

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	80KB (40K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4682t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC18F2682/2685 PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number PDIP, SOIC	Pin Type	Buffer Type	Description
MCLR/VPP/RE3 MCLR	1	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low
VPP RE3		P I	ST	Reset to the device. Programming voltage input. Digital input.
OSC1/CLKI/RA7	9			Oscillator crystal or external clock input.
OSC1		I	ST	Oscillator crystal input or external clock source input. ST buffer when configured in RC mode: CMOS otherwise.
CLKI		I	CMOS	External clock source input. Always associated with pin function OSC1. (See related OSC2/CLKO pin.)
RA7		I/O	TTL	General purpose I/O pin.
OSC2/CLKO/RA6	10			Oscillator crystal or clock output.
OSC2		0	—	Oscillator crystal output. Connects to crystal or resonator in
СЬКО		ο	—	In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
RA6		I/O	TTL	General purpose I/O pin.
Legend: TTL = TTL cor	npatible in	put		CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

O = Output

ı. 4

Ρ = Power

REGISTER 6-1: EECON1: DATA EEPROM CONTROL REGISTER 1

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	—	FREE	WRERR ⁽¹⁾	WREN	WR	RD
bit 7							bit 0

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EEPGD: Flash Program or Data EEPROM Memory Select bit
	1 = Access Flash program memory
	0 = Access data EEPROM memory
bit 6	CFGS: Flash Program/Data EEPROM or Configuration Select bit
	1 = Access Configuration registers
	0 = Access Flash program or data EEPROM memory
bit 5	Unimplemented: Read as '0'
bit 4	FREE: Flash Row Erase Enable bit
	1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation)
	0 = Perform write-only
bit 3	WRERR: Flash Program/Data EEPROM Error Flag bit ⁽¹⁾
	 1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal operation or an improper write attempt)
	0 = The write operation completed
bit 2	WREN: Flash Program/Data EEPROM Write Enable bit
	1 = Allows write cycles to Flash program/data EEPROM
	0 = Inhibits write cycles to Flash program/data EEPROM
bit 1	WR: Write Control bit
	 1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.)
	0 = Write cycle to the EEPROM is complete
bit 0	RD: Read Control bit
	1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only
	be set (not cleared) in software. RD bit cannot be set when EEPGD = 1 or CFGS = 1.)
	U = Does not initiate an EEPROM read
	an a WDEDD assure the EEDOD and CEOC bits are not cleared. This allows the size of the

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

Pin Name	Function	I/O	TRIS	Buffer	Description				
RA0/AN0/CVREF	RA0	OUT	0	DIG	LATA<0> data output.				
		IN	1	TTL	PORTA<0> data input.				
	AN0	IN	1	ANA	A/D input channel 0. Enabled on POR, this analog input overrides the digital input (read as clear – low level).				
	CVREF ⁽¹⁾	OUT	х	ANA	Comparator voltage reference analog output. Enabling this analog output overrides the digital I/O (read as clear – low level).				
RA1/AN1	RA1	OUT	0	DIG	LATA<1> data output.				
		IN 1 TTL PORTA<1> data input.							
	AN1	IN	1	ANA	A/D input channel 1. Enabled on POR, this analog input overrides the digital input (read as clear – low level).				
RA2/AN2/VREF-	RA2	OUT	0	DIG	LATA<2> data output.				
		IN	1	TTL	PORTA<2> data input.				
	AN2	IN	1	ANA	A/D input channel 2. Enabled on POR, this analog input overrides the digital input (read as clear – low level).				
	VREF-	IN	1	ANA	A/D and comparator negative voltage analog input.				
RA3/AN3/VREF+	RA3	OUT	0	DIG	LATA<3> data output.				
		IN	1	TTL	PORTA<3> data input.				
	AN3	IN	1	ANA	A/D input channel 3. Enabled on POR, this analog input overrides the digital input (read as clear – low level).				
	VREF+	IN	1	ANA	A/D and comparator positive voltage analog input.				
RA4/T0CKI	RA4	OUT	0	DIG	LATA<4> data output.				
		IN	1	TTL	PORTA<4> data input.				
	T0CKI	IN	1	ST	Timer0 clock input.				
RA5/AN4/SS/HLVDIN	RA5	OUT	0	DIG	LATA<5> data output.				
		IN	1	TTL	PORTA<5> data input.				
	AN4	IN	1	ANA	A/D input channel 4. Enabled on POR, this analog input overrides the digital input (read as clear – low level).				
	SS	IN	1	TTL	Slave select input for MSSP.				
	HLVDIN	IN	1	ANA	High/Low-Voltage Detect external trip point input.				
OSC2/CLKO/RA6	OSC2	OUT	х	ANA	Output connection, selected by FOSC3:FOSC0 Configuration bits. Enabling OSC2 overrides digital I/O.				
	CLKO	OUT	Х	DIG	Output connection, selected by FOSC3:FOSC0 Configuration bits. Enabling CLKO overrides digital I/O (Fosc/4).				
	RA6	OUT	0	DIG	LATA<6> data output.				
		IN	1	TTL	PORTA<6> data input.				
OSC1/CLKI/RA7	OSC1	IN	х	ANA	Main oscillator input connection, determined by FOSC3:FOSC0 Configuration bits. Enabling OSC1 overrides digital I/O.				
	CLKI	IN	Х	ANA	Main clock input connection, determined by FOSC3:FOSC0 Configuration bits. Enabling CLKI overrides digital I/O.				
	RA7	OUT	0	DIG	LATA<7> data output.				
		IN	1	TTL	PORTA<7> data input.				

TABLE 10-1: PORTA I/O SUMMARY

Legend: OUT = Output; IN = Input; ANA = Analog Signal; DIG = Digital Output; ST = Schmitt Buffer Input; TTL = TTL Buffer Input Note 1: This bit is unimplemented on PIC18F2682/2685 devices.

