

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	80KB (40K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25К х 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4682-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC18F2682
- PIC18F2685
- PIC18F4682
- PIC18F4685

This family of devices offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance, Enhanced Flash program memory. In addition to these features, the PIC18F2682/2685/4682/4685 family introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power sensitive applications.

1.1 New Core Features

1.1.1 nanoWatt TECHNOLOGY

All of the devices in the PIC18F2682/2685/4682/4685 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

- Alternate Run Modes: By clocking the controller from the Timer1 source or the internal oscillator block, power consumption during code execution can be reduced by as much as 90%.
- Multiple Idle Modes: The controller can also run with its CPU core disabled but the peripherals still active. In these states, power consumption can be reduced even further, to as little as 4% of normal operation requirements.
- On-the-Fly Mode Switching: The powermanaged modes are invoked by user code during operation, allowing the user to incorporate power-saving ideas into their application's software design.
- Lower Consumption in Key Modules: The power requirements for both Timer1 and the Watchdog Timer have been reduced by up to 80%, with typical values of 1.1 and 2.1 μA, respectively.
- Extended Instruction Set: In addition to the standard 75 instructions of the PIC18 instruction set, PIC18F2682/2685/4682/4685 devices also provide an optional extension to the core CPU functionality. The added features include eight additional instructions that augment indirect and indexed addressing operations and the implementation of Indexed Literal Offset Addressing mode for many of the standard PIC18 instructions.

1.1.2 MULTIPLE OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC18F2682/2685/4682/4685 family offer ten different oscillator options, allowing users a wide range of choices in developing application hardware. These options include:

- Four Crystal modes, using crystals or ceramic resonators
- Two External Clock modes, offering the option of using two pins (oscillator input and a divide-by-4 clock output) or one pin (oscillator input, with the second pin reassigned as general I/O)
- Two External RC Oscillator modes with the same pin options as the External Clock modes
- An internal oscillator block which provides an 8 MHz clock (±2% accuracy) and an INTRC source (approximately 31 kHz, stable over temperature and VDD), as well as a range of 6 user selectable clock frequencies, between 125 kHz to 4 MHz, for a total of 8 clock frequencies. This option frees the two oscillator pins for use as additional general purpose I/O.
- A Phase Lock Loop (PLL) frequency multiplier, available to both the High-Speed Crystal and Internal Oscillator modes, which allows clock speeds of up to 40 MHz. Used with the internal oscillator, the PLL gives users a complete selection of clock speeds, from 31 kHz to 32 MHz – all without using an external crystal or clock circuit.

Besides its availability as a clock source, the internal oscillator block provides a stable reference source that gives the family additional features for robust operation:

- Fail-Safe Clock Monitor: This option constantly monitors the main clock source against a reference signal provided by the internal oscillator. If a clock failure occurs, the controller is switched to the internal oscillator block, allowing for continued low-speed operation or a safe application shutdown.
- Two-Speed Start-up: This option allows the internal oscillator to serve as the clock source from Power-on Reset, or wake-up from Sleep mode, until the primary clock source is available.

PIC18F2682/2685 (28-PIN) BLOCK DIAGRAM FIGURE 1-1:

2: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O. Refer to Section 2.0 "Oscillator Configurations" for additional information.

5.3.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy the top half of Bank 15 (F80h to FFFh). A list of these registers is given in Table 5-1 and Table 5-2.

The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the

peripheral functions. The reset and interrupt registers are described in their respective chapters, while the ALU's STATUS register is described later in this section. Registers related to the operation of a peripheral feature are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's.

