

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	96KB (48K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4685-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.1.2.2 Return Stack Pointer (STKPTR)

The STKPTR register (Register 5-1) contains the Stack Pointer value, the STKFUL (Stack Full) status bit and the STKUNF (Stack Underflow) status bit. The value of the Stack Pointer can be 0 through 31. The Stack Pointer increments before values are pushed onto the stack and decrements after values are popped off the stack. On Reset, the Stack Pointer value will be zero. The user may read and write the Stack Pointer value. This feature can be used by a Real-Time Operating System (RTOS) for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit is cleared by software or by a POR.

The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit. (Refer to Section 24.1 "Configuration Bits" for a description of the device Configuration bits.) If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit and reset the device. The STKFUL bit will remain set and the Stack Pointer will be set to zero.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the Stack Pointer will increment to 31. Any additional pushes will not overwrite the 31st push and STKPTR will remain at 31.

When the stack has been popped enough times to unload the stack, the next pop returns a value of zero to the PC and sets the STKUNF bit, while the Stack Pointer remains at zero. The STKUNF bit will remain set until cleared by software or until a POR occurs.

Returning a value of zero to the PC on an underflow has the effect of vectoring the program to the Reset vector, where the stack conditions can be verified and appropriate actions can be taken. This is not the same as a Reset as the contents
not the same as a Reset, as the contents of the SFRs are not affected.

5.1.2.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the ability to push values onto the stack and pull values off the stack without disturbing normal program execution is a desirable feature. The PIC18 instruction set includes two instructions, PUSH and POP, that permit the TOS to be manipulated under software control. TOSU, TOSH and TOSL can be modified to place data or a return address on the stack.

The PUSH instruction places the current PC value onto the stack. This increments the Stack Pointer and loads the current PC value onto the stack.

The POP instruction discards the current TOS by decrementing the Stack Pointer. The previous value pushed onto the stack then becomes the TOS value.

DECISTED E 4. STRDTD. STACK DOINTED DECISTED

REGISTER 5	-1: STKP1	R: STACK P	OINTER RE	GISTER				
R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
STKFUL ⁽¹⁾	STKUNF ⁽¹⁾	_	SP4	SP3	SP2	SP1	SP0	
bit 7							bit 0	
Legend:		C = Clearable	bit					
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 7 bit 6	STKFUL: Stack Full Flag bit ⁽¹⁾ 1 = Stack became full or overflowed 0 = Stack has not become full or overflow STKUNF: Stack Underflow Flag bit ⁽¹⁾ 1 = Stack underflow occurred							
bit 5 bit 4-0	Unimplemen	lerflow did not o ted: Read as 'o ack Pointer Loc	כי					

Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	51
EEADRH	—	—		—	—	—	EEPROM Ac Register Hig	53	
EEADR	EEPROM /	Address Reg	ister Low B	yte					53
EEDATA	EEPROM I	Data Registe	r						53
EECON2	EEPROM Control Register 2 (not a physical register)							53	
EECON1	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD	53
IPR2	OSCFIP	CMIP ⁽¹⁾	—	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP ⁽¹⁾	53
PIR2	OSCFIF	CMIF ⁽¹⁾	_	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽¹⁾	54
PIE2	OSCFIE	CMIE ⁽¹⁾		EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE ⁽¹⁾	54

TABLE 7-1: REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash/EEPROM access.

Note 1: These bits are available in PIC18F4682/4685 devices and reserved in PIC18F2682/2685 devices.

11.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable; its value is set by the PSA and T0PS2:T0PS0 bits (T0CON<3:0>) which determine the prescaler assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the Timer0 module. When it is assigned, prescale values from 1:2 through 1:256 in power-of-2 increments are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) clear the prescaler count.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count but will not change the prescaler assignment.

11.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control and can be changed "on-the-fly" during program execution.

11.4 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit (INTCON<5>). Before reenabling the interrupt, the TMR0IF bit must be cleared in software by the Interrupt Service Routine.

Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep.

	I. KEOK									
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
TMR0L	Timer0 Register Low Byte								52	
TMR0H	Timer0 Reg	Timer0 Register High Byte							52	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	51	
TOCON	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	52	
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA Da	ta Direction	¹⁾ TRISA6 ⁽¹⁾ PORTA Data Direction Register					

TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER0

Legend: x = unknown, u = unchanged, — = unimplemented locations, read as '0'. Shaded cells are not used by Timer0.

Note 1: RA7:RA6 and their associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as '0'.

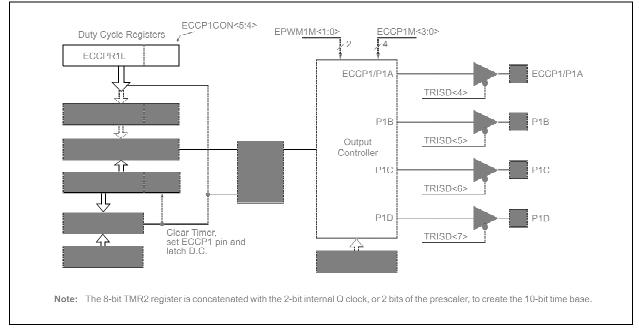
16.4 Enhanced PWM Mode

The Enhanced PWM mode provides additional PWM output options for a broader range of control applications. The module is a backward compatible version of the standard CCP1 module and offers up to four outputs, designated P1A through P1D. Users are also able to select the polarity of the signal (either active-high or active-low). The module's output mode and polarity are configured by setting the EPWM1M1:EPWM1M0 and ECCP1M3:ECCP1M0 bits of the ECCP1CON register.

Figure 16-1 shows a simplified block diagram of PWM operation. All control registers are double-buffered and are loaded at the beginning of a new PWM cycle (the period boundary when Timer2 resets) in order to prevent glitches on any of the outputs. The exception is the PWM Dead-Band Delay register, ECCP1DEL, which is loaded at either the duty cycle boundary or the boundary period (whichever comes first). Because of the buffering, the module waits until the assigned timer resets instead of starting immediately. This means that Enhanced PWM waveforms do not exactly match the standard PWM waveforms, but are instead offset by one full instruction cycle (4 Tosc).

As before, the user must manually configure the appropriate TRIS bits for output.

16.4.1 PWM PERIOD


The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following equation.

EQUATION 16-1:

 $PWM Period = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 Prescale Value)$

PWM frequency is defined as 1/[PWM period]. When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The ECCP1 pin is set (if PWM duty cycle = 0%, the ECCP1 pin will not be set)
- The PWM duty cycle is copied from ECCPR1L into ECCPR1H
 - Note: The Timer2 postscaler (see Section 13.0 "Timer2 Module") is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

FIGURE 16-1: SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODULE

REGISTER 17-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	WCOL: Write Collision Detect bit (Transmit mode only)
	 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software) 0 = No collision
bit 6	SSPOV: Receive Overflow Indicator bit ⁽¹⁾
	 SPI Slave mode: 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow (must be cleared in software). 0 = No overflow
bit 5	SSPEN: Master Synchronous Serial Port Enable bit ⁽²⁾
	1 = Enables serial port and configures SCK, SDO, SDI and \overline{SS} as serial port pins ⁽²⁾ 0 = Disables serial port and configures these pins as I/O port pins ⁽²⁾
bit 4	CKP: Clock Polarity Select bit
	 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level
bit 3-0	SSPM3:SSPM0: Master Synchronous Serial Port Mode Select bits ⁽³⁾
	 0101 = SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin 0100 = SPI Slave mode, clock = SCK pin, SS pin control enabled 0011 = SPI Master mode, clock = TMR2 output/2 0010 = SPI Master mode, clock = Fosc/64 0001 = SPI Master mode, clock = Fosc/16 0000 = SPI Master mode, clock = Fosc/4
Note 1:	In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.

- 2: When enabled, these pins must be properly configured as input or output.
- **3:** Bit combinations not specifically listed here are either reserved or implemented in I^2C^{TM} mode only.

17.4.2 OPERATION

The MSSP module functions are enabled by setting MSSP Enable bit, SSPEN (SSPCON<5>).