FIGURE 10-4: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 10-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTD ⁽¹⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	54
LATD ⁽¹⁾	LATD Data	Output Regis	ter						54
TRISD ⁽¹⁾	PORTD Da	ta Direction R	egister						54
PORTE ⁽¹⁾	—	_	_	_	RE3	RE2	RE1	RE0	54
LATE ⁽¹⁾	—	_	_	_	_	LATE Data	Output Regi	ster	54
TRISE ⁽¹⁾	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0	54
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	51
PIR1	PSPIF ⁽²⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	54
PIE1	PSPIE ⁽²⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	54
IPR1	PSPIP ⁽²⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	54
ADCON1	_		VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	52
CMCON ⁽¹⁾	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	53

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.

Note 1: These registers are available on PIC18F4682/4685 devices only.

2: These bits are unimplemented on PIC18F2682/2685 devices and read as '0'.

15.1 CCP1 Module Configuration

Each Capture/Compare/PWM module is associated with a control register (CCP1CON or ECCP1CON) and a data register (CCPR1 or ECCPR1). The data register, in turn, is comprised of two 8-bit registers: CCPR1L or ECCPR1L (low byte) and CCPR1H or ECCPR1H (high byte). All registers are both readable and writable.

15.1.1 CCP1 MODULES AND TIMER RESOURCES

The CCP1 modules utilize Timers 1, 2 or 3, depending on the mode selected. Timer1 and Timer3 are available to modules in Capture or Compare modes, while Timer2 is available for modules in PWM mode.

TABLE 15-1:CCP1 MODE – TIMER
RESOURCE

CCP1/ECCP1 Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2

The assignment of a particular timer to a module is determined by the Timer to CCP1/ECCP1 enable bits in the T3CON register (Register 14-1). Both modules may be active at any given time and may share the same timer resource if they are configured to operate in the same mode (Capture/Compare or PWM) at the same time. The interactions between the two modules are summarized in Figure 15-1 and Figure 15-2.

CCP1 Mode	ECCP1 Mode	Interaction
Capture	Capture	Each module can use TMR1 or TMR3 as the time base. Time base can be different for each CCP1.
Capture	Compare	CCP1 can be configured for the Special Event Trigger to reset TMR1 or TMR3 (depending upon which time base is used). Automatic A/D conversions on trigger event can also be done. Operation of CCP1 could be affected if it is using the same timer as a time base.
Compare	Capture	CCP1 can be configured for the Special Event Trigger to reset TMR1 or TMR3 (depending upon which time base is used). Operation of CCP1 could be affected if it is using the same timer as a time base.
Compare	Compare	Either module can be configured for the Special Event Trigger to reset the time base. Automatic A/D conversions on ECCP1 trigger event can be done. Conflicts may occur if both modules are using the same time base.
Capture	PWM*	None
Compare	PWM*	None
PWM*	Capture	None
PWM*	Compare	None
PWM*	PWM	Both PWMs will have the same frequency and update rate (TMR2 interrupt).

* Includes standard and Enhanced PWM operation.

18.3.2 EUSART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either the Single Receive Enable bit, SREN (RCSTA<5>), or the Continuous Receive Enable bit, CREN (RCSTA<4>). Data is sampled on the RX pin on the falling edge of the clock.

If enable bit SREN is set, only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.

- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, set enable bit RCIE.
- 5. If 9-bit reception is desired, set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- 7. Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if the enable bit RCIE was set.
- 8. Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	51
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	54
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	54
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	54
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	53
RCREG	EUSART Re	ceive Registe	r						53
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	53
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	53
SPBRGH	EUSART Baud Rate Generator Register High Byte								
SPBRG	EUSART Ba	ud Rate Gene	erator Registe	er Low Byte					53

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.

Note 1: Reserved in PIC18F2682/2685 devices; always maintain these bits clear.

19.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 19-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note: When the conversion is started, the holding capacitor is disconnected from the input pin.

To calculate the minimum acquisition time, Equation 19-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 19-3 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following application system assumptions:

Chold	=	120 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$5V \rightarrow Rss = 7 \ k\Omega$
Temperature	=	50°C (system max.)
Vhold	=	0V @ time = 0

EQUATION 19-1: A/D ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 19-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/2048)) \bullet (1 - e^{(-\text{Tc/CHOLD}(\text{Ric} + \text{Rss} + \text{Rs}))})$
or		
TC	=	-(CHOLD)(RIC + RSS + RS) $\ln(1/2048)$

EQUATION 19-3: CALCULATING THE MINIMUM REQUIRED A/D ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	5 μs
TCOFF	=	(Temp – 25°C)(0.05 μs/°C) (50°C – 25°C)(0.05 μs/°C) 1.25 μs
Temper	ature	coefficient is only required for temperatures $> 25^{\circ}$ C. Below 25°C, TCOFF = 0 ms.
ТС	=	-(Chold)(Ric + Rss + Rs) $\ln(1/2047) \ \mu s$ -(120 pF) (1 k Ω + 7 k Ω + 2.5 k Ω) ln(0.0004883) μs 9.61 μs
TACQ	=	5 μs + 1.25 μs + 9.61 μs 12.86 μs

EXAMPLE 23-1: CHANGING TO CONFIGURATION MODE

```
; Request Configuration mode.
   MOVLW B'1000000'
                                       ; Set to Configuration Mode.
   MOVWF CANCON
   ; A request to switch to Configuration mode may not be immediately honored.
   ; Module will wait for CAN bus to be idle before switching to Configuration Mode.
   ; Request for other modes such as Loopback, Disable etc. may be honored immediately.
   ; It is always good practice to wait and verify before continuing.
ConfigWait:
   MOVF CANSTAT, W
                                       ; Read current mode state.
   ANDLW B'10000000'
                                        ; Interested in OPMODE bits only.
   TSTFSZ WREG
                                        ; Is it Configuration mode yet?
   BRA ConfigWait
                                        ; No. Continue to wait...
   ; Module is in Configuration mode now.
   ; Modify configuration registers as required.
   ; Switch back to Normal mode to be able to communicate.
```

