

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	80KB (40K × 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4682t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

If the IRCF bits were previously at a non-zero value or if INTSRC was set before setting SCS1 and the INTOSC source was already stable, the IOFS bit will remain set.

On transitions from RC_RUN mode to PRI_RUN mode, the device continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 3-4). When the clock switch is complete, the IOFS bit is cleared, the OSTS bit is set and the primary clock is providing the device clock. The IDLEN and SCS bits are not affected by the switch. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

FIGURE 3-3: TRANSITION TIMING TO RC_RUN MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	51
EEADRH	_						EEPROM A Register Hig	ddress h Byte	53
EEADR	EEPROM Address Register Low Byte						53		
EEDATA	EEPROM I	Data Registe	r						53
EECON2	EEPROM	Control Regis	ster 2 (not a	physical re	egister)				53
EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	53
IPR2	OSCFIP	CMIP ⁽¹⁾	_	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP ⁽¹⁾	53
PIR2	OSCFIF	CMIF ⁽¹⁾	—	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽¹⁾	54
PIE2	OSCFIE	CMIE ⁽¹⁾	_	EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE ⁽¹⁾	54

TABLE 7-1: REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash/EEPROM access.

Note 1: These bits are available in PIC18F4682/4685 devices and reserved in PIC18F2682/2685 devices.

8.0 8 x 8 HARDWARE MULTIPLIER

8.1 Introduction

All PIC18 devices include an 8 x 8 hardware multiplier as part of the ALU. The multiplier performs an unsigned operation and yields a 16-bit result that is stored in the product register pair, PRODH:PRODL. The multiplier's operation does not affect any flags in the STATUS register.

Making multiplication a hardware operation allows it to be completed in a single instruction cycle. This has the advantages of higher computational throughput and reduced code size for multiplication algorithms and allows the PIC18 devices to be used in many applications previously reserved for digital signal processors. A comparison of various hardware and software multiply operations, along with the savings in memory and execution time, is shown in Table 8-1.

8.2 Operation

Example 8-1 shows the instruction sequence for an 8 x 8 unsigned multiplication. Only one instruction is required when one of the arguments is already loaded in the WREG register.

Example 8-2 shows the sequence to do an 8 x 8 signed multiplication. To account for the signed bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 8-1: 8 x 8 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1, W	;
MULWF	ARG2	; ARG1 * ARG2 ->
		; PRODH:PRODL

EXAMPLE 8-2: 8 x 8 SIGNED MULTIPLY

		ROUTINE	
MOVF	ARG1, W		
MULWF	ARG2	; ARG1 * ARG2 ->	
		; PRODH:PRODL	
BTFSC	ARG2, SB	; Test Sign Bit	
SUBWF	PRODH, F	; PRODH = PRODH	
		; – ARG1	
MOVF	ARG2, W		
BTFSC	ARG1, SB	; Test Sign Bit	
SUBWF	PRODH, F	; PRODH = PRODH	
		; – ARG2	

		Program	Cvcles	Time			
Routine	Multiply Method	Memory (Words)	(Max)	@ 40 MHz	@ 10 MHz	@ 4 MHz	
9 v 9 uppignod	Without hardware multiply	13	69	6.9 μs	27.6 μs	69 µs	
8 x 8 unsigned	Hardware multiply	1	1	100 ns	400 ns	1 μs	
9 x 9 signed	Without hardware multiply	33	91	9.1 μs	36.4 μs	91 μs	
8 x 8 signed	Hardware multiply	6	6	600 ns	2.4 μs	6 μs	
16 x 16 uppigpod	Without hardware multiply	21	242	24.2 μs	96.8 μs	242 μs	
To x To unsigned	Hardware multiply	28	28	2.8 μs	11.2 μs	28 μs	
16 x 16 signed	Without hardware multiply	52	254	25.4 μs	102.6 μs	254 μs	
	Hardware multiply	35	40	4.0 μs	16.0 μs	40 μs	

TABLE 8-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS

13.0 TIMER2 MODULE

The Timer2 module incorporates the following features:

- 8-bit timer and period registers (TMR2 and PR2, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4 and 1:16)
- Software programmable postscaler (1:1 through 1:16)
- Interrupt on TMR2 to PR2 match
- Optional use as the shift clock for the MSSP module

The module is controlled through the T2CON register (Register 13-1), which enables or disables the timer and configures the prescaler and postscaler. Timer2 can be shut off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

A simplified block diagram of the module is shown in Figure 13-1.

