

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	80KB (40K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4682-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

28/40/44-Pin Enhanced Flash Microcontrollers with ECAN[™] Technology, 10-Bit A/D and nanoWatt Technology

Power-Managed Modes:

- · Run: CPU on, peripherals on
- Idle: CPU off, peripherals on
- · Sleep: CPU off, peripherals off
- Idle mode currents down to 5.8 μA typical
- Sleep mode currents down to 0.1 μÅ typical
- Timer1 Oscillator: 1.1 μA, 32 kHz, 2V
- Watchdog Timer: 2.1 μA
- Two-Speed Oscillator Start-up

Flexible Oscillator Structure:

- Four Crystal modes, up to 40 MHz
- 4x Phase Lock Loop (PLL) available for crystal and internal oscillators
- · Two External RC modes, up to 4 MHz
- Two External Clock modes, up to 40 MHz
- Internal Oscillator Block:
 - 8 user-selectable frequencies, from 31 kHz to 8 MHz
 - Provides a complete range of clock speeds,
 - from 31 kHz to 32 MHz when used with PLL User-tunable to compensate for frequency drift
- Secondary Oscillator using Timer1 @ 32 kHz
- Fail-Safe Clock Monitor
 - Allows for safe shutdown if peripheral clock stops

Special Microcontroller Features:

- C compiler Optimized Architecture with optional Extended Instruction Set
- 100,000 Erase/Write Cycle Enhanced Flash Program Memory typical
- 1,000,000 Erase/Write Cycle Data EEPROM Memory typical
- Flash/Data EEPROM Retention: > 40 years
- Self-Programmable under Software Control
- Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
- Programmable period from 41 ms to 131s
- Single-Supply 5V In-Circuit Serial Programming[™] (ICSP[™]) via two pins
- In-Circuit Debug (ICD) via two pins
- Wide operating voltage range: 2.0V to 5.5V

Peripheral Highlights:

- High-Current Sink/source 25 mA/25 mA
- Three External Interrupts
- One Capture/Compare/PWM (CCP1) module
- Enhanced Capture/Compare/PWM (ECCP1) module (40/44-pin devices only):
 - One, two or four PWM outputs
 - Selectable polarity
 - Programmable dead time
 - Auto-shutdown and auto-restart
- Master Synchronous Serial Port (MSSP) module supporting 3-Wire SPI (all 4 modes) and I²C[™] Master and Slave modes
- Enhanced Addressable USART module:
 - Supports RS-485, RS-232 and LIN 1.3
 - RS-232 operation using internal oscillator block (no external crystal required)
 - Auto-wake-up on Start bit
 - Auto-Baud Detect
- 10-Bit, up to 11-Channel Analog-to-Digital Converter module (A/D), up to 100 ksps:
 - Auto-acquisition capability
 - Conversion available during Sleep
- · Dual Analog Comparators with Input Multiplexing

ECAN Module Features:

- Message bit rates up to 1 Mbps
- · Conforms to CAN 2.0B ACTIVE Specification
- Fully Backward Compatible with PIC18XXX8 CAN modules
- Three Modes of Operation:
 - Legacy, Enhanced Legacy, FIFO
- · Three Dedicated Transmit Buffers with Prioritization
- Two Dedicated Receive Buffers
- Six Programmable Receive/Transmit Buffers
- Three Full, 29-Bit Acceptance Masks
- 16 Full, 29-Bit Acceptance Filters w/Dynamic Association
- DeviceNet™ Data Byte Filter Support
- Automatic Remote Frame Handling
- Advanced Error Management Features

	Prog	ram Memory	Data	Memory		40 84	CCP1/	MS	SSP	RT		Timesana
Device	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	EEPROM (bytes)	I/O	10-Віт A/D (ch)	ECCP1 (PWM)	SPI	Master I ² C™	EUSA	Comp.	8/16-bit
PIC18F2682	80K	40960	3328	1024	28	8	1/0	Y	Y	1	0	1/3
PIC18F2685	96K	49152	3328	1024	28	8	1/0	Y	Y	1	0	1/3
PIC18F4682	80K	40960	3328	1024	40/44	11	1/1	Y	Y	1	2	1/3
PIC18F4685	96K	49152	3328	1024	40/44	11	1/1	Y	Y	1	2	1/3

2.8 Effects of Power-Managed Modes on the Various Clock Sources

When PRI_IDLE mode is selected, the designated primary oscillator continues to run without interruption. For all other power-managed modes, the oscillator using the OSC1 pin is disabled. The OSC1 pin (and OSC2 pin, if used by the oscillator) will stop oscillating.