EXAMPLE 23-2: WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS TX/RX BUFFERS

```
; Save application required context.
   ; Poll interrupt flags and determine source of interrupt
   ; This was found to be CAN interrupt
   ; TempCANCON and TempCANSTAT are variables defined in Access Bank low
   MOVFF CANCON, TempCANCON
                                        ; Save CANCON.WIN bits
                                        ; This is required to prevent CANCON
                                        ; from corrupting CAN buffer access
                                        ; in-progress while this interrupt
                                        ; occurred
   MOVFF CANSTAT, TempCANSTAT
                                        ; Save CANSTAT register
                                        ; This is required to make sure that
                                        ; we use same CANSTAT value rather
                                        ; than one changed by another CAN
                                        ; interrupt.
   MOVF
          TempCANSTAT, W
                                        ; Retrieve ICODE bits
   ANDLW B'00001110'
   ADDWF PCL, F
                                       ; Perform computed GOTO
                                       ; to corresponding interrupt cause
                                 ; 000 = No interrupt
; 001 = Error interrupt
         NoInterrupt
   BRA
          ErrorInterrupt
   BRA
                                       ; 010 = TXB2 interrupt
          TXB2Interrupt
   BRA
                                       ; 011 = TXB1 interrupt
; 100 = TXB0 interrupt
         TXBlInterrupt
   BRA
   BRA TXB0Interrupt
   BRA RXB1Interrupt
                                        ; 101 = RXB1 interrupt
   BRA RXB0Interrupt
                                       ; 110 = RXB0 interrupt
                                        ; 111 = Wake-up on interrupt
WakeupInterrupt
   BCF PIR3, WAKIF
                                        ; Clear the interrupt flag
   ; User code to handle wake-up procedure
   ;
   ; Continue checking for other interrupt source or return from here
NoInterrupt
                                         ; PC should never vector here. User may
                                        ; place a trap such as infinite loop or pin/port
                                         ; indication to catch this error.
```

23.4.3 MODE 2 – ENHANCED FIFO MODE

In Mode 2, two or more receive buffers are used to form the receive FIFO (first in, first out) buffer. There is no one-to-one relationship between the receive buffer and acceptance filter registers. Any filter that is enabled and linked to any FIFO receive buffer can generate acceptance and cause FIFO to be updated.

FIFO length is user programmable, from 2-8 buffers deep. FIFO length is determined by the very first programmable buffer that is configured as a transmit buffer. For example, if Buffer 2 (B2) is programmed as a transmit buffer, FIFO consists of RXB0, RXB1, B0 and B1 – creating a FIFO length of 4. If all programmable buffers are configured as receive buffers, FIFO will have the maximum length of 8.

The following is the list of resources available in Mode 2:

- Three transmit buffers: TXB0, TXB1 and TXB2
- Two receive buffers: RXB0 and RXB1
- Six buffers programmable as TX or RX; receive buffers form FIFO: B0-B5
- Automatic RTR handling on B0-B5
- Sixteen acceptance filters: RXF0-RXF15
- Two dedicated acceptance mask registers; RXF15 programmable as third mask: RXM0-RXM1, RXF15
- Programmable data filter on standard identifier messages: SDFLC, useful for DeviceNet protocol

23.5 CAN Message Buffers

23.5.1 DEDICATED TRANSMIT BUFFERS

The PIC18F2682/2685/4682/4685 devices implement three dedicated transmit buffers – TXB0, TXB1 and TXB2. Each of these buffers occupies 14 bytes of SRAM and are mapped into the SFR memory map. These are the only transmit buffers available in Mode 0. Mode 1 and 2 may access these and other additional buffers.

Each transmit buffer contains one control register (TXBnCON), four identifier registers (TXBnSIDL, TXBnSIDH, TXBnEIDL, TXBnEIDH), one data length count register (TXBnDLC) and eight data byte registers (TXBnDm).

23.5.2 DEDICATED RECEIVE BUFFERS

The PIC18F2682/2685/4682/4685 devices implement two dedicated receive buffers – RXB0 and RXB1. Each of these buffers occupies 14 bytes of SRAM and are mapped into SFR memory map. These are the only receive buffers available in Mode 0. Mode 1 and 2 may access these and other additional buffers. Each receive buffer contains one control register (RXBnCON), four identifier registers (RXBnSIDL, RXBnSIDH, RXBnEIDL, RXBnEIDH), one data length count register (RXBnDLC) and eight data byte registers (RXBnDm).

There is also a separate Message Assembly Buffer (MAB) which acts as an additional receive buffer. MAB is always committed to receiving the next message from the bus and is not directly accessible to user firmware. The MAB assembles all incoming messages one by one. A message is transferred to appropriate receive buffers only if the corresponding acceptance filter criteria is met.

23.5.3 PROGRAMMABLE TRANSMIT/ RECEIVE BUFFERS

The ECAN module implements six new buffers: B0-B5. These buffers are individually programmable as either transmit or receive buffers. These buffers are available only in Mode 1 and 2. As with dedicated transmit and receive buffers, each of these programmable buffers occupies 14 bytes of SRAM and are mapped into SFR memory map.

Each buffer contains one control register (BnCON), four identifier registers (BnSIDL, BnSIDH, BnEIDL, BnEIDH), one data length count register (BnDLC) and eight data byte registers (BnDm). Each of these registers contains two sets of control bits. Depending on whether the buffer is configured as transmit or receive, one would use the corresponding control bit set. By default, all buffers are configured as receive buffers. Each buffer can be individually configured as a transmit or receive buffer by setting the corresponding TXENn bit in the BSEL0 register.