13.1 Timer2 Operation

In normal operation, TMR2 is incremented from 00h on each clock (Fosc/4). A 2-bit counter/prescaler on the clock input gives direct input, divide-by-4 and divideby-16 prescale options. These options are selected by the prescaler control bits, T2CKPS1:T2CKPS0 (T2CON<1:0>). The value of TMR2 is compared to that of the period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/postscaler (see Section 13.2 "Timer2 Interrupt").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, while the PR2 register initializes at FFh. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- · a write to the T2CON register
- any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6-3	T2OUTPS3:T2OUTPS0: Timer2 Output Postscale Select bits
	0000 = 1:1 Postscale
	0001 = 1:2 Postscale
	•
	•
	•
	1111 = 1:16 Postscale
bit 2	TMR2ON: Timer2 On bit
	1 = Timer2 is on
	0 = Timer2 is off
bit 1-0	T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits
	00 = Prescaler is 1
	01 = Prescaler is 4
	1x = Prescaler is 16

15.0 CAPTURE/COMPARE/PWM (CCP1) MODULES

PIC18F2682/2685 devices have one CCP1 module. PIC18F4682/4685 devices have two CCP1 (Capture/ Compare/PWM) modules. CCP1, discussed in this chapter, implements standard Capture, Compare and Pulse-Width Modulation (PWM) modes.

ECCP1 implements an Enhanced PWM mode. The ECCP1 implementation is discussed in Section 16.0 "Enhanced Capture/Compare/PWM (ECCP1) Module". The CCP1 module contains a 16-bit register which can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register. For the sake of clarity, all CCP1 module operation in the following sections is described with respect to CCP1, but is equally applicable to ECCP1.

Capture/ and Compare operations described in this chapter apply to all standard and Enhanced CCP1 modules. The operations of PWM mode, described in **Section 15.4 "PWM Mode"**, apply to CCP1 only.

REGISTER 15-1: CCP1CON: CAPTURE/COMPARE/PWM CONTROL REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7							bit 0
Legend:							

· J · ·				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

s '0'
3

bit 5-4	DC1B1:DC1B0: CCP1 Module PWM Duty Cycle bit 1 and bit 0
	Capture mode:
	Unused.
	Compare mode:
	Unused.
	PWM mode:
	These bits are the two LSbs (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight MSbs (DC1B9:DC1B2) of the duty cycle are found in CCPR1L.
bit 3-0	CCP1M3:CCP1M0: CCP1 Module Mode Select bits
	0000 = Capture/Compare/PWM disabled (resets CCP1 module)
	0001 - Ceserved 0010 = Compare mode: toggle output on match (CCP1IF bit is set)
	0011 = Reserved
	0100 = Capture mode; every falling edge or CAN message received (time-stamp) ⁽¹⁾
	0101 = Capture mode; every rising edge or CAN message received (time-stamp) ⁽¹⁾
	0110 = Capture mode; every 4th rising edge or every 4th CAN message received (time-stamp) ⁽¹⁾
	0111 = Capture mode; every 16th rising edge or every 16th CAN message received (time-stamp) ⁽¹⁾
	1000 = Compare mode; initialize CCP1 pin low; on compare match, force CCP1 pin high (CCPIF bit is set)
	1001 = Compare mode; initialize CCP pin high; on compare match, force CCP1 pin low (CCPIF bit is set)
	1010 = Compare mode; generate software interrupt on compare match (CCP1IF bit is set, CCP1 pin reflects I/O state)
	1011 = Compare mode: trigger special event: reset timer (TMR1 or TMR3. CCP1IF bit is set)

11xx = PWM mode

Note 1: Selected by CANCAP (CIOCON<4>) bit; overrides the CCP1 input pin source.

16.0 ENHANCED CAPTURE/ COMPARE/PWM (ECCP1) MODULE

Note: The ECCP1 module is implemented only in PIC18F4682/4685 (40/44-pin) devices.

In PIC18F4682/4685 devices, ECCP1 is implemented as a standard CCP1 module with Enhanced PWM capabilities. These include the provision for 2 or 4 output channels, user-selectable polarity, dead-band control and automatic shutdown and restart. The enhanced features are discussed in detail in **Section 16.4 "Enhanced PWM Mode"**. Capture, Compare and single output PWM functions of the ECCP1 module are the same as described for the standard CCP1 module.

The control register for the Enhanced CCP1 module is shown in Register 16-1. It differs from the CCP1CON register in the PIC18F2682/2685 devices in that the two Most Significant bits are implemented to control PWM functionality.

REGISTER 16-1: ECCP1CON: ENHANCED CAPTURE/COMPARE/PWM CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EPWM1M1	EPWM1M0	EDC1B1	EDC1B0	ECCP1M3	ECCP1M2	ECCP1M1	ECCP1M0
bit 7							bit 0