In secondary clock modes (SEC_RUN and SEC_IDLE), the Timer1 oscillator is operating and providing the device clock. The Timer1 oscillator may also run in all power-managed modes if required to clock Timer1 or Timer3.

In internal oscillator modes (RC_RUN and RC_IDLE), the internal oscillator block provides the device clock source. The 31 kHz INTRC output can be used directly to provide the clock and may be enabled to support various special features, regardless of the powermanaged mode (see Section 24.2 "Watchdog Timer (WDT)", Section 24.3 "Two-Speed Start-up" and Section 24.4 "Fail-Safe Clock Monitor" for more information on WDT, Two-Speed Start-up and Fail-Safe Clock Monitor). The INTOSC output at 8 MHz may be used directly to clock the device or may be divided down by the postscaler. The INTOSC output is disabled if the clock is provided directly from the INTRC output.

If the Sleep mode is selected, all clock sources are stopped. Since all the transistor switching currents have been stopped, Sleep mode achieves the lowest current consumption of the device (only leakage currents).

Enabling any on-chip feature that will operate during Sleep will increase the current consumed during Sleep. The INTRC is required to support WDT operation. The Timer1 oscillator may be operating to support a Real-Time Clock. Other features may be operating that do not require a device clock source (i.e., MSSP slave, PSP, INTx pins and others). Peripherals that may add significant current consumption are listed in Section 27.2 "DC Characteristics: Power-Down and Supply Current".

2.9 Power-up Delays

Power-up delays are controlled by two timers, so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances and the primary clock is operating and stable. For additional information on power-up delays, see **Section 4.5 "Device Reset Timers"**.

The first timer is the Power-up Timer (PWRT), which provides a fixed delay on power-up (parameter 33, Table 27-10). It is enabled by clearing (= 0) the PWRTEN Configuration bit.

The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (LP, XT and HS modes). The OST does this by counting 1024 oscillator cycles before allowing the oscillator to clock the device.

When the HSPLL Oscillator mode is selected, the device is kept in Reset for an additional 2 ms, following the HS mode OST delay, so the PLL can lock to the incoming clock frequency.

There is a delay of interval TCSD (parameter 38, Table 27-10), following POR, while the controller becomes ready to execute instructions. This delay runs concurrently with any other delays. This may be the only delay that occurs when any of the EC, RC or INTIO modes are used as the primary clock source.

OSC Mode	OSC1 Pin	OSC2 Pin
RC, INTIO1	Floating, external resistor should pull high	At logic low (clock/4 output)
RCIO, INTIO2	Floating, external resistor should pull high	Configured as PORTA, bit 6
ECIO	Floating, pulled by external clock	Configured as PORTA, bit 6
EC	Floating, pulled by external clock	At logic low (clock/4 output)
LP, XT and HS	Feedback inverter disabled at quiescent voltage level	Feedback inverter disabled at quiescent voltage level

 TABLE 2-3:
 OSC1 AND OSC2 PIN STATES IN SLEEP MODE

Note: See Table 4-2 in Section 4.0 "Reset" for time-outs due to Sleep and MCLR Reset.