When configured as transmit buffers, user firmware may access transmit buffers in any order similar to accessing dedicated transmit buffers. In receive configuration with Mode 1 enabled, user firmware may also access receive buffers in any order required. But in Mode 2, all receive buffers are combined to form a single FIFO. Actual FIFO length is programmable by user firmware. Access to FIFO must be done through the FIFO Pointer bits (FP<4:0>) in the CANCON register. It must be noted that there is no hardware protection against out of order FIFO reads.

23.7.3 ENHANCED FIFO MODE

When configured for Mode 2, two of the dedicated receive buffers in combination with one or more programmable transmit/receive buffers, are used to create a maximum of an 8-buffer deep FIFO buffer. In this mode, there is no direct correlation between filters and receive buffer registers. Any filter that has been enabled can generate an acceptance. When a message has been accepted, it is stored in the next available Receive Buffer register and an Internal Write Pointer is incremented. The FIFO can be a maximum of 8 buffers deep. The entire FIFO must consist of contiguous receive buffers. The FIFO head begins at RXB0 buffer and its tail spans toward B5. The maximum length of the FIFO is limited by the presence or absence of the first transmit buffer starting from B0. If a buffer is configured as a transmit buffer, the FIFO length is reduced accordingly. For instance, if B3 is configured as a transmit buffer, the actual FIFO will consist of RXB0, RXB1, B0, B1 and B2, a total of 5 buffers. If B0 is configured as a transmit buffer, the FIFO length will be 2. If none of the programmable buffers are configured as a transmit buffer, the FIFO will be 8 buffers deep. A system that requires more transmit buffers should try to locate transmit buffers at the very end of B0-B5 buffers to maximize available FIFO length.

When a message is received in FIFO mode, the interrupt flag code bits (EICODE<4:0>) in the CANSTAT register will have a value of '10000', indicating the FIFO has received a message. FIFO Pointer bits, FP<3:0> in the CANCON register, point to the buffer that contains data not yet read. The FIFO Pointer bits, in this sense, serve as the FIFO Read Pointer. The user should use FP bits and read corresponding buffer data. When receive data is no longer needed, the RXFUL bit in the current buffer must be cleared, causing FP<3:0> to be updated by the module.

To determine whether FIFO is empty or not, the user may use FP<3:0> bits to access the RXFUL bit in the current buffer. If RXFUL is cleared, the FIFO is considered to be empty. If it is set, the FIFO may contain one or more messages. In Mode 2, the module also provides a bit called FIFO High Water Mark (FIFOWM) in the ECANCON register. This bit can be used to cause an interrupt whenever the FIFO contains only one or four empty buffers. The FIFO high water mark interrupt can serve as an early warning to a full FIFO condition.

23.7.4 TIME-STAMPING

The CAN module can be programmed to generate a time-stamp for every message that is received. When enabled, the module generates a capture signal for CCP1, which in turn, captures the value of either Timer1 or Timer3. This value can be used as the message time-stamp.

To use the time-stamp capability, the CANCAP bit (CIOCAN<4>) must be set. This replaces the capture input for CCP1 with the signal generated from the CAN module. In addition, CCP1CON<3:0> must be set to '0011' to enable the CCP Special Event Trigger for CAN events.

23.8 Message Acceptance Filters and Masks

The message acceptance filters and masks are used to determine if a message in the Message Assembly Buffer should be loaded into any of the receive buffers. Once a valid message has been received into the MAB, the identifier fields of the message are compared to the filter values. If there is a match, that message will be loaded into the appropriate receive buffer. The filter masks are used to determine which bits in the identifier are examined with the filters. A truth table is shown below in Table 23-2 that indicates how each bit in the identifier is compared to the masks and filters to determine if a message should be loaded into a receive buffer. The mask essentially determines which bits to apply the acceptance filters to. If any mask bit is set to a zero, then that bit will automatically be accepted regardless of the filter bit.

TABLE 23-2:	FILTER/MASK	TRUTH TABLE
-------------	-------------	--------------------

Mask bit n	Filter bit n	Filter Message Identifier bit n bit n001	
0	Х	Х	Accept
1	0	0	Accept
1	0	1	Reject
1	1	0	Reject
1	1	1	Accept

Legend: x = don't care

In Mode 0, acceptance filters RXF0 and RXF1 and filter mask RXM0 are associated with RXB0. Filters RXF2, RXF3, RXF4 and RXF5 and mask RXM1 are associated with RXB1.

23.9.2 TIME QUANTA

As already mentioned, the Time Quanta is a fixed unit derived from the oscillator period and baud rate prescaler. Its relationship to TBIT and the Nominal Bit Rate is shown in Example 23-6.

EXAMPLE 23-6: CALCULATING TQ, NOMINAL BIT RATE AND NOMINAL BIT TIME

 $T_Q(\mu s) = (2 * (BRP + 1))/FOSC (MHz)$

TBIT $(\mu s) = TQ (\mu s) *$ number of TQ per bit interval

Nominal Bit Rate (bits/s) = 1/TBIT

This frequency (Fosc) refers to the effective frequency used. If, for example, a 10 MHz external signal is used along with a PLL, then the effective frequency will be 4×10 MHz which equals 40 MHz.