Legend:								
R = Readable b	bit	W = Writable bit	U = Unimplemented bi	t, read as '0'				
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7-6	EPWM1M1:E	PWM1M0: Enhanced PW	M Output Configuration bit	s				
	If ECCP1M3:E	<u>ECCP1M2 = 00, 01, 10:</u> igned as Capture/Compar	e input/output; P1B, P1C,	P1D assigned as port pins				
	If ECCP1M3:E 00 = Single or 01 = Full-bridg 10 = Half-bridg 11 = Full-bridg	<u>CCP1M2 = 11:</u> utput: P1A modulated; P1 ge output forward: P1D mo ge output: P1A, P1B modu ge output reverse: P1B m	B, P1C, P1D assigned as p odulated; P1A active; P1B llated with dead-band cont odulated; P1C active; P1A	port pins , P1C inactive rol; P1C, P1D assigned as port pins , P1D inactive				
bit 5-4	EDC1B1:EDC Capture mode Unused.	: 1B0 : ECCP1 Module PW <u>::</u>	M Duty Cycle bit 1 and bit	0				
	<u>Compare mode:</u> Unused. <u>PWM mode:</u> These bits are the two LSbs of the 10-bit PWM duty cycle. The eight MSbs of the duty cycle are found							
hit 2 0	in ECCPR1L.	CD1M0: Enhanced CCD	Mada Salaat hita					
DIL 3-0	0000 = Captu	re/Compare/PWM off (res	sets ECCP1 module)					
	0010 = Comp	ved pare mode; toggle output o rved	on match					
	0100 = Captu 0101 = Captu 0110 = Captu 0111 = Captu	ire mode; every falling edg ire mode; every rising edg ire mode; every 4th rising ire mode; every 16th rising	ge e edge g edge					
	1000 = Comp 1001 = Comp 1010 = Comp 1011 = Comp	are mode; initialize ECCF are mode; initialize ECCP pare mode; generate softw pare mode; trigger special	¹ 1 pin low; set output on co 1 pin high; clear output on co rare interrupt only; ECCP1 event (ECCP1 resets TMF	ompare match (set ECCP1IF) compare match (set ECCP1IF) pin reverts to I/O state R1 or TMR3, sets ECCP1IF bit and				
	starts 1100 = PWM 1101 = PWM 1110 = PWM 1111 = PWM	the A/D conversion on EC mode; P1A, P1C active-h mode; P1A, P1C active-h mode; P1A, P1C active-la mode; P1A, P1C active-la	CCP1 match) igh; P1B, P1D active-high igh; P1B, P1D active-low ow; P1B, P1D active-high ow; P1B, P1D active-low					

REGISTER 17-3: SSPSTAT: MSSP STATUS REGISTER (I²C[™] MODE)

R/W-0) R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/Ā	P ⁽¹⁾	S ⁽¹⁾	R/W ^(2,3)	UA	BF
bit 7	·				·		bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value	e at POR	'1' = Bit is set	:	'0' = Bit is cl	eared	x = Bit is unkr	nown
bit 7	SMP: Slew R	ate Control bit					
	In Master or S	<u>Slave mode:</u>					
	1 = Slew rate	e control disab	ed for Standa	rd Speed mod	e (100 kHz and	1 MHz)	
hit C					JU KHZ)		
DILO	In Master or S	Select bit					
	1 = Enable Si	MBus specific	inputs				
	0 = Disable S	MBus specific	inputs				
bit 5	D/A: Data/Ad	dress bit					
	In Master mod	<u>de:</u>					
	Reserved.						
	In Slave mode	<u>e:</u> that the lest b	to received o	transmitted	vaa data		
	0 = Indicates	that the last by	te received of	r transmitted v	vas uala		
bit 4	P: Stop bit ⁽¹⁾						
	1 = Indicates	that a Stop bit	has been dete	ected last			
	0 = Stop bit w	as not detecte	d last				
bit 3	S: Start bit ⁽¹⁾						
	1 = Indicates	that a Start bit	has been det	ected last			
	0 = Start bit w	as not detecte	d last	(2.3)			
bit 2	R/W: Read/W	rite Informatio	n bit (I ² C mod	e only)(2,3)			
	<u>In Slave mode</u> 1 = Read	<u>ə:</u>					
	0 = Write						
	In Master mod	de:					
	1 = Transmit i	is in progress					
1.11.4		is not in progre	SS	1 I X			
DIT 1	UA: Update A	ddress bit (10	-Bit Slave mo	de only)	in the CODADD		
	1 = Indicates 0 = Address of	loes not need	to be updated	e the address	in the SSPADD	register	
bit 0	BF: Buffer Fu	Il Status bit					
	In Receive mo	ode:					
	1 = Receive c	complete, SSP	BUF is full				
	0 = Receive is	s not complete	, SSPBUF is e	empty			
	In Transmit m	<u>ode:</u> mit in prograd	a (daga pat in	aluda tha ACk	and Stan hita)		
	0 = Data trans	smit complete	does not inclu	ude the ACK a	and Stop bits), S	SPBUF is empt	ty
Not- 1				in ala I	• // -	F	-
NOTE 1:	This bit holds the C	$\frac{1}{100}$ Keset and $\frac{1}{100}$	when SSPEN	the least addre	oc motob Thick	nit is only valid.	from the
Ζ.	address match to t	he next Start h	hit. Stop bit or	not ACK bit	ss materi. This i		

3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Idle mode.