IADLE 3-2		JUSIER	ILE SUN			52/2005/40	02/4005) (((ט.	
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
B2EIDL ⁽⁸⁾	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	60, 301
B2EIDH ⁽⁸⁾	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	60, 301
B2SIDL ⁽⁸⁾ Receive mode	SID2	SID1	SID0	SRR	EXID	—	EID17	EID16	XXXX X-XX	58, 300
B2SIDL ⁽⁸⁾ Transmit mode	SID2	SID1	SID0	_	EXIDE	—	EID17	EID16	xxx- x-xx	58, 300
B2SIDH ⁽⁸⁾	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	60, 299
B2CON ⁽⁸⁾ Receive mode	RXFUL	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHITO	0000 0000	60, 298
B2CON ⁽⁸⁾ Transmit mode	TXBIF	RXM1	TXLARB	TXERR	TXREQ	RTREN	TXPRI1	TXPRI0	0000 0000	60, 298
B1D7 ⁽⁸⁾	B1D77	B1D76	B1D75	B1D74	B1D73	B1D72	B1D71	B1D70	XXXX XXXX	60, 302
B1D6 ⁽⁸⁾	B1D67	B1D66	B1D65	B1D64	B1D63	B1D62	B1D61	B1D60	XXXX XXXX	60, 302
B1D5 ⁽⁸⁾	B1D57	B1D56	B1D55	B1D54	B1D53	B1D52	B1D51	B1D50	XXXX XXXX	60, 302
B1D4 ⁽⁸⁾	B1D47	B1D46	B1D45	B1D44	B1D43	B1D42	B1D41	B1D40	XXXX XXXX	60, 302
B1D3 ⁽⁸⁾	B1D37	B1D36	B1D35	B1D34	B1D33	B1D32	B1D31	B1D30	XXXX XXXX	60, 302
B1D2 ⁽⁸⁾	B1D27	B1D26	B1D25	B1D24	B1D23	B1D22	B1D21	B1D20	XXXX XXXX	60, 302
B1D1 ⁽⁸⁾	B1D17	B1D16	B1D15	B1D14	B1D13	B1D12	B1D11	B1D10	XXXX XXXX	60, 302
B1D0 ⁽⁸⁾	B1D07	B1D06	B1D05	B1D04	B1D03	B1D02	B1D01	B1D00	XXXX XXXX	60, 302
B1DLC ⁽⁸⁾ Receive mode	_	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	58, 303
B1DLC ⁽⁸⁾ Transmit mode	_	TXRTR	_	_	DLC3	DLC2	DLC1	DLC0	-x xxxx	58, 304
B1EIDL ⁽⁸⁾	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	60, 301
B1EIDH ⁽⁸⁾	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	60, 301
B1SIDL ⁽⁸⁾ Receive mode	SID2	SID1	SID0	SRR	EXID	—	EID17	EID16	XXXX X-XX	58, 300
B1SIDL ⁽⁸⁾ Transmit mode	SID2	SID1	SID0	_	EXIDE	—	EID17	EID16	xxx- x-xx	58, 300
B1SIDH ⁽⁸⁾	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	60, 299
B1CON ⁽⁸⁾ Receive mode	RXFUL	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	0000 0000	60, 298
B1CON ⁽⁸⁾ Transmit mode	TXBIF	TXABT	TXLARB	TXERR	TXREQ	RTREN	TXPRI1	TXPRI0	0000 0000	60, 298
B0D7 ⁽⁸⁾	B0D77	B0D76	B0D75	B0D74	B0D73	B0D72	B0D71	B0D70	XXXX XXXX	60, 302
B0D6 ⁽⁸⁾	B0D67	B0D66	B0D65	B0D64	B0D63	B0D62	B0D61	B0D60	XXXX XXXX	60, 302
B0D5 ⁽⁸⁾	B0D57	B0D56	B0D55	B0D54	B0D53	B0D52	B0D51	B0D50	XXXX XXXX	60, 302
B0D4 ⁽⁸⁾	B0D47	B0D46	B0D45	B0D44	B0D43	B0D42	B0D41	B0D40	XXXX XXXX	60, 302
B0D3 ⁽⁸⁾	B0D37	B0D36	B0D35	B0D34	B0D33	B0D32	B0D31	B0D30	XXXX XXXX	60, 302
B0D2 ⁽⁸⁾	B0D27	B0D26	B0D25	B0D24	B0D23	B0D22	B0D21	B0D20	XXXX XXXX	60, 302
B0D1 ⁽⁸⁾	B0D17	B0D16	B0D15	B0D14	B0D13	B0D12	B0D11	B0D10	XXXX XXXX	60, 302
B0D0 ⁽⁸⁾	B0D07	B0D06	B0D05	B0D04	B0D03	B0D02	B0D01	B0D00	XXXX XXXX	60, 302
B0DLC ⁽⁸⁾ Receive mode	_	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	58, 303

DECISTED FILE CUMMADY (DICASE2002/2005/4002/4005) (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented, read as '0'.

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

These registers and/or bits are not implemented on PIC18F2682/2685 devices and are read as '0'. Reset values are shown for PIC18F4682/4685 3: devices; individual unimplemented bits should be interpreted as '---'

The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC 4: Modes"

The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only. 5:

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

CAN bits have multiple functions depending on the selected mode of the CAN module. 7:

This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2. 8:

9: These registers and/or bits are available on PIC18F4682/4685 devices only.