TABLE 5-1:	SPECIAL FUNCTION REGISTER MAP FOR
	PIC18F2682/2685/4682/4685 DEVICES

Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽³⁾	FBFh	CCPR1H	F9Fh	IPR1
FFEh	TOSH	FDEh	POSTINC2 ⁽³⁾	FBEh	CCPR1L	F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2 ⁽³⁾	FBDh	CCP1CON	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2 ⁽³⁾	FBCh	ECCPR1H ⁽¹⁾	F9Ch	—
FFBh	PCLATU	FDBh	PLUSW2 ⁽³⁾	FBBh	ECCPR1L ⁽¹⁾	F9Bh	OSCTUNE
FFAh	PCLATH	FDAh	FSR2H	FBAh	ECCP1CON ⁽¹⁾	F9Ah	—
FF9h	PCL	FD9h	FSR2L	FB9h	_	F99h	_
FF8h	TBLPTRU	FD8h	STATUS	FB8h	BAUDCON	F98h	_
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	ECCP1DEL	F97h	—
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	ECCP1AS ⁽¹⁾	F96h	TRISE ⁽¹⁾
FF5h	TABLAT	FD5h	T0CON	FB5h	CVRCON ⁽¹⁾	F95h	TRISD ⁽¹⁾
FF4h	PRODH	FD4h	—	FB4h	CMCON	F94h	TRISC
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	HLVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	—
FF0h	INTCON3	FD0h	RCON	FB0h	SPBRGH	F90h	_
FEFh	INDF0 ⁽³⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh	
FEEh	POSTINC0 ⁽³⁾	FCEh	TMR1L	FAEh	RCREG	F8Eh	_
FEDh	POSTDEC0 ⁽³⁾	FCDh	T1CON	FADh	TXREG	F8Dh	LATE ⁽¹⁾
FECh	PREINC0 ⁽³⁾	FCCh	TMR2	FACh	TXSTA	F8Ch	LATD ⁽¹⁾
FEBh	PLUSW0 ⁽³⁾	FCBh	PR2	FABh	RCSTA	F8Bh	LATC
FEAh	FSR0H	FCAh	T2CON	FAAh	EEADRH	F8Ah	LATB
FE9h	FSR0L	FC9h	SSPBUF	FA9h	EEADR	F89h	LATA
FE8h	WREG	FC8h	SSPADD	FA8h	EEDATA	F88h	—
FE7h	INDF1 ⁽³⁾	FC7h	SSPSTAT	FA7h	EECON2 ⁽³⁾	F87h	
FE6h	POSTINC1 ⁽³⁾	FC6h	SSPCON1	FA6h	EECON1	F86h	—
FE5h	POSTDEC1 ⁽³⁾	FC5h	SSPCON2	FA5h	IPR3	F85h	—
FE4h	PREINC1 ⁽³⁾	FC4h	ADRESH	FA4h	PIR3	F84h	PORTE ⁽¹⁾
FE3h	PLUSW1 ⁽³⁾	FC3h	ADRESL	FA3h	PIE3	F83h	PORTD ⁽¹⁾
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA

Note 1: Registers available only on PIC18F4X8X devices; otherwise, the registers read as '0'.

2: When any TX_ENn bit in RX_TX_SELn is set, then the corresponding bit in this register has transmit properties.

3: This is not a physical register.

6.5 Writing to Flash Program Memory

The minimum programming block is 32 words or 64 bytes. Word or byte programming is not supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. There are 64 holding registers used by the table writes for programming.

Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction may need to be executed 64 times for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. At the end of updating the 64 holding registers, the EECON1 register must be written to in order to start the programming operation with a long write. The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Note: The default value of the holding registers on device Resets and after write operations is FFh. A write of FFh to a holding register does not modify that byte. This means that individual bytes of program memory may be modified, provided that the change does not attempt to change any bit from a '0' to a '1'. When modifying individual bytes, it is not necessary to load all 64 holding registers before executing a write operation.

6.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 64 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer register with address being erased.
- 4. Execute the Row Erase procedure.
- 5. Load Table Pointer register with address of first byte being written.
- 6. Write the 64 bytes into the holding registers with auto-increment.
- 7. Set the EECON1 register for the write operation:
 - set EEPGD bit to point to program memory;
 - · clear the CFGS bit to access program memory;
 - set WREN to enable byte writes.

- 8. Disable interrupts.
- 9. Write 55h to EECON2.
- 10. Write 0AAh to EECON2.
- 11. Set the WR bit. This will begin the write cycle.
- 12. The CPU will stall for duration of the write (about 2 ms using internal timer).
- 13. Re-enable interrupts.
- 14. Verify the memory (table read).

This procedure will require about 18 ms to update one row of 64 bytes of memory. An example of the required code is given in Example 6-3.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the 64 bytes in the holding register.

9.5 RCON Register

The RCON register contains flag bits which are used to determine the cause of the last Reset or wake-up from Idle or Sleep modes. RCON also contains the IPEN bit which enables interrupt priorities.

