristics: Power-Down and Supply Current PIC18F2682/2685/4682/4685 (Industrial) PIC18LF2682/2685/4682/4685 (Industrial) (Continued)

PIC18LF (Indu	2682/2685/4682/4685 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
PIC18F2 (Indu	682/2685/4682/4685 strial, Extended)	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$									
Param No.	Device	Typ Max Units Conditions									
	Supply Current (IDD) ^(2,3)										
	PIC18LF268X/468X	15	36	μA	-40°C						
		15	36	μA	+25°C	VDD = 2.0V					
		15	36	μA	+85°C						
	PIC18LF268X/468X	40	100	μA	-40°C						
		35	100	μA	+25°C	VDD = 3.0V	Fosc = 31 kHz				
		30	100	μA	+85°C		Internal oscillator source)				
	All devices	105	200	μA	-40°C		,				
		90	200	μA	+25°C						
		80	200	μA	+85°C	VDD - 5.0V					
	Extended devices only	80	200	μA	+125°C						
	PIC18LF268X/468X	0.32	1	mA	-40°C						
		0.33	1	mA	+25°C	VDD = 2.0V					
		0.33	1	mA	+85°C						
	PIC18LF268X/468X	0.6	1.6	mA	-40°C						
		0.55	1.6	mA	+25°C	VDD = 3.0V	Fosc = 1 MHz				
		0.6	1.6	mA	+85°C		Internal oscillator source)				
	All devices	1.1	3	mA	-40°C						
		1.1	3	mA	+25°C						
		1	3	mA	+85°C	VDD = 5.0V					
	Extended devices only	1	3	mA	+125°C						
	PIC18LF268X/468X	0.8	2.2	mA	-40°C						
		0.8	2.2	mA	+25°C	VDD = 2.0V					
		0.8	2.2	mA	+85°C						
	PIC18LF268X/468X	1.3	3	mA	-40°C						
		1.3	3	mA	+25°C	VDD = 3.0V	FOSC = 4 MHz				
		1.3	3	mA	+85°C		Internal oscillator source)				
	All devices	2.5	5.3	mA	-40°C		, ,				
		2.5	5.3	mA	+25°C	Vn = 5 0V					
		2.5	5.3	mA	+85°C	VDD - 5.0V					
	Extended devices only	2.5	8	mA	+125°C						

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- <u>OSC1</u> = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** For RC oscillator configurations, current through RExT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2RExT (mA) with RExT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

27.4 AC (Timing) Characteristics

27.4.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created using one of the following formats:

1. TppS2ppS	3	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase le	etters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKO	rd	RD
cs	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T13CKI
mc	MCLR	wr	WR
Uppercase le	etters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (High-Impedance)	V	Valid
L	Low	Z	High-Impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:s⊤ (I ² C s	specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		

Param. No.	Symbol	Charac	cteristic	Min	Max	Units	Conditions
100	Тнідн	Clock High	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
		Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
102	TR	SDA and SCL	100 kHz mode		1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	300	ns	
103	TF	SDA and SCL	100 kHz mode	_	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	100	ns	
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—	ms	Repeated Start
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	condition
91	THD:STA	STA Start Condition 100 kl		2(Tosc)(BRG + 1)	_	ms	After this period, the first
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	—	ms	clock pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
106	THD:DAT	Data Input	100 kHz mode	0	_	ns	
		Hold Time	400 kHz mode	0	0.9	ms	
107	TSU:DAT	Data Input	100 kHz mode	250	_	ns	(Note 2)
		Setup Time	400 kHz mode	100	_	ns	
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
109	ΤΑΑ	Output Valid	100 kHz mode	_	3500	ns	
		from Clock	400 kHz mode	—	1000	ns	
			1 MHz mode ⁽¹⁾	—	_	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	ms	Time the bus must be free
			400 kHz mode	1.3	—	ms	before a new transmission can start
D102	Св	Bus Capacitive L	oading		400	pF	

Note 1: Maximum pin capacitance = 10 pF for all I²C pins.

2: A Fast mode I²C[™] bus device can be used in a Standard mode I²C bus system, but parameter 107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, parameter 102 + parameter 107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCL line is released.

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

Not Applicable

APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a Baseline device (i.e., PIC16C5X) to an Enhanced MCU device (i.e., PIC18FXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available