CASE 1:

For FOSC = 16 MHz, BRP<5:0> = 00h and Nominal Bit Time = 8 Tq: $Tq = (2 * 1)/16 = 0.125 \ \mu s (125 \ ns)$ TBIT = 8 * 0.125 = 1 $\mu s (10^{-6} s)$ Nominal Bit Rate = $1/10^{-6} = 10^6 \ bits/s (1 \ Mb/s)$

CASE 2:

For Fosc = 20 MHz, BRP<5:0> = 01h and Nominal Bit Time = 8 TQ: $TQ = (2 * 2)/20 = 0.2 \ \mu s \ (200 \ ns)$ TBIT = 8 * 0.2 = 1.6 $\ \mu s \ (1.6 * 10^{-6} s)$ Nominal Bit Rate = 1/1.6 * 10⁻⁶s = 625,000 bits/s (625 Kb/s)

CASE 3:

For FOSC = 25 MHz, BRP<5:0> = 3Fh and Nominal Bit Time = 25 TQ: $TQ = (2 * 64)/25 = 5.12 \ \mu s$ TBIT = 25 * 5.12 = 128 \ \mu s (1.28 * 10⁻⁴ s) Nominal Bit Rate = 1/1.28 * 10⁻⁴ = 7813 bits/s (7.8 Kb/s)

The frequencies of the oscillators in the different nodes must be coordinated in order to provide a system wide specified nominal bit time. This means that all oscillators must have a Tosc that is an integral divisor of Tq. It should also be noted that although the number of Tq is programmable from 4 to 25, the usable minimum is 8 Tq. There is no assurance that a bit time of less than 8 Tq in length will operate correctly.

23.9.3 SYNCHRONIZATION SEGMENT

This part of the bit time is used to synchronize the various CAN nodes on the bus. The edge of the input signal is expected to occur during the sync segment. The duration is 1 Tq.

23.9.4 PROPAGATION SEGMENT

This part of the bit time is used to compensate for physical delay times within the network. These delay times consist of the signal propagation time on the bus line and the internal delay time of the nodes. The length of the Propagation Segment can be programmed from 1 TQ to 8 TQ by setting the PRSEG2:PRSEG0 bits.

23.9.5 PHASE BUFFER SEGMENTS

The phase buffer segments are used to optimally locate the sampling point of the received bit within the nominal bit time. The sampling point occurs between Phase Segment 1 and Phase Segment 2. These segments can be lengthened or shortened by the resynchronization process. The end of Phase Segment 1 determines the sampling point within a bit time. Phase Segment 1 is programmable from 1 To to 8 To in duration. Phase Segment 2 provides delay before the next transmitted data transition and is also programmable from 1 TQ to 8 TQ in duration. However, due to IPT requirements, the actual minimum length of Phase Segment 2 is 2 To, or it may be defined to be equal to the greater of Phase Segment 1 or the Information Processing Time (IPT). The sampling point should be as late as possible or approximately 80% of the bit time.

23.9.6 SAMPLE POINT

The sample point is the point of time at which the bus level is read and the value of the received bit is determined. The sampling point occurs at the end of Phase Segment 1. If the bit timing is slow and contains many Tq, it is possible to specify multiple sampling of the bus line at the sample point. The value of the received bit is determined to be the value of the majority decision of three values. The three samples are taken at the sample point and twice before, with a time of Tq/2 between each sample.

23.9.7 INFORMATION PROCESSING TIME

The Information Processing Time (IPT) is the time segment starting at the sample point that is reserved for calculation of the subsequent bit level. The CAN specification defines this time to be less than or equal to 2 Tq. The PIC18F2682/2685/4682/4685 devices define this time to be 2 Tq. Thus, Phase Segment 2 must be at least 2 Tq long.

REGISTER 24-14: WDTCON: WATCHDOG TIMER CONTROL REGISTER

	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
bit 7	_	—	—	_	—	_	—	SWDTEN ⁽¹⁾
	bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1	Unimplemented: Read as '0'
bit 0	SWDTEN: Software Controlled Watchdog Timer Enable bit ⁽¹⁾
	1 = Watchdog Timer is on
	0 = Watchdog Timer is off

Note 1: This bit has no effect if the Configuration bit, WDTEN, is enabled.

TABLE 24-2: SUMMARY OF WATCHDOG TIMER REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
RCON	IPEN	SBOREN	_	RI	TO	PD	POR	BOR	50
WDTCON	_	_	_	_	_	_	_	SWDTEN	52

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.

BNC	;	Branch if Not Carry		BNN		Branch if Not Negative			
Synta	ax:	BNC n			Synta	IX:	BNN n		
Oper	ands:	-128 ≤ n ≤ 1	127		Opera	ands:	-128 ≤ n ≤ 1	127	
Operation:		if Carry bit i (PC) + 2 + 2	s '0' 2n → PC		Oper	Operation: $(PC) + 2 + 2n \rightarrow PC$			
Statu	s Affected:	None			Statu	Status Affected: None			
Enco	oding:	1110	0011 nn:	nn nnnn	Enco	ding:	1110	0111 nn	nn nnnn
Desc	cription:	If the Carry will branch.	bit is '0', then	the program	Desc	ription:	If the Negat program wi	tive bit is '0', t Il branch.	hen the
		The 2's con added to th have increm instruction, PC + 2 + 2r two-cycle in	nplement num e PC. Since th nented to fetcl the new addre n. This instruction.	ber '2n' is he PC will h the next ess will be tion is then a			The 2's con added to the incrementer instruction, PC + 2 + 2r two-cycle in	nplement num e PC. Since th d to fetch the the new addro n. This instruc istruction.	ber '2n' is le PC will have next ess will be tion is then a
Words:		1			Word	s:	1		
Cycle	es:	1(2)		Cycle	Cycles: 1(2)				
QC	ycle Activity:				QC	cle Activity:			
lf Ju	imp:				lf Ju	mp:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC
	No	No	No	No		No	No	No	No
	operation	operation	operation	operation		operation	operation	operation	operation
lf No	o Jump:				lf No	Jump:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	Decode	Read literal 'n'	Process Data	No operation		Decode	Read literal 'n'	Process Data	No operation
<u>Exar</u>	<u>nple:</u> Before Instruc	HERE	BNC Jump		Exam	i <u>ple:</u> Before Instruc	HERE	BNN Jump	
PC = address (HERE) After Instruction If Carry = 0; PC = address (Jump) If Carry = 1; PC = address (HERE + 2)				PC After Instructio If Negati PC If Negati PC	= ad on ve = 0; = ad ve = 1; = ad	dress (HERE dress (Jump dress (HERE)) + 2)		