			1411 0	10000	IX U	11-0	11-7
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unk	nown
bit 7	SPEN: Seria	I Port Enable bi	t				
	1 = Serial po 0 = Serial po	ort enabled (con ort disabled (hel	figures RX/D ⁻ d in Reset)	Γ and TX/CK p	oins as serial po	rt pins)	
bit 6	RX9: 9-Bit R	eceive Enable I	oit				
	1 = Selects 9 0 = Selects 8	9-bit reception 3-bit reception					
bit 5	SREN: Singl	e Receive Enat	ole bit				
	<u>Asynchronou</u> Don't care.	<u>us mode:</u>					
	Synchronous	s mode – Maste	<u>r:</u>				
	1 = Enables	single receive					
	0 = Disables	s single receive	ntion is comp	lata			
	Synchronous	s mode – Slave:					
	Don't care.						
bit 4	CREN: Cont	inuous Receive	Enable bit				
	<u>Asynchronou</u> 1 = Enables	<u>us mode:</u> receiver					
	0 = Disables	receiver					
	Synchronous	<u>s mode:</u>					
	1 = Enables 0 = Disables	continuous rece continuous rec	eive until enal eive	ble bit CREN is	s cleared (CREI	N overrides SRI	EN)
bit 3	ADDEN: Add	dress Detect En	able bit				
	Asynchronou	<u>us mode 9-bit (F</u>	<u>RX9 = 1):</u>				0 D 0 1 1
	1 = Enables 0 = Disables	s address detect	tion, enables	are received a	and ninth bit car	buffer when R be used as pa	SR<8> is set irity bit
	Asynchronou	us mode 9-bit (F	<u>8X9 = 0):</u>				
hit 2	FERR: Fram	ing Error bit					
	1 = Framino	error (can be u	odated by rea	dina RCRFG	register and rec	eiving next vali	d bvte)
	0 = No frami	ng error			- 3	g))
bit 1	OERR: Over	run Error bit					
	1 = Overrun	error (can be cl	eared by clea	ring bit CREN)		
1.11.0	0 = No overr						
bit U	RX9D: 9th b	It of Received D	ata			c	

REGISTER 18-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

					SYNC	= 0, BRGH	l = 0, BRC	G16 = 0				
BAUD	Fosc	= 40.000) MHz	Fosc = 20.000 MHz			Foso	c = 10.000) MHz	Fos	c = 8.000	MHz
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	_						_			_		
1.2	—	—	—	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	—	_	_
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	_	—	—

TABLE 18-3: BAUD RATES FOR ASYNCHRONOUS MODES

			S	YNC = 0, E	BRGH = c), BRG16 =	0		
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fos	c = 1.000	MHz
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12
2.4	2.404	0.16	25	2.403	-0.16	12	_	_	_
9.6	8.929	-6.99	6	_	_	_	_	_	_
19.2	20.833	8.51	2	_	_	_	_	_	_
57.6	62.500	8.51	0	_	_	_	_	_	_
115.2	62.500	-45.75	0	—	—	_	_	—	

					SYNC	= 0, BRGH	i = 1, BRG	616 = 0					
BAUD	Fosc	= 40.000) MHz	Fosc	= 20.00	0 MHz	Fosc	= 10.00	0 MHz	Fos	Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	—	_			_	_	_	_	_	_	_	_	
1.2	—	_	—	_	_	_	—	—	—	—	—	—	
2.4	—	_	_	—	_	_	2.441	1.73	255	2.403	-0.16	207	
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51	
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25	
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8	
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_	

			S	YNC = 0, E	BRGH = 1	, BRG16 =	0			
BAUD	Foso	c = 4.000	MHz	Fos	c = 2.000	MHz	Fos	c = 1.000	1.000 MHz	
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3		_	_		_	_	0.300	-0.16	207	
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51	
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25	
9.6	9.615	0.16	25	9.615	-0.16	12	—	—	—	
19.2	19.231	0.16	12	—	—	—	—	—	—	
57.6	62.500	8.51	3	—	—	—	—	—	—	
115.2	125.000	8.51	1	—	_	—	_	_	—	

BRG Value	XXXXh		001Cb
	70000		
		Edge #1Edge #2Edge #3Edge #4	— Edge #5
RX pin		Start bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7	Stop bit
			1
BRG Clock		hnnnnnnnnhnnnnnnnnnnnnnnnnnnn h n	
	Set by User —		Auto-Cleared
ABDEN bit			
			1
RCIF bit			<u>,</u>
(interrupt)			
Read			: h
RCREG			I I
			1
SPBRG		XXXXh	1Ch
SPBRGH		XXXXh	00h

FIGURE 18-2: BRG OVERFLOW SEQUENCE

TABLE 18-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	51	
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	54	
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	54	
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	54	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	53	
TXREG	EUSART T	ransmit Reg	ister						53	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	53	
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	53	
SPBRGH	GH EUSART Baud Rate Generator Register High Byte									
SPBRG	EUSART E	Baud Rate G	enerator Re	gister Low	Byte				53	

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: Reserved in PIC18F2682/2685 devices; always maintain these bits clear.