The SSPCON1 register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Master mode, clock = (Fosc/4) x (SSPADD + 1)
- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address) with Start and Stop bit interrupts enabled
- I²C Slave mode (10-bit address) with Start and Stop bit interrupts enabled
- I²C Firmware Controlled Master mode, slave is Idle

Selection of any I²C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits. To ensure proper operation of the module, pull-up resistors must be provided externally to the SCL and SDA pins.

17.4.3 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The MSSP module will override the input state with the output data when required (slave-transmitter).

The I²C Slave mode hardware will always generate an interrupt on an address match. Through the mode select bits, the user can also choose to interrupt on Start and Stop bits

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse and load the SSPBUF register with the received value currently in the SSPSR register.

Any combination of the following conditions will cause the MSSP module not to give this ACK pulse:

- The Buffer Full bit, BF (SSPSTAT<0>), was set before the transfer was received.
- The overflow bit, SSPOV (SSPCON<6>), was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. The BF bit is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, are shown in timing parameter 100 and parameter 101.

17.4.3.1 Addressing

Once the MSSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- 1. The SSPSR register value is loaded into the SSPBUF register.
- 2. The Buffer Full bit, BF, is set.
- 3. An ACK pulse is generated.
- 4. MSSP Interrupt Flag bit, SSPIF (PIR1<3>), is set (interrupt is generated, if enabled) on the falling edge of the ninth SCL pulse.

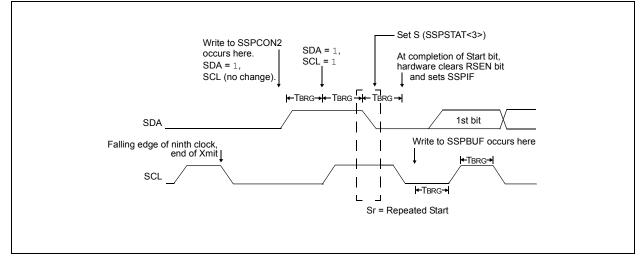
In 10-Bit Address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '11110 A9 A8 0', where 'A9' and 'A8' are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7 through 9 for the slave-transmitter:

- 1. Receive first (high) byte of address (bits SSPIF, BF and UA (SSPSTAT<1>) are set).
- 2. Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF and UA are set).
- 5. Update the SSPADD register with the first (high) byte of address. If match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF.

17.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.


Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an \overline{ACK} is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

17.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated Start condition is complete.

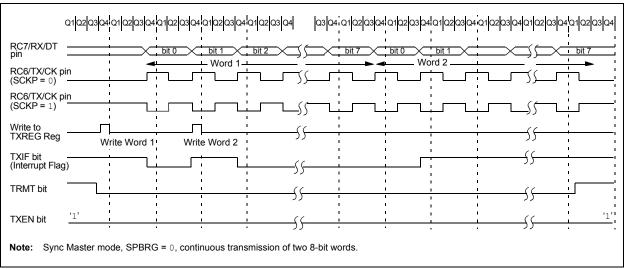
FIGURE 17-20: REPEATED START CONDITION WAVEFORM

18.3 EUSART Synchronous Master Mode

The Synchronous Master mode is entered by setting the CSRC bit (TXSTA<7>). In this mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition, enable bit, SPEN (RCSTA<7>), is set in order to configure the TX and RX pins to CK (clock) and DT (data) lines, respectively.

The Master mode indicates that the processor transmits the master clock on the CK line. Clock polarity is selected with the SCKP bit (BAUDCON<4>); setting SCKP sets the Idle state on CK as high, while clearing the bit sets the Idle state as low. This option is provided to support Microwire devices with this module.

18.3.1 EUSART SYNCHRONOUS MASTER TRANSMISSION


The EUSART transmitter block diagram is shown in Figure 18-3. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available).

Once the TXREG register transfers the data to the TSR register (occurs in one TCYCLE), the TXREG is empty and the TXIF flag bit (PIR1<4>) is set. The interrupt can be enabled or disabled by setting or clearing the interrupt enable bit, TXIE (PIE1<4>). TXIF is set regardless of the state of enable bit TXIE; it cannot be cleared in software. It will reset only when new data is loaded into the TXREG register.

While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. TRMT is a read-only bit which is set when the TSR is empty. No interrupt logic is tied to this bit so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory so it is not available to the user.

To set up a Synchronous Master Transmission:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits SYNC SPEN and CSRC.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 18-11: SYNCHRONOUS TRANSMISSION

REGISTER 23-1:	CANCON: CAN CONTROL REGISTER
----------------	------------------------------

Mode 0	R/W-1	R/W-0	R/W-0	R/S-0	R/W-0	R/W-0	R/W-0	U-0
wode u	REQOP2	REQOP1	REQOP0	ABAT	WIN2	WIN1	WIN0	—
	_							
Mode 1	R/W-1	R/W-0	R/W-0	R/S-0	U0	U-0	U-0	U-0
	REQOP2	REQOP1	REQOP0	ABAT	—	_	—	—
Mode 2	R/W-1	R/W-0	R/W-0	R/S-0	R-0	R-0	R-0	R-0
woue z	REQOP2	REQOP1	REQOP0	ABAT	FP3	FP2	FP1	FP0
	bit 7							bit 0

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 **REQOP2:REQOP0:** Request CAN Operation Mode bits

- 1xx = Request Configuration mode
- 011 = Request Listen Only mode
- 010 = Request Loopback mode
- 001 = Request Disable mode
- 000 = Request Normal mode

bit 4 ABAT: Abort All Pending Transmissions bit

- 1 = Abort all pending transmissions (in all transmit buffers)
- 0 = Transmissions proceeding as normal

bit 3-1 Mode 0:

WIN2:WIN0: Window Address bits

These bits select which of the CAN buffers to switch into the access bank area. This allows access to the buffer registers from any data memory bank. After a frame has caused an interrupt, the ICODE3:ICODE0 bits can be copied to the WIN3:WIN0 bits to select the correct buffer. See Example 23-2 for a code example.

- 111 = Receive Buffer 0
- 110 = Receive Buffer 0
- 101 = Receive Buffer 1
- 100 = Transmit Buffer 0
- 011 = Transmit Buffer 1
- 010 = Transmit Buffer 2
- 001 = Receive Buffer 0
- 000 = Receive Buffer 0

bit 0 Unimplemented: Read as '0'

bit 4-0 <u>Mode 1:</u>

Unimplemented: Read as '0'

Mode 2:

FP3:FP0: FIFO Read Pointer bits

These bits point to the message buffer to be read.

- 0111:0000 = Message buffer to be read
- 1111:1000 = Reserved

REGISTER 23-21: RXERRCNT: RECEIVE ERROR COUNT REGISTER

REC6	REC5	REC4		DE00		5500
		NLO4	REC3	REC2	REC1	REC0
						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 REC7:REC0: Receive Error Counter bits

This register contains the receive error value as defined by the CAN specifications. When RXERRCNT > 127, the module will go into an error-passive state. RXERRCNT does not have the ability to put the module in "bus-off" state.

EXAMPLE 23-5: READING A CAN MESSAGE

```
; Need to read a pending message from RXBO buffer.
; To receive any message, filter, mask and RXM1:RXM0 bits in RXB0CON registers must be
; programmed correctly.
;
; Make sure that there is a message pending in RXBO.
BTFSS RXBOCON, RXFUL
                                   ; Does RXB0 contain a message?
BRA
      NoMessage
                                    ; No. Handle this situation...
; We have verified that a message is pending in RXBO buffer.
; If this buffer can receive both Standard or Extended Identifier messages,
; identify type of message received.
BTFSS RXBOSIDL, EXID
                                    ; Is this Extended Identifier?
BRA
      StandardMessage
                                    ; No. This is Standard Identifier message.
                                     ; Yes. This is Extended Identifier message.
; Read all 29-bits of Extended Identifier message.
; Now read all data bytes
MOVFF RXB0DO, MY DATA BYTE1
. . .
; Once entire message is read, mark the RXB0 that it is read and no longer FULL.
     RXB0CON, RXFUL
                                   ; This will allow CAN Module to load new messages
BCF
                                    ; into this buffer.
. . .
```

23.2.3.1 Programmable TX/RX and Auto-RTR Buffers

The ECAN module contains 6 message buffers that can be programmed as transmit or receive buffers. Any of these buffers can also be programmed to automatically handle RTR messages.