LFSR Load FSR				MO	MOVF		Move f			
Syntax: LFSR f, k					Synt	ax:	MOVF f{	MOVF f {,d {,a}}		
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 409 \end{array}$	95		Oper	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$			
Oper	ation:	$k\toFSRf$					a ∈ [0,1]			
Statu	s Affected:	None			Oper	ation:	$f \rightarrow dest$			
Enco	ding:	1110 1111	1110 00 0000 k ₇ 1	ff k ₁₁ kkk kk kkkk	Statu Enco	s Affected: ding:	N, Z	00da ff:	ff ffff	
Desc	ription:	The 12-bit file select r	literal 'k' is loa egister pointe	ided into the d to by 'f'.	Desc	ription:	The conten a destinatio	ts of register 'f n dependent เ	are moved to upon the	
Word	ls:	2					status of 'd'	. If 'd' is '0', th	e result is	
Cycle	es:	2					placed in w	k in register 'f'	(default).	
QC	ycle Activity:						Location 'f'	can be anywh	ere in the	
	Q1	Q2	Q3	Q4			256-byte ba	ank.	ali in antantan	
	Decode	Read literal 'k' MSB	Process Data	Write literal 'k' MSB to FSRfH			If 'a' is '1', the BSR is used to select th GPR bank (default). If 'a' is '0' and the extended instruction			
	Decode Read literal 'k' LSB Data 'k' to FSRfL				set is enabl in Indexed I mode when Section 25	ed, this instruc Literal Offset A ever f ≤ 95 (5l .2.3 "Bvte-Or	ction operates Addressing ⁻ h). See iented and			
<u>Exan</u>	nple: After Instruction	LFSR 2,	3ABh				Bit-Oriente Literal Offs	d Instruction set Mode" for	s in Indexed details.	
	FSR2H	= 03	Bh		Word	ls:	1			
	FSR2L	= AE	Bh		Cycle	es:	1			
					QC	ycle Activity:				
						Q1	Q2	Q3	Q4	
						Decode	Read register 'f'	Process Data	Write W	
					Exar	nple:	MOVF RI	EG, 0, 0		
						Before Instru	ction			
						REG W	= 22 = FF	h h		

After Instruction REG W

22h 22h

=

POF)	Рор Тор	Pop Top of Return Stack					
Synta	ax:	POP						
Oper	ands:	None						
Oper	ation:	$(TOS) \rightarrow b$	oit bucket					
Statu	is Affected:	None						
Enco	oding:	0000	0000	0000	0 0110			
Desc	ription:	The TOS v stack and then becon was pushe This instru the user to stack to in	The TOS value is pulled off the return stack and is discarded. The TOS value then becomes the previous value that was pushed onto the return stack. This instruction is provided to enable the user to properly manage the return stack to incorporate a software stack.					
Word	ds:	1	1					
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3	5	Q4			
	Decode	No operation	POP T valu	OS e	No operation			
Example:		POP GOTO	NEW					
	Before Instruc TOS Stack (1	tion level down)	= () = ()	031A21 0143321	h 1			
	After Instructio TOS PC	n	= (= N)14332h NEW	ı			

PUSH	Push Top	of Ret	urn S	tacl	k
Syntax:	PUSH				
Operands:	None				
Operation:	$(PC + 2) \rightarrow$	TOS			
Status Affected:	None				
Encoding:	0000	0000	000	00	0101
Description:	The PC + 2 the return s value is pus This instruc software sta then pushir	is push tack. Th shed dow tion allo ack by m ig it onto	ed onto e prev vn on t ws imp nodifyir o the re	o the ious the s olem ng Tr eturn	e top of TOS stack. lenting a OS and stack.
Words:	1	-			
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q	3		Q4
Decode	PUSH PC + 2 onto return stack	No operation		ор	No peration
Example:	PUSH				
Before Instru TOS PC	ction	= (345Ah)124h		
After Instruct PC	on	= ()126h		

CAL	.LW	Subroutine Call Using WREG					
Synta	ax:	CALLW					
Oper	ands:	None					
Oper	ation:	$(PC + 2) \rightarrow$ $(W) \rightarrow PCL$ (PCLATH) - (PCLATU) -	$(PC + 2) \rightarrow TOS,$ $(W) \rightarrow PCL,$ $(PCLATH) \rightarrow PCH,$ $(PCLATU) \rightarrow PCU$				
Statu	s Affected:	None					
Enco	ding:	0000	0000 000	01 0100			
Desc	ription	First, the re pushed ont contents of existing val contents of latched into respectively executed as new next in Unlike CAL: update W, S	First, the return address (PC + 2) is pushed onto the return stack. Next, the contents of W are written to PCL; the existing value is discarded. Then, the contents of PCLATH and PCLATU are latched into PCH and PCU, respectively. The second cycle is executed as a NOP instruction while the new next instruction is fetched. Unlike CALL, there is no option to				
Word	ls:	1					
Cvcle	es:	2					
Q C	vcle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read WREG	Push PC to stack	No operation			
	No	No	No	No			
<u>Exan</u>	nple: Before Instruc PC PCLATH PCLATU W	HERE tion = address = 10h = 00h = 06h	CALLW (HERE)	operation			
After Instruction PC = 001006h TOS = address (HERE + 2) PCLATH = 10h							

MOVSF Move Indexed to f Syntax: MOVSF [zs], fd $\begin{array}{l} 0 \leq z_s \leq 127 \\ 0 \leq f_d \leq 4095 \end{array}$ Operands: $((FSR2) + z_s) \rightarrow f_d$ Operation: Status Affected: Encoding: 1st word (source) 2nd word (destin.) Description:

None				
1110 1111	1011 ffff	Ozzz ffff	zzzz _s ffff _d	
The contents of the source register are moved to destination register 'f.' The				

moved to destination register f_d . The actual address of the source register is determined by adding the 7-bit literal offset 'zs' in the first word to the value of FSR2. The address of the destination register is specified by the 12-bit literal ' \mathbf{f}_{d} ' in the second word. Both addresses can be anywhere in the 4096-byte data space (000h to FFFh).