REGISTER 9-13: RCON: RESET CONTROL REGISTER

R/W-0	R/W-1 ⁽¹⁾	U-0	R/W-1	R-1	R-1	R/W-0 ⁽²⁾	R/W-0
IPEN	SBOREN	_	RI	TO	PD	POR	BOR
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IPEN: Interrupt Priority Enable bit	
	1 = Enable priority levels on interrupts	
	0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)	
bit 6	SBOREN: BOR Software Enable bit ⁽¹⁾	
	For details of bit operation, see Register 4-1.	
bit 5	Unimplemented: Read as '0'	
bit 4	RI: RESET Instruction Flag bit	
	For details of bit operation, see Register 4-1.	
bit 3	TO: Watchdog Time-out Flag bit	
	For details of bit operation, see Register 4-1.	
bit 2	PD: Power-Down Detection Flag bit	
	For details of bit operation, see Register 4-1.	
bit 1	POR : Power-on Reset Status bit ⁽²⁾	
	For details of bit operation, see Register 4-1.	
bit 0	BOR: Brown-out Reset Status bit	
	For details of bit operation, see Register 4-1.	
N		

- **Note 1:** If SBOREN is enabled, its Reset state is '1'; otherwise, it is '0'. **2:** The actual Reset value of POR is determined by the type of device Reset. See Reset
 - 2: The actual Reset value of POR is determined by the type of device Reset. See Register 4-1 for additional information.

11.1 Timer0 Operation

Timer0 can operate as either a timer or a counter; the mode is selected by clearing the T0CS bit (T0CON<5>). In Timer mode, the module increments on every clock by default unless a different prescaler value is selected (see **Section 11.3 "Prescaler"**). If the TMR0 register is written to, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

The Counter mode is selected by setting the T0CS bit (= 1). In Counter mode, Timer0 increments either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE (T0CON<4>). Clearing this bit selects the rising edge. Restrictions on the external clock input are discussed below.

An external clock source can be used to drive Timer0; however, it must meet certain requirements to ensure that the external clock can be synchronized with the internal phase clock (Tosc). There is a delay between synchronization and the onset of incrementing the timer/counter.

11.2 Timer0 Reads and Writes in 16-Bit Mode

TMR0H is not the actual high byte of Timer0 in 16-bit mode; it is actually a buffered version of the real high byte of Timer0, which is not directly readable nor writable (refer to Figure 11-2). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte were valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

FIGURE 11-1: TIMER0 BLOCK DIAGRAM (8-BIT MODE)

FIGURE 15-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

15.4 PWM Mode

In Pulse-Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with a PORTB or PORTC data latch, the appropriate TRIS bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force the RC2 output latch to the default low
	level. This is not the PORTC I/O data latch.

Figure 15-3 shows a simplified block diagram of the CCP1 module in PWM mode.

For a step-by-step procedure on how to set up the CCP1 module for PWM operation, see Section 15.4.4 "Setup for PWM Operation".

FIGURE 15-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 15-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/ period).

FIGURE 15-4: PWM OUTPUT

15.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2 (PR4) register. The PWM period can be calculated using the following formula.

EQUATION 15-1:

$$PWM Period = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 Prescale Value)$$

PWM frequency is defined as 1/[PWM period].

When TMR1 (TMR3) is equal to PR2 (PR4), the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

```
Note: The Timer2 postscaler (see Section 13.0
"Timer2 Module") is not used in the
determination of the PWM frequency. The
postscaler could be used to have a servo
update rate at a different frequency than
the PWM output.
```

15.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time.

EQUATION 15-2:

PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 Prescale Value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

REGISTER 23-34: BnDLC: TX/RX BUFFER n DATA LENGTH CODE REGISTERS IN RECEIVE MODE $[0 \le n \le 5, TXnEN (BSEL \le n) = 0]^{(1)}$

U-0	R-x	R-x	R-x	R-x	R-x	R-x	R-x
—	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0

ented bit, read as '0' ed x = Bit is unknown								
ed x = Bit is unknown								
DLC3:DLC0: Data Length Code bits								

Note 1: These registers are available in Mode 1 and 2 only.