Note: These registers are not used in Mode 0.

REGISTER 23-22: BnCON: TX/RX BUFFER n CONTROL REGISTERS IN RECEIVE MODE $[0 \le n \le 5, TXnEN (BSEL0 \le n) = 0]^{(1)}$

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
RXFUL ⁽²⁾	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	RXFUL: Receive Full Status bit ⁽²⁾
	1 = Receive buffer contains a received message
	0 = Receive buffer is open to receive a new message
bit 6	RXM1: Receive Buffer Mode bit
	 1 = Receive all messages including partial and invalid (acceptance filters are ignored) 0 = Receive all valid messages as per acceptance filters
bit 5	RXRTRRO: Read-Only Remote Transmission Request for Received Message bit
	1 = Received message is a remote transmission request
	0 = Received message is not a remote transmission request
bit 4-0	FILHIT4:FILHIT0: Filter Hit bits
	These bits indicate which acceptance filter enabled the last message reception into this buffer.
	01111 = Acceptance Filter 15 (RXF15)
	01110 = Acceptance Filter 14 (RXF14)
	00001 = Acceptance Filter 1 (RXF1)
	00000 = Acceptance Filter 0 (RXF0)

- **Note 1:** These registers are available in Mode 1 and 2 only.
 - 2: This bit is set by the CAN module upon receiving a message and must be cleared by software after the buffer is read. As long as RXFUL is set, no new message will be loaded and the buffer will be considered full.

REGISTER 23-34: BnDLC: TX/RX BUFFER n DATA LENGTH CODE REGISTERS IN RECEIVE MODE $[0 \le n \le 5, TXnEN (BSEL \le n) = 0]^{(1)}$

U-0	R-x	R-x	R-x	R-x	R-x	R-x	R-x
—	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0

Legend:							
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'			
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 7	Unimpler	nented: Read as '0'					
bit 6	RXRTR:	Receiver Remote Transmiss	sion Request bit				
		s a remote transmission rec s not a remote transmission	-				
bit 5	RB1: Res	erved bit 1					
	Reserved	by CAN Spec and read as	ʻ0'.				
bit 4	RB0: Res	erved bit 0					
	Reserved by CAN Spec and read as '0'.						
bit 3-0	DLC3:DLC0: Data Length Code bits						
	1111 = R	eserved					
	1110 = R	eserved					
	1101 = R						
	1100 = R						
	1011 = R						
	1010 = R 1001 = R						
		ata length = 8 bytes					
		ata length = 7 bytes					
		ata length = 6 bytes					
		ata length = 5 bytes					
	0100 = D	ata length = 4 bytes					
	0011 = D	ata length = 3 bytes					
		ata length = 2 bytes					
		ata length = 1 bytes					
	0000 = D	ata length = 0 bytes					

Note 1: These registers are available in Mode 1 and 2 only.

RXFCON0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
KAFCONU	RXF7EN	RXF6EN	RXF5EN	RXF4EN	RXF3EN	RXF2EN	RXF1EN	RXF0EN
RXFCON1	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
KAFCONT	RXF15EN	RXF14EN	RXF13EN	RXF12EN	RXF11EN	RXF10EN	RXF9EN	RXF8EN
	bit 7							bit 0
Legend:			C = Clearabl	e bit				
R = Readable bit		W = Writable bit		U = Unimple	emented bit, re	ead as '0'		
-n = Value at POR		'1' = Bit is se	t	'0' = Bit is c	leared	x = Bit is un	Bit is unknown	

REGISTER 23-45: RXFCONn: RECEIVE FILTER CONTROL REGISTER n $[0 \le n \le 1]^{(1)}$

bit 7-0 **RXFnEN:** Receive Filter n Enable bits

0 = Filter is disabled

1 = Filter is enabled

Note 1: This register is available in Mode 1 and 2 only.

Note: Register 23-46 through Register 23-51 are writable in Configuration mode only.

REGISTER 23-46: SDFLC: STANDARD DATA BYTES FILTER LENGTH COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	FLC4	FLC3	FLC2	FLC1	FLC0
bit 7							bit 0

Legend:							
R = Readat	ole bit	W = Writ	' = Writable bit U = Unimp		emented bit, read as '0'		
-n = Value a	at POR	'1' = Bit i	s set	'0' = Bit is cleared	x = Bit is unknown		
bit 7-5	Unimplemer	ited: Read	as ' 0'				
bit 4-0	FLC4:FLC0:	Filter Leng	gth Count bits				
	Mode 0:						
	Not used; for	ced to '00	000'.				
	00000-10010 = 0		depends on DL		e filter. Actual number of bits use 3:0> or BnDLC<3:0> if configure		
	If DLC3:DLC0) = 0000		ompared with incoming da	ta bits.		
If DLC3:DLC0 = 0001			Up to 8 data bi	ts of RXFnEID<7:0>, as c	letermined by FLC2:FLC0, will be per of data bits of the incoming		
) = 0010	Up to 16 data b		determined by FLC3:FLC0, will b per of data bits of the incomin		
If DLC3:DLC0 = 0011			Up to 18 data b		determined by FLC4:FLC0, will b per of data bits of the incomin		

Note 1: This register is available in Mode 1 and 2 only.

TABLE 23-1: CAN CONTROLLER REGISTER MAP

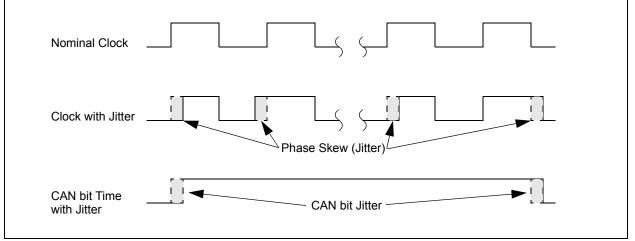
Address ⁽¹⁾	Name	Address	Name	Address	Name	Address	Name
F7Fh	SPBRGH ⁽³⁾	F5Fh	CANCON_RO0	F3Fh	CANCON_RO2	F1Fh	RXM1EIDL
F7Eh	BAUDCON ⁽³⁾	F5Eh	CANSTAT_RO0	F3Eh	CANSTAT_RO2	F1Eh	RXM1EIDH
F7Dh	(4)	F5Dh	RXB1D7	F3Dh	TXB1D7	F1Dh	RXM1SIDL
F7Ch	(4)	F5Ch	RXB1D6	F3Ch	TXB1D6	F1Ch	RXM1SIDH
F7Bh	(4)	F5Bh	RXB1D5	F3Bh	TXB1D5	F1Bh	RXM0EIDL
F7Ah	(4)	F5Ah	RXB1D4	F3Ah	TXB1D4	F1Ah	RXM0EIDH
F79h	ECCP1DEL ⁽³⁾	F59h	RXB1D3	F39h	TXB1D3	F19h	RXM0SIDL
F78h	(4)	F58h	RXB1D2	F38h	TXB1D2	F18h	RXM0SIDH
F77h	ECANCON	F57h	RXB1D1	F37h	TXB1D1	F17h	RXF5EIDL
F76h	TXERRCNT	F56h	RXB1D0	F36h	TXB1D0	F16h	RXF5EIDH
F75h	RXERRCNT	F55h	RXB1DLC	F35h	TXB1DLC	F15h	RXF5SIDL
F74h	COMSTAT	F54h	RXB1EIDL	F34h	TXB1EIDL	F14h	RXF5SIDH
F73h	CIOCON	F53h	RXB1EIDH	F33h	TXB1EIDH	F13h	RXF4EIDL
F72h	BRGCON3	F52h	RXB1SIDL	F32h	TXB1SIDL	F12h	RXF4EIDH
F71h	BRGCON2	F51h	RXB1SIDH	F31h	TXB1SIDH	F11h	RXF4SIDL
F70h	BRGCON1	F50h	RXB1CON	F30h	TXB1CON	F10h	RXF4SIDH
F6Fh	CANCON	F4Fh	CANCON_RO1 ⁽²⁾	F2Fh	CANCON_RO3 ⁽²⁾	F0Fh	RXF3EIDL
F6Eh	CANSTAT	F4Eh	CANSTAT_RO1 ⁽²⁾	F2Eh	CANSTAT_RO3 ⁽²⁾	F0Eh	RXF3EIDH
F6Dh	RXB0D7	F4Dh	TXB0D7	F2Dh	TXB2D7	F0Dh	RXF3SIDL
F6Ch	RXB0D6	F4Ch	TXB0D6	F2Ch	TXB2D6	F0Ch	RXF3SIDH
F6Bh	RXB0D5	F4Bh	TXB0D5	F2Bh	TXB2D5	F0Bh	RXF2EIDL
F6Ah	RXB0D4	F4Ah	TXB0D4	F2Ah	TXB2D4	F0Ah	RXF2EIDH
F69h	RXB0D3	F49h	TXB0D3	F29h	TXB2D3	F09h	RXF2SIDL
F68h	RXB0D2	F48h	TXB0D2	F28h	TXB2D2	F08h	RXF2SIDH
F67h	RXB0D1	F47h	TXB0D1	F27h	TXB2D1	F07h	RXF1EIDL
F66h	RXB0D0	F46h	TXB0D0	F26h	TXB2D0	F06h	RXF1EIDH
F65h	RXB0DLC	F45h	TXB0DLC	F25h	TXB2DLC	F05h	RXF1SIDL
F64h	RXB0EIDL	F44h	TXB0EIDL	F24h	TXB2EIDL	F04h	RXF1SIDH
F63h	RXB0EIDH	F43h	TXB0EIDH	F23h	TXB2EIDH	F03h	RXF0EIDL
F62h	RXB0SIDL	F42h	TXB0SIDL	F22h	TXB2SIDL	F02h	RXF0EIDH
F61h	RXB0SIDH	F41h	TXB0SIDH	F21h	TXB2SIDH	F01h	RXF0SIDL
F60h	RXB0CON	F40h	TXB0CON	F20h	TXB2CON	F00h	RXF0SIDH