The MOVSF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.

If the resultant source address points to an indirect addressing register, the value returned will be 00h.

Q Cycle Activity:

Words: Cycles:

_	Q1	Q2	Q3	Q4
	Decode	Determine source addr	Determine source addr	Read source reg
	Decode	No operation No dummy read	No operation	Write register 'f' (dest)

Example: [05h], REG2 MOVSF

2

2

Before Instruction		
FSR2	=	80h
Contents		
of 85h	=	33h
REG2	=	11h
After Instruction		
FSR2	=	80h
Contents		
of 85h	=	33h
REG2	=	33h

PCLATU =

۱۸/

00h

06h

27.2 DC Characteristics: Power-Down and Supply Current PIC18F2682/2685/4682/4685 (Industrial) PIC18LF2682/2685/4682/4685 (Industrial) (Continued)

PIC18LF (Indu	2682/2685/4682/4685 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					1) trial	
PIC18F2 (Indu	682/2685/4682/4685 strial, Extended)	Standa Operati	rd Oper	ating Co erature	$ \begin{array}{ll} \mbox{g Conditions (unless otherwise stated)} \\ \mbox{ure} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ \mbox{-}40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array} $			
Param No.	Device	Тур	Max	Units		Conditions		
	Supply Current (IDD) ^(2,3)							
	PIC18LF268X/468X	65	220	μA	-40°C			
		65	220	μA	+25°C	VDD = 2.0V		
		70	220	μA	+85°C			
	PIC18LF268X/468X	120	330	μΑ	-40°C			
		120	330	μA	+25°C	VDD = 3.0V	FOSC = 1 MHz	
		130	330	μA	+85°C		EC oscillator)	
	All devices	300	600	μA	-40°C	-		
		240	600	μA	+25°C	Vpp = 5.0V		
		300	600	μA	+85°C	VDD - 3.0V		
	Extended devices only	320	600	μA	+125°C			
	PIC18LF268X/468X	260	760	μA	-40°C	-		
		255	760	μA	+25°C	VDD = 2.0V		
		270	760	μA	+85°C			
	PIC18LF268X/468X	420	1.4	μA	-40°C	-		
		430	1.4	μA	+25°C	VDD = 3.0V	FOSC = 4 MHZ (PRI_IDLE mode	
		450	1.4	μA	+85°C		EC oscillator)	
	All devices	0.9	2.2	mA	-40°C	-		
		0.9	2.2	mA	+25°C	Vpp = 5.0V		
		0.9	2.2	mA	+85°C	100 0.01		
	Extended devices only	1	3	mA	+125°C			
	Extended devices only	2.8	7	mA	+125°C	VDD = 4.2V	Fosc = 25 MHz	
		4.3	11	mA	+125°C	VDD = 5.0V	(PRI_IDLE mode, EC oscillator)	
	All devices	6	18	mA	-40°C			
		6.2	18	mA	+25°C	VDD = 4.2 V		
		6.6	18	mA	+85°C		Fosc = 40 MHz	
	All devices	8.1	22	mA	-40°C		EC oscillator)	
		9.1	22	mA	+25°C	VDD = 5.0V	,	
		8.3	22	mA	+85°C			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

 \overline{MCLR} = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through RExT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

29.1 Package Marking Information (Continued)

44-Lead TQFP

Example

44-Lead QFN

Example

Capture (CCP1 Module)1	67 70
CAN Mossago Timo Stamp	67
COD1 Din Configuration	67
	67
COPRINCOPRIL Registers	07
Prescaler1	67
Software Interrupt1	67
Timer1/Timer3 Mode Selection1	67
Capture (ECCP1 Module)1	76
Capture/Compare/PWM (CCP1)1	65
Capture Mode. See Capture.	
CCP1 Mode and Timer Resources1	66
CCPR1H or ECCPR1H Register1	66
CCPR1L or ECCPR1L Register1	66
Compare Mode. See Compare.	
Interaction Between CCP1 and ECCP1	
for Timer Resources	66
Module Configuration	66
Clock Sources	30
Effects of Dower Managed Medea	22
Calesting the 24 kHz Cauree	22
Selecting the 31 kHz Source	31
Selection Using OSCCON Register	31
CLRF	81
CLRWDT3	81
Code Examples	
16 x 16 Signed Multiply Routine1	14
16 x 16 Unsigned Multiply Routine1	14
8 x 8 Signed Multiply Routine1	13
8 x 8 Unsigned Multiply Routine	13
Changing Between Capture Prescalers	67
Changing to Configuration Mode 2	80
Computed GOTO Using an Offset Value	66
Data EEPROM Read	na
Data EEPROM Refresh Routine	10
Data EEDROM Write	00
Erasing a Elash Dragram Mamory Bay	03
Erasing a Flash Flogran Memory Row	66
Fasi Register Stack	00
How to Clear RAM (Bank T) Using	~~
Indirect Addressing	90
Implementing a Real-Time Clock Using	
a Timer1 Interrupt Service1	57
Initializing PORTA1	31
Initializing PORTB1	34
Initializing PORTC1	37
Initializing PORTD1	40
Initializing PORTE1	43
Loading the SSPBUF (SSPSR) Register1	92
Reading a CAN Message2	96
Reading a Flash Program Memory Word1	01
Saving STATUS WREG and BSR	
Registers in RAM 1	30
Transmitting a CAN Message Using	
Banked Method	88
Transmitting a CAN Macaga Llaing WIN Bits	20
WIN and ICODE Bits Llosse in Interrupt Service	09
Pouting to Access TV/DV Duffere	00
Routine to Access TX/RX Butters	dU oc
vvriting to Flash Program Memory	05
Code Protection	45
COMF	82