Address ⁽¹⁾	Name	Address	Name	Address	Name	Address	Name
EFFh	(4)	EDFh	(4)	EBFh	(4)	E9Fh	(4)
EFEh	(4)	EDEh	(4)	EBEh	(4)	E9Eh	(4)
EFDh	(4)	EDDh	(4)	EBDh	(4)	E9Dh	(4)
EFCh	(4)	EDCh	(4)	EBCh	(4)	E9Ch	(4)
EFBh	(4)	EDBh	(4)	EBBh	(4)	E9Bh	(4)
EFAh	(4)	EDAh	(4)	EBAh	(4)	E9Ah	(4)
EF9h	(4)	ED9h	(4)	EB9h	(4)	E99h	(4)
EF8h	(4)	ED8h	(4)	EB8h	(4)	E98h	(4)
EF7h	(4)	ED7h	(4)	EB7h	(4)	E97h	(4)
EF6h	(4)	ED6h	(4)	EB6h	(4)	E96h	(4)
EF5h	(4)	ED5h	(4)	EB5h	(4)	E95h	(4)
EF4h	(4)	ED4h	(4)	EB4h	(4)	E94h	(4)
EF3h	(4)	ED3h	(4)	EB3h	(4)	E93h	(4)
EF2h	(4)	ED2h	(4)	EB2h	(4)	E92h	(4)
EF1h	(4)	ED1h	(4)	EB1h	(4)	E91h	(4)
EF0h	(4)	ED0h	(4)	EB0h	(4)	E90h	(4)
EEFh	(4)	ECFh	(4)	EAFh	(4)	E8Fh	(4)
EEEh	(4)	ECEh	(4)	EAEh	(4)	E8Eh	(4)
EEDh	(4)	ECDh	(4)	EADh	(4)	E8Dh	(4)
EECh	(4)	ECCh	(4)	EACh	(4)	E8Ch	(4)
EEBh	(4)	ECBh	(4)	EABh	(4)	E8Bh	(4)
EEAh	(4)	ECAh	(4)	EAAh	(4)	E8Ah	(4)
EE9h	(4)	EC9h	(4)	EA9h	(4)	E89h	(4)
EE8h	(4)	EC8h	(4)	EA8h	(4)	E88h	(4)
EE7h	(4)	EC7h	(4)	EA7h	(4)	E87h	(4)
EE6h	(4)	EC6h	(4)	EA6h	(4)	E86h	(4)
EE5h	(4)	EC5h	(4)	EA5h	(4)	E85h	(4)
EE4h	(4)	EC4h	(4)	EA4h	(4)	E84h	(4)
EE3h	(4)	EC3h	(4)	EA3h	(4)	E83h	(4)
EE2h	(4)	EC2h	(4)	EA2h	(4)	E82h	(4)
EE1h	(4)	EC1h	(4)	EA1h	(4)	E81h	(4)
EE0h	(4)	EC0h	(4)	EA0h	(4)	E80h	(4)

TABLE 23-1: CAN CONTROLLER REGISTER MAP (CONTINUED)

Note 1: Shaded registers are available in Access Bank low area, while the rest are available in Bank 15.

2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the controller register due to the Microchip header file requirement.

3: These registers are not CAN registers.

4: Unimplemented registers are read as '0'.

23.11 Programming Time Segments

Some requirements for programming of the time segments:

- Prop_Seg + Phase_Seg 1 \geq Phase_Seg 2
- Phase_Seg $2 \ge$ Sync Jump Width.

For example, assume that a 125 kHz CAN baud rate is desired, using 20 MHz for Fosc. With a Tosc of 50 ns, a baud rate prescaler value of 04h gives a TQ of 500 ns. To obtain a Nominal Bit Rate of 125 kHz, the Nominal Bit Time must be 8 μ s or 16 TQ.

Using 1 TQ for the Sync_Seg, 2 TQ for the Prop_Seg and 7 TQ for Phase Segment 1 would place the sample point at 10 TQ after the transition. This leaves 6 TQ for Phase Segment 2.

By the rules above, the Sync Jump Width could be the maximum of 4 Tq. However, normally a large SJW is only necessary when the clock generation of the different nodes is inaccurate or unstable, such as using ceramic resonators. Typically, an SJW of 1 is enough.

23.12 Oscillator Tolerance

As a rule of thumb, the bit timing requirements allow ceramic resonators to be used in applications with transmission rates of up to 125 Kbit/sec. For the full bus speed range of the CAN protocol, a quartz oscillator is required. A maximum node-to-node oscillator variation of 1.7% is allowed.

23.13 Bit Timing Configuration Registers

The Baud Rate Control registers (BRGCON1, BRGCON2, BRGCON3) control the bit timing for the CAN bus interface. These registers can only be modified when the PIC18F2682/2685/4682/4685 devices are in Configuration mode.