Note 1: Shaded registers are available in Access Bank low area, while the rest are available in Bank 15.

2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the controller register due to the Microchip header file requirement.

3: These registers are not CAN registers.

4: Unimplemented registers are read as '0'.


23.9.1 EXTERNAL CLOCK, INTERNAL CLOCK AND MEASURABLE JITTER IN HSPLL-BASED OSCILLATORS

The microcontroller clock frequency generated from a PLL circuit is subject to a jitter, also defined as Phase Jitter or Phase Skew. For its PIC18 Enhanced microcontrollers, Microchip specifies phase jitter (P_{jitter}) as being 2% (Gaussian distribution, within 3 standard deviations, see parameter F13 in Table 27-7) and Total Jitter (T_{jitter}) as being 2 * P_{jitter} .

The CAN protocol uses a bit-stuffing technique that inserts a bit of a given polarity following five bits with the opposite polarity. This gives a total of 10 bits transmitted without re-synchronization (compensation for jitter or phase error).

Given the random nature of the jitter error added, it can be shown that the total error caused by the jitter tends to cancel itself over time. For a period of 10 bits, it is necessary to add only two jitter intervals to correct for jitter-induced error: one interval in the beginning of the 10-bit period and another at the end. The overall effect is shown in Figure 23-5.

FIGURE 23-5: EFFECTS OF PHASE JITTER ON THE MICROCONTROLLER CLOCK AND CAN BIT TIME

Once these considerations are taken into account, it is possible to show that the relation between the jitter and the total frequency error can be defined as:

EQUATION 23-4:

$$\Delta f = \frac{T_{\text{jitter}}}{10 \times \text{NBT}} = \frac{2 \times P_{\text{jitter}}}{10 \times \text{NBT}}$$

where jitter is expressed in terms of time and NBT is the Nominal Bit Time.

For example, assume a CAN bit rate of 125 Kb/s, which gives an NBT of 8 μ s. For a 16 MHz clock generated from a 4x PLL, the jitter at this clock frequency is:

EQUATION 23-5:

$$2\% \times \frac{1}{16 \text{ MHz}} = \frac{0.02}{16 \times 10^6} = 1.25 \text{ ns}$$

The resultant frequency error is:

EQUATION 23-6:

$$\frac{2 \times (1.25 \times 10^{-9})}{10 \times (8 \times 10^{-6})} = 3.125 \times 10^{-5} = 0.0031\%$$

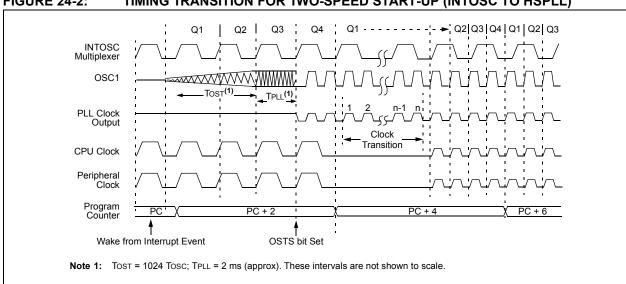
24.3 **Two-Speed Start-up**

The Two-Speed Start-up feature helps to minimize the latency period from oscillator start-up to code execution by allowing the microcontroller to use the INTRC oscillator as a clock source until the primary clock source is available. It is enabled by setting the IESO Configuration bit.

Two-Speed Start-up should be enabled only if the primary oscillator mode is LP, XT, HS or HSPLL (Crystal-based modes). Other sources do not require an OST start-up delay; for these, Two-Speed Start-up should be disabled.

When enabled, Resets and wake-ups from Sleep mode cause the device to configure itself to run from the internal oscillator block as the clock source, following the time-out of the Power-up Timer after a Power-on Reset is enabled. This allows almost immediate code execution while the primary oscillator starts and the OST is running. Once the OST times out, the device automatically switches to PRI RUN mode.

Because the OSCCON register is cleared on Reset events, the INTOSC (or postscaler) clock source is not initially available after a Reset event; the INTRC clock is used directly at its base frequency. To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits, IRCF2:IRCF0, immediately after


Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting the IRCF2:IRCF0 bits prior to entering Sleep mode.

In all other power-managed modes, Two-Speed Start-up is not used. The device will be clocked by the currently selected clock source until the primary clock source becomes available. The setting of the IESO bit is ignored.

24.3.1 SPECIAL CONSIDERATIONS FOR USING TWO-SPEED START-UP

While using the INTRC oscillator in Two-Speed Start-up, the device still obeys the normal command sequences for entering power-managed modes, including serial SLEEP instructions (refer to Section 3.1.4 "Multiple Sleep Commands"). In practice, this means that user code can change the SCS1:SCS0 bit settings or issue SLEEP instructions before the OST times out. This would allow an application to briefly wake-up, perform routine "housekeeping" tasks and return to Sleep before the device starts to operate from the primary oscillator.

User code can also check if the primary clock source is currently providing the device clocking by checking the status of the OSTS bit (OSCCON<3>). If the bit is set, the primary oscillator is providing the clock. Otherwise, the internal oscillator block is providing the clock during wake-up from Reset or Sleep mode.