5.4.3.2 FSR Registers and POSTINC, POSTDEC, PREINC and PLUSW

In addition to the INDF operand, each FSR register pair also has four additional indirect operands. Like INDF, these are "virtual" registers that cannot be indirectly read or written to. Accessing these registers actually accesses the associated FSR register pair, but also performs a specific action on its stored value. They are:

- POSTDEC: accesses the FSR value, then automatically decrements it by 1 afterwards
- POSTINC: accesses the FSR value, then automatically increments it by 1 afterwards
- PREINC: increments the FSR value by 1, then uses it in the operation
- PLUSW: adds the signed value of the W register (range of -127 to 128) to that of the FSR and uses the new value in the operation.

In this context, accessing an INDF register uses the value in the FSR registers without changing them. Similarly, accessing a PLUSW register gives the FSR value offset by that in the W register; neither value is actually changed in the operation. Accessing the other virtual registers changes the value of the FSR registers.

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair; that is, rollovers of the FSRnL register from FFh to 00h carry over to the FSRnH register. On the other hand, results of these operations do not change the value of any flags in the STATUS register (e.g., Z, N, OV, etc.).

The PLUSW register can be used to implement a form of Indexed Addressing in the data memory space. By manipulating the value in the W register, users can reach addresses that are fixed offsets from pointer addresses. In some applications, this can be used to implement some powerful program control structure, such as software stacks, inside of data memory.

5.4.3.3 Operations by FSRs on FSRs

Indirect Addressing operations that target other FSRs or virtual registers represent special cases. For example, using an FSR to point to one of the virtual registers will not result in successful operations. As a specific case, assume that the FSR0H:FSR0L pair contains FE7h, the address of INDF1. Attempts to read the value of the INDF1 using INDF0 as an operand will return 00h. Attempts to write to INDF1 using INDF0 as the operand will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In these cases, the value will be written to the FSR pair but without any incrementing or decrementing. Thus, writing to INDF2 or POSTDEC2 will write the same value to the FSR2H:FSR2L pair.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all direct operations. Users should proceed cautiously when working on these registers, particularly if their code uses Indirect Addressing.

Similarly, operations by Indirect Addressing are generally permitted on all other SFRs. Users should exercise the appropriate caution that they do not inadvertently change settings that might affect the operation of the device.

9.1 INTCON Registers

The INTCON registers are readable and writable registers, which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE/GIEH: Global Interrupt Enable bit <u>When IPEN = 0:</u> 1 = Enables all unmasked interrupts 0 = Disables all interrupts <u>When IPEN = 1:</u> 1 = Enables all high priority interrupts 0 = Disables all high priority interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit When IPEN = 0: 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts When IPEN = 1: 1 = Enables all low priority peripheral interrupts 0 = Disables all low priority peripheral interrupts 0 = Disables all low priority peripheral interrupts
bit 5	<pre>TMR0IE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt</pre>
bit 4	INTOIE: INTO External Interrupt Enable bit 1 = Enables the INTO external interrupt 0 = Disables the INTO external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt
bit 2	 TMR0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow
bit 1	INTOIF: INTO External Interrupt Flag bit 1 = The INTO external interrupt occurred (must be cleared in software) 0 = The INTO external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾ 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state

Note 1: A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared.

V+ PIC18F268X/468X QC FET QA FET Driver Driver P1A Load P1B FET FET Driver Driver P1C QB QD V-P1D

FIGURE 16-7: EXAMPLE OF FULL-BRIDGE APPLICATION

16.4.5.1 Direction Change in Full-Bridge Mode

In the Full-Bridge Output mode, the EPWM1M1 bit in the ECCP1CON register allows the user to control the forward/reverse direction. When the application firmware changes this direction control bit, the module will assume the new direction on the next PWM cycle.

Just before the end of the current PWM period, the modulated outputs (P1B and P1D) are placed in their inactive state, while the unmodulated outputs (P1A and P1C) are switched to drive in the opposite direction. This occurs in a time interval of (4 Tosc * (Timer2 Prescale Value)) before the next PWM period begins. The Timer2 prescaler will either be 1, 4 or 16, depending on the value of the T2CKPS bits (T2CON<1:0>). During the interval from the switch of the unmodulated outputs to the beginning of the next period, the modulated outputs (P1B and P1D) remain inactive. This relationship is shown in Figure 16-8.