'1' = Bit is set

REGISTER 23-9: TXBnEIDL: TRANSMIT BUFFER n EXTENDED IDENTIFIER REGISTERS, LOW BYTE $[0 \le n \le 2]$

		•	•				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	

'0' = Bit is cleared

x = Bit is unknown

bit 7-0 **EID7:EID0:** Extended Identifier bits (not used when transmitting standard identifier message)

REGISTER 23-10: TXBnDm: TRANSMIT BUFFER n DATA FIELD BYTE m REGISTERS $[0 \le n \le 2, 0 \le m \le 7]$

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TXBnDm7 | TXBnDm6 | TXBnDm5 | TXBnDm4 | TXBnDm3 | TXBnDm2 | TXBnDm1 | TXBnDm0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0**TXBnDm7:TXBnDm0:** Transmit Buffer n Data Field Byte m bits (where 0 ≤ n < 3 and 0 ≤ m < 8)</th>Each transmit buffer has an array of registers. For example, Transmit Buffer 0 has 7 registers: TXB0D0 to TXB0D7.

-n = Value at POR

TABLE 23-1: CAN CONTROLLER REGISTER MAP

Address ⁽¹⁾	Name	Address	Name	Address	Name	Address	Name
F7Fh	SPBRGH ⁽³⁾	F5Fh	CANCON_RO0	F3Fh	CANCON_RO2	F1Fh	RXM1EIDL
F7Eh	BAUDCON ⁽³⁾	F5Eh	CANSTAT_RO0	F3Eh	CANSTAT_RO2	F1Eh	RXM1EIDH
F7Dh	(4)	F5Dh	RXB1D7	F3Dh	TXB1D7	F1Dh	RXM1SIDL
F7Ch	(4)	F5Ch	RXB1D6	F3Ch	TXB1D6	F1Ch	RXM1SIDH
F7Bh	(4)	F5Bh	RXB1D5	F3Bh	TXB1D5	F1Bh	RXM0EIDL
F7Ah	(4)	F5Ah	RXB1D4	F3Ah	TXB1D4	F1Ah	RXM0EIDH
F79h	ECCP1DEL ⁽³⁾	F59h	RXB1D3	F39h	TXB1D3	F19h	RXM0SIDL
F78h	(4)	F58h	RXB1D2	F38h	TXB1D2	F18h	RXM0SIDH
F77h	ECANCON	F57h	RXB1D1	F37h	TXB1D1	F17h	RXF5EIDL
F76h	TXERRCNT	F56h	RXB1D0	F36h	TXB1D0	F16h	RXF5EIDH
F75h	RXERRCNT	F55h	RXB1DLC	F35h	TXB1DLC	F15h	RXF5SIDL
F74h	COMSTAT	F54h	RXB1EIDL	F34h	TXB1EIDL	F14h	RXF5SIDH
F73h	CIOCON	F53h	RXB1EIDH	F33h	TXB1EIDH	F13h	RXF4EIDL
F72h	BRGCON3	F52h	RXB1SIDL	F32h	TXB1SIDL	F12h	RXF4EIDH
F71h	BRGCON2	F51h	RXB1SIDH	F31h	TXB1SIDH	F11h	RXF4SIDL
F70h	BRGCON1	F50h	RXB1CON	F30h	TXB1CON	F10h	RXF4SIDH
F6Fh	CANCON	F4Fh	CANCON_RO1 ⁽²⁾	F2Fh	CANCON_RO3 ⁽²⁾	F0Fh	RXF3EIDL
F6Eh	CANSTAT	F4Eh	CANSTAT_RO1 ⁽²⁾	F2Eh	CANSTAT_RO3 ⁽²⁾	F0Eh	RXF3EIDH
F6Dh	RXB0D7	F4Dh	TXB0D7	F2Dh	TXB2D7	F0Dh	RXF3SIDL
F6Ch	RXB0D6	F4Ch	TXB0D6	F2Ch	TXB2D6	F0Ch	RXF3SIDH
F6Bh	RXB0D5	F4Bh	TXB0D5	F2Bh	TXB2D5	F0Bh	RXF2EIDL
F6Ah	RXB0D4	F4Ah	TXB0D4	F2Ah	TXB2D4	F0Ah	RXF2EIDH
F69h	RXB0D3	F49h	TXB0D3	F29h	TXB2D3	F09h	RXF2SIDL
F68h	RXB0D2	F48h	TXB0D2	F28h	TXB2D2	F08h	RXF2SIDH
F67h	RXB0D1	F47h	TXB0D1	F27h	TXB2D1	F07h	RXF1EIDL
F66h	RXB0D0	F46h	TXB0D0	F26h	TXB2D0	F06h	RXF1EIDH
F65h	RXB0DLC	F45h	TXB0DLC	F25h	TXB2DLC	F05h	RXF1SIDL
F64h	RXB0EIDL	F44h	TXB0EIDL	F24h	TXB2EIDL	F04h	RXF1SIDH
F63h	RXB0EIDH	F43h	TXB0EIDH	F23h	TXB2EIDH	F03h	RXF0EIDL
F62h	RXB0SIDL	F42h	TXB0SIDL	F22h	TXB2SIDL	F02h	RXF0EIDH
F61h	RXB0SIDH	F41h	TXB0SIDH	F21h	TXB2SIDH	F01h	RXF0SIDL
F60h	RXB0CON	F40h	TXB0CON	F20h	TXB2CON	F00h	RXF0SIDH

Note 1: Shaded registers are available in Access Bank low area, while the rest are available in Bank 15.