Comparator			259
Analog Input Connection Considerations			263
Associated Registers			263
Configuration			260
Effects of a Reset			262
Interrupts			262
Operation			261
Operation During Sleep			262
Outputs			261
Reference			261
External Signal			261
Internal Signal			261
Response Time			261
Comparator Specifications			433
Comparator Voltage Reference			265
Accuracy and Error			266
Associated Registers			267
Configuring			265
Connection Considerations			266
Effects of a Reset			266
Operation During Sleep			266
Compare (CCP1 Module)			169
Associated Registers			170
CCP1 Pin Configuration			169
CCPR1 Register			169
Software Interrupt			169
Special Event Trigger			169
Timer1/Timer3 Mode Selection			169
Compare (ECCP1 Module)			176
Special Event Trigger	163	176	258
Configuration Bits	,	,	345
Configuration Mode			327
Configuration Register			
Protection			364
Context Saving During Interrupts			130
Conversion Considerations			466
CPFSEQ			382
CPESGT			383
CPESLT			383
Crystal Oscillator/Ceramic Resonators			25
Customer Change Notification Service			481
Customer Notification Service			481
Customer Support			481
D			
Data Addressing Modes			00
Comparing Addressing Options with the	Evto		90 I In

Data Addressing Modes	90
Comparing Addressing Options with the Extended	In-
struction Set Enabled	94
Direct	90
Indexed Literal Offset	93
Affected Instructions	93
BSR	95
Mapping the Access Bank	95
Indirect	90
Inherent and Literal	90
Data EEPROM	
Code Protection	364

Enhanced Capture/Compare/PWM (ECCP1)	5 8
Capture Mode. See Capture (ECCP1 Module).	D
Outputs and Configuration170	6
Pin Configurations for ECCP1	6
PWM Mode. See PWM (ECCP1 Module).	
Standard PWM Mode	6
Timer Resources170	6
Enhanced Universal Synchronous Receiver Transmitter (EU	-
SART). See EUSART.	
Equations	
A/D Acquisition Time254	4
A/D Minimum Charging Time25	4
Calculating the Minimum Required A/D Acquisition Time	е
	4
Errata	7
Error Recognition Mode	7
EUSART	
Asynchronous Mode23	8
Associated Registers, Receive	1
Associated Registers, Transmit	9
Auto-Wake-up on Sync Break Character	2
Break Character Sequence	3
Receiver	0
Receiving a Break Character	3
Setting Up 9-Bit Mode with	
Address Detect 24	0
Transmitter 23	8
Baud Rate Generator (BRG) 23	3
Associated Registers 23	3
Auto-Baud Rate Detect 23	6
Baud Rate Error Calculating 23	3
Baud Rates Asynchronous Modes 23	4
High Baud Rate Select (BRGH Bit) 23	3
Operation in Power-Managed Modes 23	3
Sampling 23	3
Synchronous Master Mode 24	4
Associated Registers Receive 24	6
Associated Registers Transmit 24	5
Recention 24	6
Transmission 24	4
Synchronous Slave Mode 24	7
Associated Registers Receive 24	8
Associated Registers Transmit 24	7
Reception 24	, 8
Transmission 24	7
Extended Instruction Set	
ADDESR 400	8
	8
	9
MOVSF	9
MOVSS 41	0 0
PUSHI 41	ñ
SUBESR /1	1
SUBUI NK 41	1
External Clock Input	6
	-

F

Fail-Safe Clock Monitor	345, 358
Exiting Operation	
Interrupts in Power-Managed Modes	
POR or Wake-up from Sleep	
Watchdog Timer (WDT)	358

Fast Register Stack	66
Firmware Instructions	365
Flash Program Memory	97
Associated Registers	105
Control Registers	98
EECON1	98
EECON2	98
TABLAT	98
TABLAT (Table Latch) Register	100
TBLPTR	98
TBLPTR (Table Pointer) Register	100
Erase Sequence	102
Erasing	102
Operation During Code-Protect	105
Reading	101
Table Pointer	
Boundaries Based on Operation	100
Table Pointer Boundaries	100
Table Pointer Operations (table)	100
Table Reads and Table Writes	97
Write Sequence	103
Write Verify	105
Writing	103
Protection Against Spurious Writes	105
Unexpected Termination	105
FSCM. See Fail-Safe Clock Monitor.	

G

GOTO	386
н	
Hardware Multiplier	113
Introduction	113
Operation	113
Performance Comparison	113
High/Low-Voltage Detect	269
Associated Registers	273
Characteristics	434
Current Consumption	271
Effects of a Reset	273
Operation	270
Operation During Sleep	273
Setup	271
Start-up Time	271
Typical Application	272
HLVD. See High/Low-Voltage Detect.	269
1	
	121
1/U FUIS	131
	000
Acknowledge Seguence Liming	111

;	Mode (MSSP)	
	Acknowledge Sequence Timing	222
	Baud Rate Generator	215
	Bus Collision	
	During a Repeated Start Condition	226
	During a Start Condition	224
	During a Stop Condition	227
	Clock Arbitration	216
	Clock Stretching	208
	10-Bit Slave Receive Mode (SEN = 1)	208
	10-Bit Slave Transmit Mode	208
	7-Bit Slave Receive Mode (SEN = 1)	208
	7-Bit Slave Transmit Mode	208
	Clock Synchronization and the CKP Bit	209
	Effect of a Reset	223
	General Call Address Support	212
	I ² C Clock Rate w/BRG	215