Note that in the Full-Bridge Output mode, the ECCP1 module does not provide any dead-band delay. In general, since only one output is modulated at all times, dead-band delay is not required. However, there is a situation where a dead-band delay might be required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn-off time of the power switch, including the power device and driver circuit, is greater than the turn-on time.

Figure 16-9 shows an example where the PWM direction changes from forward to reverse at a near 100% duty cycle. At time t1, the outputs P1A and P1D become inactive, while output P1C becomes active. In this example, since the turn-off time of the power devices is longer than the turn-on time, a shoot-through current may flow through power devices, QC and QD (see Figure 16-7), for the duration of 't'. The same phenomenon will occur to power devices, QA and QB, for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, one of the following requirements must be met:

- 1. Reduce PWM for a PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

17.4.14 SLEEP OPERATION

While in Sleep mode, the I^2C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

17.4.15 EFFECT OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

17.4.16 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit (SSPSTAT<4>) is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the MSSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed in hardware with the result placed in the BCLIF bit.

The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

17.4.17 MULTI-MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = 0, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF and reset the I^2C port to its Idle state (Figure 17-25).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPIF bit will be set.

A write to the SSPBUF will start the transmission of data at the first data bit regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I²C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 17-25: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

FIGURE 18-7: ASYNCHRONOUS RECEPTION

TABLE 18-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	51
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	54
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	54
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	54
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	53
RCREG	EUSART F	Receive Regi	ster						53
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	53
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	53
SPBRGH	EUSART E	Baud Rate G	enerator Re	gister High	Byte				53
SPBRG	EUSART E	Baud Rate G	enerator Re	gister Low	Byte				53

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

Note 1: Reserved in PIC18F2682/2685 devices; always maintain these bits clear.

20.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 20-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this

range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
CMCON ⁽³⁾	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	53	
CVRCON ⁽³⁾	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	53	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	54	
IPR2	OSCFIP	CMIP ⁽²⁾	—	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP ⁽²⁾	53	
PIR2	OSCFIF	CMIF ⁽²⁾	—	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽²⁾	54	
PIE2	OSCFIE	CMIE ⁽²⁾	—	EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE ⁽²⁾	54	
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	54	
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	LATA Data	_ATA Data Output Register						
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA Da	ata Directio	n Register				54	

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

Note 1: PORTA pins are enabled based on oscillator configuration.

2: These bits are available in PIC18F4682/4685 devices and reserved in PIC18F2682/2685 devices.

3: These registers are unimplemented on PIC18F2682/2685 devices.

REGISTER 24-4: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)

R/P-1	U-0	U-0	U-0	U-0	R/P-0	R/P-1	U-0		
MCLRE	_	—	—	—	LPT10SC	PBADEN	—		
bit 7							bit 0		
Legend:									
R = Readable b	bit	P = Programm	nable bit	U = Unimpler	nented bit, read	as '0'			
-n = Value whe	n device is unp	programmed		u = Unchange	ed from program	nmed state			
bit 7	MCLRE: MCL	R Pin Enable	bit						
	1 = MCLR pin	enabled; RE3	input pin disa	bled					
	0 = RE3 input	pin enabled; i	ACLR disabled	3					
bit 6-3	Unimplemen	ted: Read as '	0'						
bit 2	LPT1OSC: Lo	w-Power Time	er1 Oscillator E	Enable bit					
	1 = Timer1 co	nfigured for lov	w-power opera	ation					
	0 = Timer1 co	nfigured for hig	gher power op	eration					
bit 1	PBADEN: PC	RTB A/D Enal	ole bit						
	(Affects ADCON1 Reset state. ADCON1 controls PORTB<4:0> pin configuration.)								
	1 = PORTB<2	1:0> pins are c	onfigured as a	inalog input ch	annels on Rese	t			
h it 0		r.u- pillo ale u	, ,						
DILU	Unimplemen	tea: Read as	U						

REGISTER 24-5: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)