2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the controller register due to the Microchip header file requirement.

3: These registers are not CAN registers.

4: Unimplemented registers are read as '0'.

Mnemonic, Operands		Description		16-Bit Instruction Word				Status Bits	
		Description	Cycles	MSb			LSb	Affected	Notes
BIT-ORIEN	NTED OP	ERATIONS							
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, b, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2
CONTROL	OPERA	TIONS	•						
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call subroutine1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	—	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	n	Go to address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	—	No Operation	1	0000	0000	0000	0000	None	
NOP		No Operation	1	1111	XXXX	XXXX	XXXX	None	4
POP		Pop top of return stack (IOS)	1	0000	0000	0000	0110	None	
PUSH		Push top of return stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n		2	1101	lnnn	nnnn	nnnn	None	
RESET		Software device Reset	1	0000	0000	1111	1111		
KEIFIE	S	Return from interrupt enable	2	0000	0000	0001	000s	GIE/GIEH,	
DETUN	Ŀ		2	0000	1100	1-1-1-1	1-1-1-1	PEIE/GIEL	
	ĸ	Return with literal in WREG	2	0000	TINO	KKKK	KKKK	None	
	S	Return from Subroutine	2	0000	0000	0001	UULS		
SLEEP		Go into Standby mode	1	0000	0000	0000	0011	10, PD	

TABLE 25-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

COMF	Complem	ent f		CPF	SEQ	Compare	f with W, Sk	tip if f = W
Syntax:	COMF f	{,d {,a}}		Synt	ax:	CPFSEQ	f {,a}	
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$			Ope	rands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$		
Operation:	$a \in [0,1]$ $(\overline{f}) \rightarrow dest$			Ope	ration:	(f) - (W), skip if $(f) =$	(W)	
Status Affected:	N, Z			Stati	is Affected.	None	ompanson)	
Encoding:	0001	11da ff	ff ffff	Enco	ndina:	0110	001a ffi	ff ffff
Description: The contents of register 'f' are complemented. If 'd' is '1', the result is stored in W. If 'd' is '0', the result is stored back in register 'f' (default).		Desc	cription:	Compares location 'f' t performing	the contents of to the contents an unsigned s	data memory of W by ubtraction.		
	If 'a' is '0', t If 'a' is '1', t GPR bank	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).				discarded a instead, ma instruction.	and a NOP is exactly a two	ecuted -cycle
	If 'a' is '0' a set is enabl in Indexed mode wher	nd the extend led, this instru Literal Offset / never f < 95 (5	ed instruction ction operates Addressing Fh) See			If 'a' is '0', t If 'a' is '0', t GPR bank	he Access Bar he BSR is use (default).	nk is selected. d to select the
	Section 25 Bit-Oriente Literal Offs	.2.3 "Byte-Or ed Instruction set Mode" for	iented and is in Indexed details.			If 'a' is '0' a set is enab in Indexed mode wher	nd the extende led, this instruc Literal Offset A pever f < 95 (56	ed instruction ction operates Addressing =h) See
Words:	1					Section 25	.2.3 "Byte-Ori	iented and
Cycles:	1					Bit-Oriente	ed Instruction set Mode" for	s in Indexed details.
	02	02	04	Word	ds:	1		
Decode	Q2 Pead	Q3 Process	Q4 Write to	Cycl	es:	1(2)		
Decode	register 'f'	Data	destination			Note: 3 cy by a	cles if skip and 2-word instru	d followed ction.
Example:	COME			QC	cycle Activity:			
	COMP	REG, 0, 0			Q1	Q2	Q3	Q4
REG	= 13h				Decode	Read	Process	No
After Instruction	on			lf ol		register f	Data	operation
REG	= 13h			11 51	ωμ. Ο1	02	03	04
VV	= ECh				No	No	No	No
					operation	operation	operation	operation
				lf sk	kip and followe	d by 2-word in	struction:	• •
					Q1	Q2	Q3	Q4
					No	No	No	No
					operation	operation	operation	operation
					operation	operation	operation	operation
				Exar	nple:	HERE	CPFSEQ REG	;, 0

EQUAL : **Before Instruction** PC Address W HERE ? ? = = REG = After Instruction If REG PC If REG PC W; = Address (EQUAL) W; = ≠ Address (NEQUAL) =

IOR	LW	Inclusive	Inclusive OR Literal with W						
Synta	ax:	IORLW k	IORLW k						
Oper	ands:	$0 \le k \le 25$	5						
Oper	ation:	(W) .OR. k	$x \rightarrow W$						
Statu	is Affected:	N, Z							
Enco	oding:	0000	1001	kkk	k	kkkk			
Desc	ription:	The contents of W are ORed with the eight-bit literal 'k'. The result is placed in W.							
Word	ls:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3	3	(Q4			
	Decode	Read literal 'k'	Proce Data	ess a	Write	e to W			
Exan	nple:	IORLW	35h						
	Before Instruc W	tion = 9Ah							