23.13.1 BRGCON1

The BRP bits control the baud rate prescaler. The SJW<1:0> bits select the synchronization jump width in terms of multiples of TQ.

23.13.2 BRGCON2

The PRSEG bits set the length of the propagation segment in terms of Tq. The SEG1PH bits set the length of Phase Segment 1 in To. The SAM bit controls how many times the RXCAN pin is sampled. Setting this bit to a '1' causes the bus to be sampled three times: twice at TQ/2 before the sample point and once at the normal sample point (which is at the end of Phase Segment 1). The value of the bus is determined to be the value read during at least two of the samples. If the SAM bit is set to a '0', then the RXCAN pin is sampled only once at the sample point. The SEG2PHTS bit controls how the length of Phase Segment 2 is determined. If this bit is set to a '1', then the length of Phase Segment 2 is determined by the SEG2PH bits of BRGCON3. If the SEG2PHTS bit is set to a '0', then the length of Phase Segment 2 is the greater of Phase Segment 1 and the Information Processing Time (which is fixed at 2 TQ for the PIC18F2682/2685/4682/4685).

23.13.3 BRGCON3

The PHSEG2<2:0> bits set the length (in TQ) of Phase Segment 2 if the SEG2PHTS bit is set to a '1'. If the SEG2PHTS bit is set to a '0', then the PHSEG2<2:0> bits have no effect.

BNC	;	Branch if	Not Carry		BNN		Branch if	Not Negativ	/e
Synta	ax:	BNC n			Synta	IX:	BNN n		
Oper	ands:	-128 ≤ n ≤ 1	127		Opera	ands:	-128 ≤ n ≤ 1	127	
Oper	ation:	if Carry bit is '0' (PC) + 2 + 2n \rightarrow PC		Oper	ation:	if Negative bit is '0' (PC) + 2 + 2n \rightarrow PC			
Statu	s Affected:	None			Statu	s Affected:	None		
Enco	oding:	1110 0011 nnnn nnnn		Enco	ding:	1110	0111 nn	nn nnnn	
Desc	Description: If the Carry bit is '0', then the program will branch.		Desc	ription:	If the Negat program wi	tive bit is '0', t Il branch.	hen the		
		The 2's con added to th have increm instruction, PC + 2 + 2r two-cycle in	nplement num e PC. Since th nented to fetcl the new addre n. This instruction.	ber '2n' is he PC will h the next ess will be tion is then a			The 2's con added to the incrementer instruction, PC + 2 + 2r two-cycle in	nplement num e PC. Since th d to fetch the the new addro n. This instruc istruction.	ber '2n' is le PC will have next ess will be tion is then a
Word	ls:	1			Word	s:	1		
Cycle	es:	1(2)			Cycle	s:	1(2)		
QC	ycle Activity:				QC	cle Activity:			
lf Ju	imp:				lf Ju	mp:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC
	No	No	No	No		No	No	No	No
	operation	operation	operation	operation		operation	operation	operation	operation
lf No	o Jump:				lf No	Jump:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	Decode	Read literal 'n'	Process Data	No operation		Decode	Read literal 'n'	Process Data	No operation
<u>Exar</u>	<u>nple:</u> Before Instruc	HERE	BNC Jump		Exam	i <u>ple:</u> Before Instruc	HERE	BNN Jump	
	PC After Instructio If Carry PC If Carry PC	= ad on = 0; = ad = 1; = ad	dress (HERE dress (Jump dress (HERE)) + 2)		PC After Instructio If Negati PC If Negati PC	= ad on ve = 0; = ad ve = 1; = ad	dress (HERE dress (Jump dress (HERE)) + 2)

BRA	۱.	Uncondit	Unconditional Branch						
Synta	ax:	BRA n	BRA n						
Oper	ands:	-1024 ≤ n ≤	1023						
Oper	ation:	(PC) + 2 + 2	$2n \rightarrow PC$						
Statu	s Affected:	None	None						
Enco	ding:	1101	0nnn	nnnn	nnnn				
Desc	ription:	Add the 2's the PC. Sin incremente instruction, PC + 2 + 2r two-cycle ir	Add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a two-cycle instruction.						
Word	ls:	1	1						
Cycle	es:	2	2						
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'n'	Proce Data	ss Wr a	Write to PC				
	No operation	No operation	No operat	ion or	No peration				
<u>Exan</u>	nple: Before Instruc PC	HERE tion = ad	BRA dress (F	Jump HERE)					
	After Instruction	on							