R/P-1	R/P-0	R/P-0	R/P-0	U-0	R/P-1	U-0	R/P-1
DEBUG	XINST	BBSIZ1	BBSIZ2	—	LVP	—	STVREN
bit 7							bit 0

Legend:						
R = Readable	bit P = Programmable bit	U = Unimplemented bit, read as '0'				
-n = Value whe	n device is unprogrammed	u = Unchanged from programmed state				
bit 7	DEBUG: Background Debugger Enable b	pit				
	1 = Background debugger disabled, RB6 0 = Background debugger enabled, RB6	and RB7 configured as general purpose I/O pins and RB7 are dedicated to In-Circuit Debug				
bit 6	XINST: Extended Instruction Set Enable I	pit				
	1 = Instruction set extension and Indexed	Addressing mode enabled				
h :	0 = Instruction set extension and indexed	Addressing mode disabled (Legacy mode)				
DIT 5	BBSIZ1: BOOT BIOCK SIZE Select Bit 1 11 = 4K words (8 Kbytes) boot block					
	10 = 4K words (8 Kbytes) boot block					
bit 4	BBSIZ2: Boot Block Size Select Bit 0					
	01 = 2K words (4 Kbytes) boot block					
	00 = 1K words (2 Kbytes) boot block					
bit 3	Unimplemented: Read as '0'					
bit 2	LVP: Single-Supply ICSP™ Enable bit					
	1 = Single-Supply ICSP enabled					
1.11 A						
bit 1	Unimplemented: Read as '0'					
bit 0	STVREN: Stack Full/Underflow Reset En	able bit				
	1 = Stack full/underflow will cause Reset	aat				
	0 = Stack full/undernow will not cause Re	Set				

24.2 Watchdog Timer (WDT)

For PIC18F2682/2685/4682/4685 devices, the WDT is driven by the INTRC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: a SLEEP or CLRWDT instruction is executed, the IRCF bits (OSCCON<6:4>) are changed or a clock failure has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: Changing the setting of the IRCF bits (OSCCON<6:4>) clears the WDT and postscaler counts.
 - **3:** When a CLRWDT instruction is executed, the postscaler count will be cleared.

24.2.1 CONTROL REGISTER

Register 24-14 shows the WDTCON register. This is a readable and writable register which contains a control bit that allows software to override the WDT enable Configuration bit, but only if the Configuration bit has disabled the WDT.

FIGURE 24-1: WDT BLOCK DIAGRAM

24.3 **Two-Speed Start-up**

The Two-Speed Start-up feature helps to minimize the latency period from oscillator start-up to code execution by allowing the microcontroller to use the INTRC oscillator as a clock source until the primary clock source is available. It is enabled by setting the IESO Configuration bit.

Two-Speed Start-up should be enabled only if the primary oscillator mode is LP, XT, HS or HSPLL (Crystal-based modes). Other sources do not require an OST start-up delay; for these, Two-Speed Start-up should be disabled.

When enabled, Resets and wake-ups from Sleep mode cause the device to configure itself to run from the internal oscillator block as the clock source, following the time-out of the Power-up Timer after a Power-on Reset is enabled. This allows almost immediate code execution while the primary oscillator starts and the OST is running. Once the OST times out, the device automatically switches to PRI RUN mode.

Because the OSCCON register is cleared on Reset events, the INTOSC (or postscaler) clock source is not initially available after a Reset event; the INTRC clock is used directly at its base frequency. To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits, IRCF2:IRCF0, immediately after

Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting the IRCF2:IRCF0 bits prior to entering Sleep mode.

In all other power-managed modes, Two-Speed Start-up is not used. The device will be clocked by the currently selected clock source until the primary clock source becomes available. The setting of the IESO bit is ignored.

24.3.1 SPECIAL CONSIDERATIONS FOR USING TWO-SPEED START-UP

While using the INTRC oscillator in Two-Speed Start-up, the device still obeys the normal command sequences for entering power-managed modes, including serial SLEEP instructions (refer to Section 3.1.4 "Multiple Sleep Commands"). In practice, this means that user code can change the SCS1:SCS0 bit settings or issue SLEEP instructions before the OST times out. This would allow an application to briefly wake-up, perform routine "housekeeping" tasks and return to Sleep before the device starts to operate from the primary oscillator.

User code can also check if the primary clock source is currently providing the device clocking by checking the status of the OSTS bit (OSCCON<3>). If the bit is set, the primary oscillator is providing the clock. Otherwise, the internal oscillator block is providing the clock during wake-up from Reset or Sleep mode.