BFh

After Instruction W

=

IORWF	Inclusive OR W with f					
Syntax:	IORWF f	{,d {,a}}				
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$					
Operation:	(W) .OR. (f)	\rightarrow dest				
Status Affected:	N, Z					
Encoding:	0001	00da	ffff	ffff		
Description:	Inclusive O '0', the result is (default). If 'a' is '0', tt If 'a' is '1', tt GPR bank (If 'a' is '0' a set is enabl in Indexed I mode when Section 25 Bit-Oriente Literal Offs	Inclusive OR W with register 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	3	Q4		
Decode	Read register 'f'	Proce Data	ess V a de	Vrite to stination		
Example:	IORWF RE	ESULT,	0, 1			

imple.	101	NWE
Before Instructi	on	
RESULT	=	13h
W	=	91h
After Instruction	n	
RESULT	=	13h
W	=	93h

DS39761C-page 388

TSTFSZ	Test f, Ski	ip if 0					
Syntax:	TSTFSZ f {	,a}					
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]					
Operation:	skip if f = 0						
Status Affected:	None						
Encoding:	0110	011a fff	f ffff				
Description: If 'f' = 0, the next instruction fetched during the current instruction executi is discarded and a NOP is executed, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Medea" for dotains							
Worde:	1						
Cycles:	1(2)						
Cycles.	Note: 3 cy by a	Note: 3 cycles if skip and followed by a 2-word instruction.					
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read	Process	No				
lf skin [.]	register i	Dala	operation				
01	02	03	04				
No	No	No	No				
operation	operation	operation	operation				
If skip and followe	d by 2-word in	struction:					
Q1	Q2	Q3	Q4				
No	No	No	No				
operation	operation	operation	operation				
NO	NO	N0 operation	NO				
operation	operation	operation	operation				
Example:	HERE 1 NZERO : ZERO :	ISTFSZ CNT :	, 1				
Before Instruc	tion						
PC	= Ad	dress (HERE))				
After Instruction	on						
If CNT PC	100 = hA =	h, dress (ZERO))				
If CNT PC	≠ 001 = Ad	h, dress (NZERO)				

XORLW	Exclusiv	e OR Li	teral	wit	h W
Syntax:	XORLW	k			
Operands:	$0 \le k \le 25$	5			
Operation:	(W) .XOR	$k \rightarrow W$			
Status Affected:	N, Z				
Encoding:	0000	1010	kkk	c k	kkkk
Description:	The conte the 8-bit lit in W.	nts of W a teral 'k'. T	are X(he re	ORe sult	ed with is placed
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3			Q4
Decode	Read literal 'k'	Proce: Data	SS I	Wr	ite to W
Example:	XORLW	0AFh			
Before Instruc W	tion = B5h				
After Instructio W	on = 1Ah				

27.2 DC Characteristics: Power-Down and Supply Current PIC18F2682/2685/4682/4685 (Industrial) PIC18LF2682/2685/4682/4685 (Industrial) (Continued)

PIC18LF (Indu	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F2 (Indu	682/2685/4682/4685 strial, Extended)	Standa Operati	rd Oper	erating Co	ponditions (unless -40°C \leq TA -40°C \leq TA	s otherwise stated $a \le +85^{\circ}$ C for indust $a \le +125^{\circ}$ C for exte	I) irial nded	
Param No.	Device	Тур	Max	Units		Condit	ions	
	Supply Current (IDD) ^(2,3)							
	PIC18LF268X/468X	15	36	μA	-40°C			
		15	36	μA	+25°C	VDD = 2.0V		
		15	36	μA	+85°C			
	PIC18LF268X/468X	40	100	μA	-40°C			
		35	100	μA	+25°C	VDD = 3.0V	Fosc = 31 kHz	
		30	100	μA	+85°C		Internal oscillator source)	
	All devices	105	200	μA	-40°C		,	
		90	200	μA	+25°C			
		80	200	μA	+85°C	VDD - 5.0V		
	Extended devices only	80	200	μA	+125°C			
	PIC18LF268X/468X	0.32	1	mA	-40°C			
		0.33	1	mA	+25°C	VDD = 2.0V		
		0.33	1	mA	+85°C			
	PIC18LF268X/468X	0.6	1.6	mA	-40°C			
		0.55	1.6	mA	+25°C	VDD = 3.0V	Fosc = 1 MHz	
		0.6	1.6	mA	+85°C		Internal oscillator source)	
	All devices	1.1	3	mA	-40°C			
		1.1	3	mA	+25°C			
		1	3	mA	+85°C	VDD = 5.0V		
	Extended devices only	1	3	mA	+125°C			
	PIC18LF268X/468X	0.8	2.2	mA	-40°C			
		0.8	2.2	mA	+25°C	VDD = 2.0V		
		0.8	2.2	mA	+85°C			
	PIC18LF268X/468X	1.3	3	mA	-40°C			
		1.3	3	mA	+25°C	VDD = 3.0V	FOSC = 4 MHz (RC RUN mode	
		1.3	3	mA	+85°C		Internal oscillator source)	
	All devices	2.5	5.3	mA	-40°C		, ,	
		2.5	5.3	mA	+25°C	Vn = 5 0V		
		2.5	5.3	mA	+85°C	VDD - 5.0V		
	Extended devices only	2.5	8	mA	+125°C			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- <u>OSC1</u> = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** For RC oscillator configurations, current through RExT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2RExT (mA) with RExT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