FIGURE 24-2: TIMING TRANSITION FOR TWO-SPEED START-UP (INTOSC TO HSPLL)

PIC18F2682/2685/4682/4685

Syntax: CPFSGT f {a} Operands: $0 \le f \le 255$ $a \in [0,1]$ Operation: (f) - (W), skip if (f) > (W) (unsigned comparison) Status Affected: None Encoding: 0110 010a ffff Description: Compares the contents of data memory location 'f to the contents of the W by performing an unsigned subtraction. If the contents of 'f are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f < 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Addressing mode whenever f < 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instruction. Q1 Q2 Q3 Q4 Decode Read Process No If skip: Q1 Q2 Q3 Q4 Decode Read Process No If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 Decode Read Process No No No <th>CPF</th> <th>SGT</th> <th>Compare</th> <th colspan="4">Compare f with W, Skip if f > W</th>	CPF	SGT	Compare	Compare f with W, Skip if f > W					
$a \in [0,1]$ Operation: $(f) - (W),$ skip if (f) > (W) (unsigned comparison) Status Affected: None Encoding: $Ollo_0loa_ffff_fff fff_ Description: Compares the contents of data memory location 'f to the contents of data memory location 'f to the contents of the W by performing an unsigned subtraction. If the contents of 'f are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions. If skip: Q1 Q2 Q3 Q4 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 No No No No No operation operation operation If skip: Q1 Q2 Q3 Q4 No No No No No Operation operation operation If skip: Q1 Q2 Q3 Q4 No No No No No No No No No operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No No Operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No No Operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No No Operation operation operation No Operation operation operation PC = Address (HERE) M REG > W; HEEG < W; HEG = W;$	Synta	ax:	CPFSGT	CPFSGT f {,a}					
Operation:(f) - (W), skip if (f) > (W) (unsigned comparison)Status Affected:NoneEncoding:010 010 ffff ffffDescription:Compares the contents of data memory location f to the contents of the W by 	Oper	ands:	$0 \le f \le 255$						
$\begin{array}{rcl} & skip if (f) > (W) \\ (unsigned comparison) \\ \\ \mbox{Status Affected: None} \\ \\ \mbox{Encoding: } & 0110 & 010a & ffff & ffff \\ \\ \mbox{Description: } & Compares the contents of data memory location if to the contents of the W by performing an unsigned subtraction. If the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f \leq 95 (5Fh). See Section 25.23 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	•		a ∈ [0,1]						
$\begin{array}{rcl} & skip if (f) > (W) \\ (unsigned comparison) \\ \\ \mbox{Status Affected: None} \\ \\ \mbox{Encoding: } & 0110 & 010a & ffff & ffff \\ \\ \mbox{Description: } & Compares the contents of data memory location if to the contents of the W by performing an unsigned subtraction. If the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f \leq 95 (5Fh). See Section 25.23 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Oper	ation:	(f) - (W),						
Status Affected:NoneEncoding: 0110 $010a$ ffffffffDescription:Compares the contents of data memory location 'f to the contents of the W by performing an unsigned subtraction. If the contents of 'f are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f \leq 95 (SFh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Words:1Cycles1(2) Note: 3 cycles if skip and followed by a 2-word instruction.Q Cycle Activity:Q1Q1Q2Q3Q4NoNoNoNoNoNoNoNoNoIf skip:Q1Q2Q3Q3Q4No	•			(W)					
Encoding: $\begin{array}{c c c c c c c c c c c c c c c c c c c $			(unsigned c	comparison)					
Description: Compares the contents of data memory location 'f to the contents of the W by performing an unsigned subtraction. If the contents of 'f are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f \leq 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 No No No No No No No No No No	Statu	s Affected:	None						
Description: Compares the contents of data memory location 'f to the contents of the W by performing an unsigned subtraction. If the contents of 'f are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f \leq 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 No No No No No No No No No No	Enco	dina [.]	0110	010a fff	f ffff				
Iocation 'f to the contents of the W by performing an unsigned subtraction. If the contents of 'f are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process No If skip: Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Decode Read Process No If skip: Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Operation operation operation		0							
contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f \leq 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register 'f' Data operation No No No No No No No No No No	Desc	aipuon.	location 'f' t	o the contents	of the W by				
instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f \leq 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Q4 Q2 Q3 Q4 Q2 Q3 Q4 Q4 Q1 Q2 Q3 Q4 Q4 Q1 Q2 Q3 Q4 Q2 Q3 Q4 Q4 Q1 Q2 Q3 Q4 Q4 Q2 Q3 Q4 Q4 Q4 Q2 Q3 Q4 Q4 Q2 Q3 Q4 Q4 Q4 Q2 Q3 Q4 Q4 Q2 Q3 Q4 Q4 Q2 Q3 Q4 Q4 Q2 Q3 Q4 Q4 Q2 Q3 Q4 Q4 Q4 Q2 Q3 Q4 Q4 Q4 Q4 Q2 Q3 Q4 Q4 Q4 Q2 Q3 Q4 Q4 Q4 Q4 Q2 Q3 Q4 Q4 Q4 Q4 Q2 Q3 Q4 Q4 Q4 Q4 Q2 Q3 Q4 Q4 Q4 Q4 Q2 Q3 Q4 Q4 Q4 Q4 Q4 Q4 Q2 Q3 Q4 Q4 Q4 Q4 Q4 Q2 Q3 Q4 Q4 Q4 Q4 Q4 Q4 Q4 Q4 Q			If the conte	nts of 'f' are gre	eater than the				
executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q2 Q1 Q2 Q3 Q2 Q1 Q2 Q3 Q2 Q1 Q2 Q3 Q2 Q1				,					
two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register 'f Data operation If skip: Q1 Q2 Q3 Q4 No No No No No No No No No No									
$\begin{array}{rcl} \mbox{If 'a' is '1', the BSR is used to select the GPR bank (default).} \\ \mbox{If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f < 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. \\ \mbox{Words: 1} \\ \mbox{Cycles: 1(2)} \\ \mbox{Note: 3 cycles if skip and followed by a 2-word instruction.} \\ \mbox{Q Cycle Activity: } \\ \mbox{Q 1 } \mbox{Q 2 } \mbox{Q 3 } \mbox{Q 4} \\ \hline \mbox{Decode } \mbox{Read } \mbox{Process } \mbox{No} \\ \mbox{Operation } Opera$					this a				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			lf 'a' is '0', t	he Access Bar	nk is selected.				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			lf 'a' is '1', t	he BSR is used	d to select the				
set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 $\boxed{\text{Decode} \text{Read} \text{Process} \text{No} \text{operation}}$ If skip: Q1 Q2 Q3 Q4 $\boxed{\text{No} \text{No} \text{No} \text{No} \text{operation}}$ If skip: Q1 Q2 Q3 Q4 $\boxed{\text{No} \text{No} \text{No} \text{operation}}$ If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 $\boxed{\text{No} \text{No} \text{No} \text{No} \text{operation}} \text{operation}}$ If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 $\boxed{\text{No} \text{No} \text{No} \text{No} \text{operation}} \text{operation}} \text{operation}}$ Example: HERE CPFSGT REG, 0 NGREATER : GREATER : Before Instruction PC = Address (HERE) W = ? After Instruction If REG > W; PC = Address (GREATER) If REG < W;			GPR bank	(default).					
in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process No register 'f' Data operation If skip: Q1 Q2 Q3 Q4 No operation operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No operation operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No operation operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No operation operation operation operation No operation operation operation No No No No No No No No No No No No No			lf 'a' is ' 0' a	nd the extende	ed instruction				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					•				
Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Words:1Cycles:1(2)Note:3 cycles if skip and followed by a 2-word instruction.Q Cycle Activity: $Q1$ Q1Q2Q3Q4DecodeRead register 'f'DataoperationIf skip: $Q1$ Q1Q2Q3Q4NoNoNoNooperationoperationoperationoperationoperationoperationoperationoperationIf skip and followed by 2-word instruction:Q1Q2Q3Q4NoNoNoNoNoNooperationOperationoperationOperationoperationoperationoperationoperationoperationOperationoperationOperationoperationOperation <td< td=""><td></td><td></td><td></td><td></td><td>•</td></td<>					•				
Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Words:1Cycles:1(2)Note:3 cycles if skip and followed by a 2-word instruction.Q Cycle Activity:Q1Q1Q2Q3Q4DecodeRead register 'f'DataoperationIf skip:Q1Q1Q2Q3Q4NoNoNoNooperationoperationoperationoperationoperationoperationoperationoperationoperationoperationQ1Q2Q3Q4No <td></td> <td></td> <td></td> <td></td> <td></td>									