PC	=	address	(Jump)

BSF	Bit Set f					
Syntax:	BSF f, b	{,a}				
Operands:	0 ≤ f ≤ 255 0 ≤ b ≤ 7 a ∈ [0,1]	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$				
Operation:	$1 \rightarrow \text{f}$					
Status Affected:	None					
Encoding:	1000	bbba	ffff	ffff		
Description:	Bit 'b' in reg	gister 'f' i	s set.			
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Proce Data	ss a re	Write gister 'f'		
Example:	BSF 1	FLAG_RE	G, 7, 1			

Before Instruction FLAG_REG = 0Ah After Instruction FLAG_REG = 8Ah

CPFSGT	Compare	f with W, Sk	ip if f > W				
Syntax:	CPFSGT	f {,a}					
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]						
Operation:	(f) - (W), skip if $(f) > (W)$ (unsigned comparison)						
Status Affected:	None						
Encoding:	0110	010a fff	ff ffff				
Description:	Compares t location 'f' te performing	Compares the contents of data memory location 'f' to the contents of the W by performing an unsigned subtraction.					
	If the conter contents of instruction is executed in two-cycle in	nts of 'f' are gro WREG, then t s discarded ar stead, making istruction.	eater than the he fetched nd a NOP is this a				
	If 'a' is '0', tl If 'a' is '1', tl GPR bank (he Access Bar he BSR is used (default).	nk is selected. d to select the				
	If 'a' is '0' an set is enable in Indexed I mode when Section 25. Bit-Oriente Literal Offs	nd the extende ed, this instruc Literal Offset A ever f ≤ 95 (5F .2.3 "Byte-Ori d Instructions set Mode" for	ed instruction tion operates ddressing h). See ented and s in Indexed details.				
Words:	1						
Cvcles:	1(2)						
	Note: 3 c by	cycles if skip ar a 2-word instru	nd followed uction.				
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read rogistor 'f'	Process	No				
If skip:	Tegister T	Dala	operation				
Q1	Q2	Q3	Q4				
No	No	No	No				
operation	operation	operation	operation				
If skip and followe	d by 2-word ins	struction:	04				
No	Q2 No	No No	Q4 No				
operation	operation	operation	operation				
No	No	No	No				
operation	operation	operation	operation				
Example: HERE CPFSGT REG, 0 NGREATER							
	GREATER	:					
Before Instruc PC	tion = Ad	dress (HERE))				
W After Instruction	= ?						
Arter Instruction	ות > W;						
PC	= Ad	dress (GREAT	TER)				
PC	≤ vv; = Ad	dress (NGREA	ATER)				

CPFSLT	Compare	f with W, Sk	ip if f < W				
Syntax:	CPFSLT f	f {,a}					
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]						
Operation:	(f) – (W), skip if (f) < ((unsigned c	(f) - (W), skip if $(f) < (W)$ (unsigned comparison)					
Status Affected:	None						
Encoding:	0110	000a fff	f fff				
Description:	Compares t location 'f' t performing	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction.					
	If the contents of instruction i executed in two-cycle in If 'a' is '0', t	nts of 'f' are les W, then the fe s discarded ar stead, making istruction. he Access Bar	ss than the tched ad a NOP is this a ak is selected.				
	lf 'a' is '1', ti GPR bank (he BSR is useo (default).	d to select the				
Words:	1	()					
Cycles:	1(2)						
	Note: 3 c	cycles if skip ar	nd followed				
	by	a 2-word instru	uction.				
Q Cycle Activity:	00	00	04				
Q1	Q2 Bood	Q3 Drococo	Q4				
Decode	register 'f'	Data	operation				
If skip:	- 0						
Q1	Q2	Q3	Q4				
No	No	No	No				
operation	operation	operation	operation				
If skip and followe	d by 2-word in	struction:	~ ~				
Q1	Q2	Q3	Q4				
operation	operation	operation	operation				
No	No	No	No				
operation	operation	operation	operation				
Example:	HERE (NLESS LESS	CPFSLT REG,	1				
Before Instruc PC W	tion = Ad = ?	dress (HERE)					
If REG	 < W; = Ad ≥ W; = Ad 	dress (LESS)					
FC	- Ad	UICSS (NLESS))				