RXBnFIDL (Receive Buffer n	
Extended Identifier Low Byte) 201	
RYBnSIDH (Paceive Ruffer n	
Standard Identifier High Byte) 293	
RXBnSIDL (Receive Buffer n	
Standard Identifier Low Byte) 294	
RXERRCNT (Receive Error Count) 296	
RXEBCONn (Receive Eilter Buffer Control n) 309	
RXECONn (Receive Filter Control n) 308	
RXEnFIDH (Receive Acceptance Filter n	
Extended Identifier, High Byte) 306	
RXEnFIDI (Receive Accentance Filter n	
Extended Identifier I ow Byte) 306	
RXEnSIDH (Receive Acceptance Filter n	
Standard Identifier Filter High Byte) 305	
RXFnSIDL (Receive Acceptance Filter n	
Standard Identifier Filter, Low Byte)	
RXMnFIDH (Receive Acceptance Mask n	
Extended Identifier Mask High Byte) 307	
RXMnEIDL (Receive Acceptance Mask n	
Extended Identifier Mask Low Byte) 307	
RXMnSIDH (Receive Accentance Mask n	
Standard Identifier Mask High Byte) 306	
RYMnSIDI (Receive Accentance Mask n	
Standard Identifier Mask Low Byte) 307	
Spel C (Standard Data Bytes Filter Length Count) 308	
SDI LC (Stalidard Data Bytes Filter Length Could) . 300 SSDCON1 (MSSD Control 1, I^2 C Modo) 200	
SSECONT (MSSE Control 1, FC Mode)	
SSECON1 (MSSE Control 2, I^2 C Mode)	
SSPCONZ (MSSP CONTOL Z, T C Mode)	
SSPSTAT (MSSP Status, FC Mode)	
SSPSTAT (MSSP Status, SPI Mode)	
STATUS	
STRPTR (Stack Pointer)	
TUCON (Timeru Control)	
11CON (Timer1 Control)	
12CON (Timer2 Control)	
13CON (Timer's Control)	
TRISE (PORTE/PSP Control)	
IXBIE (Transmit Buffers Interrupt Enable)	
IXBnCON (Iransmit Buffer n Control)	
TXBnDLC (Transmit Buffer n	
Data Length Code)	
TXBnDm (Transmit Buffer n	
Data Field Byte m)286	
TXBnEIDH (Transmit Buffer n	
Extended Identifier, High Byte)	
TXBnEIDL (Transmit Buffer n	
Extended Identifier, Low Byte)	
TXBnSIDH (Transmit Buffer n	
Standard Identifier, High Byte)	
TXBnSIDL (Transmit Buffer n	
Standard Identifier, Low Byte)	
TXERRCNT (Transmit Error Count)	
TXSTA (Transmit Status and Control)230	
WDTCON (Watchdog Timer Control)	
RESET	
Resets	
Brown-out Reset (BOR)345	
Oscillator Start-up Timer (OST)	
Power-on Reset (POR)	
Power-up Timer (PWRT)	
RETFIE	
RETLW	
RETURN	

Return Address Stack	64
Associated Registers	64
Return Stack Pointer (STKPTR)	65
Revision History	
RLCF	397
RLNCF	
RRCF	398
RRNCF	399
S	
SCK	189
SDI	189
000	400

30N	109
SDI	189
SDO	189
SEC_IDLE Mode	40
SEC_RUN Mode	36
Serial Clock, SCK	189
Serial Data In (SDI)	189
Serial Data Out (SDO)	189
Serial Peripheral Interface. See SPI Mode.	
SETF	399
Slave Select (SS)	189
SLEEP	400
Sleep	
OSC1 and OSC2 Pin States	33
Software Simulator (MPI AB SIM)	417
Special Event Trigger See Compare (CCP1/ECCP1	Mod-
	mea
Special Event Trigger, See Compare (ECCP1 Module)	
Special Event migger: dee compare (2001 1 module)	
Man	72-77
SPI Mode (MSSP)	189
Associated Registers	197
Bus Mode Compatibility	197
Effects of a Reset	107
	107
Master Mode	10/
Master/Slave Connection	102
Operation	102
Operation in Power Managed Medec	107
Sorial Clock	197
Serial Data In	109
Serial Data III	109
Serial Data Out	189
Slave Mode	195
Slave Select	189
Slave Select Synchronization	195
SPI Clock	194
I ypical Connection	193
SS	189
SSPOV	219
SSPOV Status Flag	219
SSPSTAT Register	
R/W Bit 20	2, 203
Stack Full/Underflow Resets	66
Status Register	89
SUBFSR	411
SUBFWB	400
SUBLW	401
SUBULNK	411
SUBWF	401
SUBWFB	402
SWAPF	402