FIGURE 24-2: TIMING TRANSITION FOR TWO-SPEED START-UP (INTOSC TO HSPLL)

Move W to f

 $\begin{array}{l} 0 \leq f \leq 255 \\ a \, \in \, [0,1] \end{array}$

MOVWF f {,a}

MOVWF

Operands:

W REG

Syntax:

MOVLW Move Literal to W								
Synta	ax:	MOVLW	k					
Oper	ands:	$0 \le k \le 255$	5					
Oper	ation:	$k\toW$						
Statu	s Affected:	None						
Enco	ding:	0000	1110	kkk	k	kkkk		
Desc	ription:	The eight-	The eight-bit literal 'k' is loaded into W.					
Word	ls:	1	1					
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read literal 'k'	Process Data		Write to W			
Fxan	nple:	MOVI.W	5Ah					
	After Instructio	n	01111					

W

=

5Ah

Operation: $(W) \rightarrow f$										
Status Affected: None										
Encoding: 0110 111a ffff fff:										
Desc	cription:	Move data Location 1 256-byte I	Move data from W to register 'f'. Location 'f' can be anywhere in the 256-byte bank.							
If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select to GPR bank (default).										
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.									
Word	ds:	1	1							
Cycle	es:	1	1							
QC	ycle Activity:									
	Q1	Q2	Q3	5	Q4					
	Decode	Read register 'f'	Proce Data	ess a re	Write gister 'f'					
Exan	<u>nple:</u>	MOVWF	REG, 0							
	Before Instruc	tion								
	W REG	= 4Fh = FFh								
	After Instruction									

4Fh 4Fh

=

RET	FIE	Return fro	om Interrup	t	RE1	RETLW Return Literal to W					
Synta	ax:	RETFIE {	\$}		Synt	Syntax:		RETLW k			
Oper	ands:	$s \in \left[0,1\right]$			Ope	rands:	$0 \le k \le 255$				
Oper	ation:	$(TOS) \rightarrow P$ 1 \rightarrow GIE/G if s = 1,	C, IEH or PEIE/0	BIEL;	Ope	ration:	$k \rightarrow W$, (TOS) $\rightarrow P$ PCLATU, P	C, CLATH are u	nchanged		
		$(WS) \rightarrow W,$	\rightarrow STATUS		Statu	us Affected:	None				
		$(BSRS) \rightarrow$	BSR,		Enco	oding:	0000	1100 kk	kk kkkk		
		PCLATU, P	CLATH are u	nchanged	Desc	cription:	W is loaded	with the eigh	nt-bit literal 'k'.		
Statu	s Affected:	GIE/GIEH,	PEIE/GIEL.				The program	m counter is le	oaded from the		
Enco	ding:	0000	0000 0000 0001 000s				top of the stack (the return address). The high address latch (PCLATH)				
Desc	ription:	Return fron	n interrupt. Sta Stack (TOS) i	ack is popped			remains un	changed.			
		the PC. Inte	the PC. Interrupts are enabled by		Word	ds:	1				
		setting either the high or low priority		Cycl	es:	2					
		global inter	rupt enable bi	t. It 's' = 1, the	QC	cycle Activity:					
		STATUSS and BSRS, are loaded into			Q1	Q2	Q3	Q4			
		their corresponding registers, W, STATUS and BSR. If 's' = 0, no update of these registers occurs (default)				Decode	Read literal 'k'	Process Data	FOP PC from stack, Write to W		
Word	le [.]	1		(deradit).		No	No	No	No		
Cycle		2				operation	operation	operation	operation		
	vele Activity:	2			-						
QU		02	03	04	Exar	<u>npie:</u> Cait marte	· W contair	a tablo			
	Decode	No	No	POP PC		CALL IADLE	, w contain offset valu	le Labie			
		operation	operation	from stack		;	W now has				
		-	-	Set GIEH or		;	table value	2			
				GIEL		:					
	No	No	No	No	TAB	LE ADDWE DOI:	W - offoot				
	operation	operation	operation	operation		ADDWF PCL;	W = OIISet Bogin table				
			RETLW k1;								
Exan	<u>nple:</u>	RETFIE	1			:					
	After Interrupt					:					
	PC		= TOS			RETLW kn; End of table					
	W BSR STATUS GIE/GIEI	H, PEIE/GIEL	= IOS = WS = BSRS = STATUSS I, PEIE/GIEL = 1			Before Instruct W After Instruction W	ction = 07h on = value of	f kn			