Literal Offset Mode" for details.Words:1Cycles:1(2)Note:3 cycles if skip and followed by a 2-word instruction.Q Cycle Activity: $Q1$ Q1Q2Q3Q4DecodeRead register 'f'DataoperationIf skip: $Q1$ Q1Q2Q3Q4NoNoNoNooperationoperationoperationoperationoperationoperationoperationoperationoperationoperationQ1Q2Q3Q4No									
Words:1Cycles:1(2)Note:3 cycles if skip and followed by a 2-word instruction.Q Cycle Activity: $Q1$ Q2Q3Q4 $Decode$ ReadProcessNonoregister 'f'DataDecodeReadProcessNoIf skip:Q1Q2Q3Q4NoNoNoNooperationoperationoperationoperationoperationoperationQ1Q2Q3Q4No <td< td=""><td></td><td></td><td></td><td colspan="6"></td></td<>									
Cycles:1(2)Note:3 cycles if skip and followed by a 2-word instruction.Q Cycle Activity: $Q1$ $Q2$ $Q3$ Q1Q2Q3Q4DecodeRead register 'f'Data operationIf skip: $Q1$ $Q2$ $Q3$ Q1Q2Q3Q4NoNoNooperationoperationoperationoperationoperationoperationoperationoperationoperationoperationQ1Q2Q3Q4No <tr< td=""><td>10/0 00</td><td>1</td><td></td><td colspan="5"></td></tr<>	10/0 00	1							
Note: 3 cycles if skip and followed by a 2-word instruction.Q Cycle Activity: $Q1$ $Q2$ $Q3$ $Q4$ DecodeRead register 'f'ProcessNo operationIf skip: $Q1$ $Q2$ $Q3$ $Q4$ NoNoNoNo operationoperationIf skip and followed by 2-word instruction: $Q1$ $Q2$ $Q3$ $Q4$ NoNoNoNoNooperationoperationoperationoperationIf skip and followed by 2-word instruction: $Q1$ $Q2$ $Q3$ $Q4$ NoNoNoNoNooperationoperationoperationoperationIf skip and followed by 2-word instruction: $Q1$ $Q2$ $Q3$ $Q4$ NoNoNoNoNooperationoperationoperationoperationOperationoperationoperationoperationOperationoperationoperationoperationNoNoNoNoNoNoNoNoNoNoOperationoperationoperationExample:HERECPFSGT REG, 0NGREATER:GREATER:Greater:Before InstructionIf REGM=PC=Address(GREATER)If REG>W;PC=Address(GREATER)If REG<									
$\begin{array}{c cccc} & \text{by a 2-word instruction.} \\ \begin{tabular}{ c c c c } Q & Q & Q & Q & Q & Q & Q & Q & Q & Q $	Cycle	es:	. ,						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c cccccc} Q1 & Q2 & Q3 & Q4 \\ \hline Decode & Read & Process & No \\ register 'f' & Data & operation \\ \hline If skip: \\ \hline Q1 & Q2 & Q3 & Q4 \\ \hline No & No & No & No \\ operation & operation & operation \\ \hline operation & operation & operation \\ \hline If skip and followed by 2-word instruction: \\ \hline Q1 & Q2 & Q3 & Q4 \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline Q1 & Q2 & Q3 & Q4 \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline PC & = Address (HERE) \\ \hline W & = ? \\ \hline After Instruction \\ If REG & > W; \\ \hline PC & = Address (GREATER) \\ \hline If REG & \leq W; \\ \hline \end{array}$			by	a 2-word instri	uction.				
$\begin{tabular}{ c c c c c c } \hline Decode & Read & Process & No \\ \hline register 'f' & Data & operation \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline Pc & = Address & (HERE) \\ \hline W & = ? \\ \hline After Instruction \\ If REG & > & W; \\ PC & = Address & (GREATER) \\ If REG & \leq & W; \\ \hline \end{tabular}$	QC				_				
$\begin{tabular}{ c c c c c c } \hline register 'f' & Data & operation \\ \hline register 'f' & Data & operation \\ \hline If skip: \\ \hline $Q1 & Q2 & Q3 & Q4 \\ \hline $No & $No & $No & $No & $operation$ \\ \hline $operation & operation & operation$ \\ \hline $operation & operation & operation$ \\ \hline $Q1 & Q2 & Q3 & Q4$ \\ \hline $No & $No & $No & $No & $No & $operation$ \\ \hline $Q1 & Q2 & Q3 & Q4$ \\ \hline $No & $No & $No & $No & $operation$ \\ \hline $operation & operation & operation$ \\ \hline $operation & operation & operation$ \\ \hline $No & $No & $No & $No & $operation$ \\ \hline $No & $No & $No & $No & $operation$ \\ \hline $operation & operation & operation$ \\ \hline $operation & operation & operation$ \\ \hline $No & $No & $No & $No & $operation$ \\ \hline $operation & operation & $operation & $operation$ \\ \hline $No & $No & $No & $No & $No & $operation$ \\ \hline $operation & $operation & $operation & $operation$ \\ \hline $No & $No & $No & $No & $No & $operation$ \\ \hline $operation & $operation & $operation & $operation$ \\ \hline $operation & $operation & $operation & $operation$ \\ \hline $No & $No & $No & $No & $No & $No & $operation$ \\ \hline $operation & $operation & $operation & $operation$ \\ \hline $PC & = $Address $ (HERE) $ \\ \hline $W & = $PC & = $Address $ (GREATER)$ \\ \hline $If $REG & $\leq W; \\ \hline $PC & = $Address $ (GREATER)$ \\ \hline $If $REG & $\leq W; \\ \hline $PC & = $Address $ (GREATER)$ \\ \hline $If $REG & $\leq W; \\ \hline $PC & = $Address $ (GREATER)$ \\ \hline $If $REG & $\leq W; \\ \hline $PC & = $Address $ (GREATER)$ \\ \hline $If $REG & $\leq W; \\ \hline $PC & = $Address $ (GREATER)$ \\ \hline $If $REG & $\leq W; \\ \hline $PC & = $Address $ (GREATER)$ \\ \hline $If $REG & $\leq W; \\ \hline $PC & = $Address $ (GREATER)$ \\ \hline $If $REG & $\leq W; \\ \hline $PC & $= $Address $ (GREATER)$ \\ \hline $If $REG & $\leq W; \\ \hline $PC & $= $Address $ (GREATER)$ \\ \hline $If $REG & $\leq W; \\ \hline $PC & $= $Address $ (GREATER)$ \\ \hline $If $REG & $\leq W; \\ \hline $PC & $= $Address $ (GREATER)$ \\ \hline $If $REG & $\leq W; \\ \hline $PC & $= $Address $ (GREATER)$ \\ \hline $If $RES & $< W; \\ \hline $PC & $= $Address $ (GREATER)$ \\ \hline $If $RES & $< W; \\ \hline $PC & $= $Address $ (GREATER)$ \\ \hline $If $RES & $< W; \\ \hline $PC & $= $Address $ (IERE)$ \\ \hline $If $RES & $< W;$									
If skip: Q1 Q2 Q3 Q4 No No No No operation operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No No operation operation No No No No No operation operation No No No No No operation operation Example: HERE CPFSGT REG, 0 NGREATER : GREATER : Before Instruction PC = Address (HERE) W = ? After Instruction If REG > W; PC = Address (GREATER) If REG \leq W;		Decode			-				
$\begin{array}{c ccccccc} Q1 & Q2 & Q3 & Q4 \\ \hline No & No & No & Operation \\ \hline operation & operation & operation \\ \hline operation & operation & operation \\ \hline If skip and followed by 2-word instruction: \\ \hline Q1 & Q2 & Q3 & Q4 \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline Operation & operation & operation \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline Example: & HERE & CPFSGT REG, 0 \\ \hline NGREATER & : \\ GREATER & : \\ \hline Before Instruction \\ PC & = Address (HERE) \\ W & = ? \\ \hline After Instruction \\ If REG & > W; \\ PC & = Address (GREATER) \\ \hline If REG & \leq W; \\ \hline \end{array}$	16 - 1		register 'f'	Data	operation				
$\begin{tabular}{ c c c c c c } \hline No & No & No & operation & oper$	IT SK			<u></u>	<u>.</u>				
IteIteIteoperationoperationoperationoperationoperationoperationIf skip and followed by 2-word instruction: $Q1$ $Q2$ Q1Q2Q3Q4NoNoNoNooperationoperationoperationoperationoperationoperationNoNoNoNoNoNooperation<									
If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No operation operation operation No No No No No operation operation No operation operation operation Example: HERE CPFSGT REG, 0 NGREATER : GREATER : Before Instruction PC = Address (HERE) W = ? After Instruction If REG > W; PC = Address (GREATER) If REG \leq W;			110						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lf als				operation				
$\begin{tabular}{ c c c c c c c } \hline No & No & No & operation & op$	II SK	•	•		04				
$\begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \end{tabular} operation & $									
No No No operation operation operation Example: HERE CPFSGT REG, 0 NGREATER : GREATER : Before Instruction PC = PC = Address (HERE) W = ? After Instruction If REG > If REG > W; PC = Address (GREATER) If REG ≤ W;					-				
operation operation operation Example: HERE CPFSGT REG, 0 NGREATER : GREATER : Before Instruction PC = Address (HERE) W = ? After Instruction If REG > W; PC = Address (GREATER) If REG > W; If REG ≤ W;									
Example: HERE CPFSGT REG, 0 NGREATER : GREATER : Before Instruction PC = Address (HERE) W = ? After Instruction If REG > W; PC = Address (GREATER) If REG ≤ W;									
$\begin{array}{rcl} \mathrm{NGREATER} & : & & \\ \mathrm{GREATER} & : & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $									
$\begin{array}{rcl} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	Exan	nple:	HERE	CPFSGT RE	G , 0				
Before Instruction PC = Address (HERE) W = ? After Instruction If REG > W; PC = Address (GREATER) If REG \leq W;			NGREATER	:					
PC = Address (HERE) W = ? After Instruction If REG > W; PC = Address (GREATER) If REG ≤ W;			GREATER	:					
$W = ?$ After Instruction If REG > W; PC = Address (GREATER) If REG \leq W;		Before Instruc	tion						
After Instruction If REG > W; PC = Address (GREATER) If REG ≤ W;				dress (HERE)	1				
If REG > W; PC = Address (GREATER) If REG ≤ W;			•						
PC = Address (GREATER) If REG ≤ W;									
lf REG ≤ W;					rer)				
PC = Address (NGREATER)		If REG	≤ W;						
		PC	= Ad	dress (NGREA	ATER)				