DAW	Decimal A	Adjust W Re	gister	DEC	CF	Decreme	nt f		
Syntax:	DAW			Synt	ax:	DECF f{,	d {,a}}		
Operands:	None			Ope	rands:	$0 \le f \le 255$			
Operation:	lf [W<3:0> (W<3:0>) +	>9] or [DC = 1 \rightarrow W<3:0>;] then			d ∈ [0,1] a ∈ [0,1]			
	else	,		Ope	ration:	$(f) - 1 \rightarrow d$	est		
	(W<3:0>) -	→ W<3:0>		Statu	us Affected:	C, DC, N, 0	OV, Z		
	lf [W<7:4>	>9] or [C = 1]	then	Enco	oding:	0000	01da f	fff	ffff
	(W<7:4>) +	$6 \rightarrow W < 7:4 >;$		Desc	cription:	Decrement	register 'f'. If	ʻ 'd' is	'0', the
	C = 1;					result is sto	ored in W. If '	d' is ' 1	', the
	eise (W<7:4>) –	→ W<7:4>				result is sto (default)	ored back in r	egiste	r 'f'
Status Affected:	C					If 'a' is '0', t	the Access B	ank is	selected.
Encoding:	0000	0000 00	00 0111			lf 'a' is '1', f GPR bank	he BSR is us: (default).	ed to	select the
Description:	DAW adjusts resulting fro variables (e and produc result.	s the eight-bit om the earlier a each in packed es a correct p	value in W, addition of two I BCD format) acked BCD			If 'a' is '0' a set is enab in Indexed mode when Section 25	and the exten led, this instr Literal Offset never $f \le 95$ (ded in uction Addre 5Fh).	struction operates essing See
Words:	1					Bit-Orient	ed Instructio	ns in	Indexed
Cycles:	1					Literal Off	set Mode" fo	or deta	ils.
Q Cycle Activity:				Word	ds:	1			
Q1	Q2	Q3	Q4	Cycl	es:	1			
Decode	Read	Process	Write	QC	cycle Activity:				
	register W	Data	W		Q1	Q2	Q3		Q4
Example 1:					Decode	Read	Process	V	Vrite to
	DAW					register 'f'	Data	des	stination
Before Instruc	tion			F					
C	= 0			Exar	<u>npie:</u>	DECF	CNT, 1,	0	
DC After Instructi	= 0				Before Instruc	ction			
After Instruction	on = 05h				Z	= 0			
Ċ	= 1				After Instructi	on			
DC	= 0				CNT	= 00h = 1			
Example 2:	tion				Z	- 1			
Belore Instruc	= CEb								
C DC	= 0 = 0								
After Instructi	on								
W	= 34h = 1								
ĎC	= 0								

26.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

26.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

TABLE 27-17: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input		Тсү		ns	
71	TscH	SCK Input High Time	Continuous	1.25 Tcy + 30		ns	
71A			Single Byte	40		ns	(Note 1)
72	TscL	SCK Input Low Time	Continuous	1.25 Tcy + 30		ns	
72A			Single Byte	40		ns	(Note 1)
73A	Тв2в	Last Clock Edge of Byte 1 to the flrst	Clock Edge of Byte 2	1.5 Tcy + 40		ns	(Note 2)
74	TscH2DIL, TscL2DIL	Hold Time of SDI Data Input to SCI	100		ns		
75	TDOR	SDO Data Output Rise Time PIC18FXXXX		—	25	ns	
			PIC18LFXXXX		45	ns	VDD = 2.0V
76	TDOF	SDO Data Output Fall Time		—	25	ns	
77	TssH2doZ	SS↑ to SDO Output High-Impedan	ce	10	50	ns	
80	TscH2doV,	SDO Data Output Valid after SCK	PIC18FXXXX	—	50	ns	
	TscL2DoV Edge		PIC18LFXXXX	—	100	ns	VDD = 2.0V
82	2 TssL2DOV SDO Data Output Valid after $\overline{SS} \downarrow$		PIC18FXXXX	_	50	ns	
		Edge	PIC18LFXXXX	—	100	ns	VDD = 2.0V
83	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge		1.5 Tcy + 40		ns	

Note 1: Requires the use of parameter 73A.

2: Only if parameter 71A and 72A are used.

29.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensior	n Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	_	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B