TSTFSZ Test f, Skip if 0							
Syntax:	TSTFSZ f {	,a}					
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]						
Operation:	skip if f = 0						
Status Affected:	None						
Encoding:	0110	011a fff	f ffff				
Description:	on fetched ion execution executed, struction. It is selected. It is select the ed instruction etion operates addressing Fh). See ented and s in Indexed details.						
Worde:	1						
Cycles:	1(2)						
Cycles.	Note: 3 cy by a	Note: 3 cycles if skip and followed by a 2-word instruction.					
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read	Process	No				
lf skin [.]	register i	Dala	operation				
01	02	03	04				
No	No	No	No				
operation	operation	operation	operation				
If skip and followe	d by 2-word in	struction:					
Q1	Q2	Q3	Q4				
No	No	No	No				
operation	operation	operation	operation				
NO	NO	N0 operation	NO				
operation	operation	operation	operation				
Example:	HERE 1 NZERO : ZERO :	ISTFSZ CNT :	, 1				
Before Instruc	tion						
PC	= Ad	dress (HERE))				
After Instruction	on						
If CNT PC	100 = hA =	h, dress (ZERO))				
If CNT PC	≠ 001 = Ad	h, dress (NZERO)				

XORLW	Exclusiv	Exclusive OR Literal with W						
Syntax:	XORLW	k						
Operands:	$0 \le k \le 25$	5						
Operation:	(W) .XOR	$k \rightarrow W$						
Status Affected:	N, Z							
Encoding:	0000	1010 kkkk kk			kkkk			
Description:	The conte the 8-bit lit in W.	nts of W a teral 'k'. T	are X(he re	ORe sult	ed with is placed			
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3			Q4			
Decode	Read literal 'k'	Proce: Data	SS I	Wr	ite to W			
Example:	XORLW	0AFh						
Before Instruc W	tion = B5h							
After Instructio W	on = 1Ah							

Operating Conditions: $3.0V < VDD < 5.5V$, $-40^{\circ}C < TA < +85^{\circ}C$ (unless otherwise stated).									
Param No.	Sym	Characteristics	Min	Тур	Мах	Units	Comments		
D300	VIOFF	Input Offset Voltage		±5.0	±10	mV			
D301	VICM	Input Common Mode Voltage*	0	—	Vdd - 1.5	V			
D302	CMRR	Common Mode Rejection Ratio*	55		—	dB			
300	TRESP	Response Time ^{(1)*}	_	150	400	ns	PIC18FXXXX		
300A			—	150	600	ns	PIC18LFXXXX, VDD = 2.0V		
301	Тмс2оv	Comparator Mode Change to Output Valid*		_	10	μS			

TABLE 27-2: COMPARATOR SPECIFICATIONS

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD – 1.5)/2 while the other input transitions from Vss to VDD.

TABLE 27-3: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +85°C (unless otherwise stated).									
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments		
D310	VRES	Resolution	VDD/24		VDD/32	LSb			
D311	VRAA	Absolute Accuracy	_	_	1/4	LSb	Low Range (CVRR = 1)		
			—		1/2	LSb	High Range (CVRR = 0)		
D312	VRur	Unit Resistor Value (R)*	_	2k	—	Ω			
310	TSET	Settling Time ^{(1)*}			10	μS			

* These parameters are characterized but not tested.

Note 1: Settling time measured while CVRR = 1 and CVR3:CVR0 transitions from '0000' to '1111'.

TABLE 27-15: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characterist	Characteristic			Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDI Data Input	to SCK Edge	100	—	ns	
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edge		100	-	ns	
75	TDOR	SDO Data Output Rise Time	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	45	ns	VDD = 2.0V
76	TDOF	SDO Data Output Fall Time		—	25	ns	
78	TscR	SCK Output Rise Time	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	45	ns	VDD = 2.0V
79	TscF	SCK Output Fall Time		—	25	ns	
80	TscH2doV,	SDO Data Output Valid after	PIC18FXXXX	—	50	ns	
	TscL2DoV	SCK Edge	PIC18LFXXXX	—	100	ns	VDD = 2.0V
81	TDOV2SCH, TDOV2SCL	SDO Data Output Setup to SO	SDO Data Output Setup to SCK Edge		-	ns	

FIGURE 27-18: MASTER SSP I²C[™] BUS START/STOP BITS TIMING WAVEFORMS

|--|

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA	Start condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)			Repeated Start condition
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)			
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ns	After this period, the first
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		clock pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—		
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ns	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—		
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ns	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

FIGURE 27-19: MASTER SSP I²C[™] BUS DATA TIMING

NOTES:

APPENDIX E: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442.*" The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.

APPENDIX F: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN726, "PIC17CXXX to PIC18CXXX Migration.*" This Application Note is available as Literature Number DS00726.