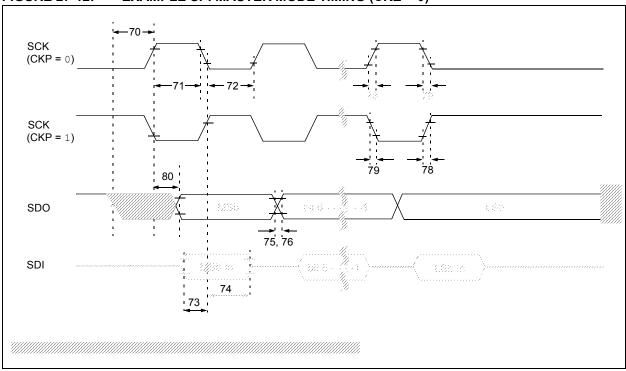
CPF	SLT	Compare	Compare f with W, Skip if f < W					
Synta	ax:	CPFSLT	f {,a}					
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]						
Oper	ation:	(f) – (W), skip if (f) < (unsigned o	(W) comparison)					
Statu	s Affected:	None						
Enco	ding:	0110	000a ff	ff ffff				
Desc	ription:	location 'f' t performing	to the content an unsigned	subtraction.				
		contents of instruction executed ir two-cycle ir		etched Ind a NOP is g this a				
			he BSR is use	ink is selected. ed to select the				
Word	ls:	1	1					
Cycle	es:	1(2)						
			cycles if skip a a 2-word inst					
QC	ycle Activity:	-)						
	Q1	Q2	Q3	Q4				
	Decode	Read	Process	No				
		register 'f'	register 'f' Data					
lf sk	ıp: Q1	Q2	Q3	Q4				
	No	No	No	No				
	operation	operation	operation	operation				
lf sk	ip and followe	d by 2-word in	struction:					
	Q1	Q2	Q3	Q4				
	No	No	No	No				
	operation No	operation No	operation	operation				
	operation	operation	No operation	No operation				
Example:		NLESS	CPFSLT REG :	<u> </u>				
	Before Instruc PC W After Instructio If REG	= Ac = ?	Idress (here	5)				
	PC If REG PC	= Ac ≥ W	dress (LESS					

Operating Conditions: $3.0V < V_{DD} < 5.5V$, $-40^{\circ}C < T_A < +85^{\circ}C$ (unless otherwise stated).							
Param No.	Sym	Characteristics	Min	Тур	Мах	Units	Comments
D300	VIOFF	Input Offset Voltage		±5.0	±10	mV	
D301	VICM	Input Common Mode Voltage*	0	_	Vdd - 1.5	V	
D302	CMRR	Common Mode Rejection Ratio*	55	_	—	dB	
300	TRESP	Response Time ^{(1)*}	_	150	400	ns	PIC18FXXXX
300A				150	600	ns	PIC18LFXXXX, VDD = 2.0V
301	Тмс2о∨	Comparator Mode Change to Output Valid*	_		10	μS	

TABLE 27-2: COMPARATOR SPECIFICATIONS

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD – 1.5)/2 while the other input transitions from Vss to VDD.


TABLE 27-3: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: $3.0V < VDD < 5.5V$, $-40^{\circ}C < TA < +85^{\circ}C$ (unless otherwise stated).							
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments
D310	VRES	Resolution	VDD/24		VDD/32	LSb	
D311	VRAA	Absolute Accuracy	—		1/4	LSb	Low Range (CVRR = 1)
			—	—	1/2	LSb	High Range (CVRR = 0)
D312	VRur	Unit Resistor Value (R)*	_	2k	_	Ω	
310	TSET	Settling Time ^{(1)*}	—		10	μS	

* These parameters are characterized but not tested.

Note 1: Settling time measured while CVRR = 1 and CVR3:CVR0 transitions from '0000' to '1111'.

PIC18F2682/2685/4682/4685

FIGURE 27-12: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)

TABLE 27-14: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDI Data Input to	100	_	ns		
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to	ld Time of SDI Data Input to SCK Edge		—	ns	
75	TDOR	SDO Data Output Rise Time	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	45	ns	VDD = 2.0V
76	TDOF	SDO Data Output Fall Time		—	25	ns	
78	TscR	SCK Output Rise Time	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	45	ns	VDD = 2.0V
79	TscF	SCK Output Fall Time		_	25	ns	
80	TscH2doV, TscL2doV		PIC18FXXXX	—	50	ns	
			PIC18 LF XXXX	_	100	ns	VDD = 2.0V

PIC18F2682/2685/4682/4685

RD0/PSP0/C1IN+22
RD1/PSP1/C1IN22
RD2/PSP2/C2IN+22
RD3/PSP3/C2IN22
RD4/PSP4/ECCP1/P1A22
RD5/PSP5/P1B22
RD6/PSP6/P1C22
RD7/ <u>PS</u> P7/P1D22
RE0/ <u>RD/</u> AN523
RE1/WR/AN6/C1OUT23
RE2/CS/AN7/C2OUT23
VDD17, 23
Vss
Pinout I/O Descriptions
PIC18F2682/268514
PIC18F4682/468518
PIR Registers120
PLL Frequency Multiplier27
HSPLL Oscillator Mode27
INTOSC Modes28
Use with INTOSC27
PLL Lock Time-out47
POP
POR. See Power-on Reset.
PORTA
Associated Registers133
I/O Summary132
LATA Register 131
PORTA Register 131
TRISA Register131
PORTB
Associated Registers 136
Associated Registers136 I/O Summary
Associated Registers
Associated Registers136I/O Summary135LATB Register134PORTB Register134RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)134TRISB Register134PORTC138I/O Summary138LATC Register137PORTC Register137
Associated Registers136I/O Summary135LATB Register134PORTB Register134RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)134TRISB Register134PORTCAssociated RegistersI/O Summary138LATC Register137PORTC Register137RC3/SCK/SCL Pin203
Associated Registers136I/O Summary135LATB Register134PORTB Register134RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)134TRISB Register134PORTC138LATC Register137PORTC Register137RC3/SCK/SCL Pin203TRISC Register137
Associated Registers136I/O Summary135LATB Register134PORTB Register134RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)134TRISB Register134PORTCAssociated RegistersI/O Summary138LATC Register137PORTC Register137RC3/SCK/SCL Pin203TRISC Register137PORTD
Associated Registers136I/O Summary135LATB Register134PORTB Register134RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)134TRISB Register134PORTCAssociated RegistersI/O Summary138LATC Register137PORTC Register137RC3/SCK/SCL Pin203TRISC Register137PORTDAssociated Registers137203TRISC Register137
Associated Registers136I/O Summary135LATB Register134PORTB Register134RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)134TRISB Register134PORTCAssociated RegistersAssociated Register138LATC Register137PORTC Register137RC3/SCK/SCL Pin203TRISC Register137PORTDAssociated RegistersAssociated Registers142I/O Summary141
Associated Registers136I/O Summary135LATB Register134PORTB Register134RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)134TRISB Register134PORTCAssociated RegistersAssociated Register138LATC Register137PORTC Register137RC3/SCK/SCL Pin203TRISC Register137PORTD137Associated Registers141LATD Register141
Associated Registers136I/O Summary135LATB Register134PORTB Register134RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)134TRISB Register134PORTCAssociated RegistersAssociated Register138LATC Register137PORTC Register137RC3/SCK/SCL Pin203TRISC Register137PORTD142I/O Summary141LATD Register141LATD Register140Parallel Slave Port (PSP) Function140
Associated Registers136I/O Summary135LATB Register134PORTB Register134RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)134TRISB Register134PORTCAssociated RegistersAssociated Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTD141LATD Register141LATD Register140Parallel Slave Port (PSP) Function140PORTD Register140
Associated Registers136I/O Summary135LATB Register134PORTB Register134RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)134TRISB Register134PORTCAssociated RegistersAssociated Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTD141LATD Register142I/O Summary141LATD Register140Parallel Slave Port (PSP) Function140PORTD Register140TRISD Register140TRISD Register140
Associated Registers136I/O Summary135LATB Register134PORTB Register134RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)134TRISB Register134PORTCAssociated RegistersAssociated Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTD Register141LATD Register141LATD Register140Parallel Slave Port (PSP) Function140PORTD Register140PORTD Register140PORTE140
Associated Registers136I/O Summary135LATB Register134PORTB Register134RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)134TRISB Register134PORTCAssociated RegistersAssociated Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTD141LATD Register142I/O Summary141LATD Register140Parallel Slave Port (PSP) Function140PORTD Register140PORTD Register140PORTD Register140PORTD Register140PORTD Register140PORTD Register140PORTD Register140PORTD Register140PORTD Register140PORTE145
Associated Registers136I/O Summary135LATB Register134PORTB Register134RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)134TRISB Register134PORTCAssociated RegistersAssociated Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTD Register137PORTD141LATD Register142I/O Summary141LATD Register140Parallel Slave Port (PSP) Function140PORTD Register140PORTD Register140PORTD Register140PORTD Register140PORTD Register140PORTD Register140PORTD Register140PORTD Register140PORTE140Associated Registers145I/O Summary145
Associated Registers136I/O Summary135LATB Register134PORTB Register134RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)134TRISB Register134PORTCAssociated RegistersAssociated Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTD141LATD Register142I/O Summary141LATD Register140Parallel Slave Port (PSP) Function140PORTD Register140TRISD Register140TRISD Register140LATE Register145I/O Summary145LATE Register143
Associated Registers136I/O Summary135LATB Register134PORTB Register134RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)134TRISB Register134PORTC138Associated Registers139I/O Summary138LATC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTD Associated Registers142I/O Summary141LATD Register140Parallel Slave Port (PSP) Function140PORTD Register140PORTD Register140PORTD Register140PORTD Register140PORTE Associated Registers145I/O Summary145LATE Register143PORTE Register143PORTE Register143PORTE Register143
Associated Registers136I/O Summary135LATB Register134PORTB Register134RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)134TRISB Register134PORTCAssociated RegistersAssociated Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTD Register137PORTD141LATD Register142I/O Summary141LATD Register140Parallel Slave Port (PSP) Function140PORTE140PORTE140PORTE140PORTE143PORTE Register143PORTE Register143
Associated Registers 136 I/O Summary 135 LATB Register 134 PORTB Register 134 RB7:RB4 Interrupt-on-Change Flag (RBIF Bit) 134 TRISB Register 134 PORTC Associated Registers 139 I/O Summary 138 LATC Register 137 PORTC Register 137 PORTD Associated Registers 142 I/O Summary 141 LATD Register 140 Parallel Slave Port (PSP) Function 140 PORTE 140 PORTE 140 Associated Registers 145 I/O Summary 145 LATE Register 143 PORTE Register 143 PORTE Register 143 PORTE Register 143 PORTE Register 143 </td
Associated Registers136I/O Summary135LATB Register134PORTB Register134RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)134TRISB Register139I/O Summary138LATC Register137PORTC137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTD Register142I/O Summary141LATD Register140Parallel Slave Port (PSP) Function140PORTE140PORTE140PORTE143PORTE143PORTE Register143PORTE Re
Associated Registers136I/O Summary135LATB Register134PORTB Register134RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)134TRISB Register139I/O Summary138LATC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTD Associated Registers142I/O Summary141LATD Register140Parallel Slave Port (PSP) Function140PORTD Register140PORTD Register140PORTE Associated Registers145I/O Summary145LATE Register143PORTE Associated Registers145I/O Summary145LATE Register143PORTE Register
Associated Registers136I/O Summary135LATB Register134PORTB Register134RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)134TRISB Register139I/O Summary138LATC Register137PORTC137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTC Register137PORTD Register142I/O Summary141LATD Register140Parallel Slave Port (PSP) Function140PORTE140PORTE140PORTE143PORTE143PORTE Register143PORTE Re

Power-Managed Modes	35
Clock Sources	
Clock Transitions and Status Indicators	
Entering	
Exiting Idle and Sleep Modes	
By Interrupt	
By Reset	
By WDT Time-out	
Without an Oscillator Start-up Delay	
Idle Modes	
PRI_IDLE	
RC_IDLE	
SEC_IDLE	
Multiple Sleep Commands	
Run Modes	36
PRI_RUN	
RC_RUN	
SEC_RUN	
Selecting	
Sleep Mode	
Summary (table)	
Power-on Reset (POR)	
Power-up Timer (PWRT)	
Time-out Sequence	
Power-up Delays	33
Power-up Timer (PWRT)	33, 47
Prescaler	
Timer2	178
Prescaler, Timer0	151
Assignment (PSA Bit)	151
Rate Select (T0PS2:T0PS0 Bits)	151
Switching Between Timer0 and WDT	
Prescaler, Timer2	172
PRI_IDLE Mode	40
PRI_RUN Mode	36
Program Counter	64
PCL, PCH and PCU Registers	64
PCLATH and PCLATU Registers	
Program Memory	
Code Protection	
Extended Instruction Set	93
Instructions	
Two-Word	
Interrupt Vector	
Look-up Tables	
Map and Stack (diagram)	63
Reset Vector	
Program Verification and Code Protection	
Associated Registers	
Programming, Device Instructions	
PSP. See Parallel Slave Port.	
Pulse-Width Modulation. See PWM (CCP1/ECCP1	Modules).
PUSH	,
PUSH and POP Instructions	
PUSHL	
PWM (CCP1 Module)	
Associated Registers	173
CCPR1H:CCPR1L Registers	
Duty Cycle	
Example Frequencies/Resolutions	172
Period	
Setup for PWM Operation	
TMR2 to PR2 Match	