



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 40MHz                                                                     |
| Connectivity               | CANbus, I <sup>2</sup> C, SPI, UART/USART                                 |
| Peripherals                | Brown-out Detect/Reset, HLVD, POR, PWM, WDT                               |
| Number of I/O              | 36                                                                        |
| Program Memory Size        | 96KB (48K x 16)                                                           |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | 1K x 8                                                                    |
| RAM Size                   | 3.25K x 8                                                                 |
| Voltage - Supply (Vcc/Vdd) | 4.2V ~ 5.5V                                                               |
| Data Converters            | A/D 11x10b                                                                |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 44-TQFP                                                                   |
| Supplier Device Package    | 44-TQFP (10x10)                                                           |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18f4685-i-pt |
|                            |                                                                           |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

#### Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC<sup>32</sup> logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$  is a service mark of Microchip Technology Incorporated in the U.S.A.


All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.



### QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.



# 28/40/44-Pin Enhanced Flash Microcontrollers with ECAN<sup>™</sup> Technology, 10-Bit A/D and nanoWatt Technology

#### **Power-Managed Modes:**

- · Run: CPU on, peripherals on
- Idle: CPU off, peripherals on
- · Sleep: CPU off, peripherals off
- Idle mode currents down to 5.8 μA typical
- Sleep mode currents down to 0.1 μÅ typical
- Timer1 Oscillator: 1.1 μA, 32 kHz, 2V
- Watchdog Timer: 2.1 μA
- Two-Speed Oscillator Start-up

#### **Flexible Oscillator Structure:**

- Four Crystal modes, up to 40 MHz
- 4x Phase Lock Loop (PLL) available for crystal and internal oscillators
- · Two External RC modes, up to 4 MHz
- Two External Clock modes, up to 40 MHz
- Internal Oscillator Block:
  - 8 user-selectable frequencies, from 31 kHz to 8 MHz
  - Provides a complete range of clock speeds,
  - from 31 kHz to 32 MHz when used with PLL User-tunable to compensate for frequency drift
- Secondary Oscillator using Timer1 @ 32 kHz
- Fail-Safe Clock Monitor
  - Allows for safe shutdown if peripheral clock stops

#### **Special Microcontroller Features:**

- C compiler Optimized Architecture with optional Extended Instruction Set
- 100,000 Erase/Write Cycle Enhanced Flash Program Memory typical
- 1,000,000 Erase/Write Cycle Data EEPROM Memory typical
- Flash/Data EEPROM Retention: > 40 years
- Self-Programmable under Software Control
- Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
- Programmable period from 41 ms to 131s
- Single-Supply 5V In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>) via two pins
- In-Circuit Debug (ICD) via two pins
- Wide operating voltage range: 2.0V to 5.5V

#### Peripheral Highlights:

- High-Current Sink/source 25 mA/25 mA
- Three External Interrupts
- One Capture/Compare/PWM (CCP1) module
- Enhanced Capture/Compare/PWM (ECCP1) module (40/44-pin devices only):
  - One, two or four PWM outputs
  - Selectable polarity
  - Programmable dead time
  - Auto-shutdown and auto-restart
- Master Synchronous Serial Port (MSSP) module supporting 3-Wire SPI (all 4 modes) and I<sup>2</sup>C<sup>™</sup> Master and Slave modes
- Enhanced Addressable USART module:
  - Supports RS-485, RS-232 and LIN 1.3
  - RS-232 operation using internal oscillator block (no external crystal required)
  - Auto-wake-up on Start bit
  - Auto-Baud Detect
- 10-Bit, up to 11-Channel Analog-to-Digital Converter module (A/D), up to 100 ksps:
  - Auto-acquisition capability
  - Conversion available during Sleep
- · Dual Analog Comparators with Input Multiplexing

#### **ECAN Module Features:**

- Message bit rates up to 1 Mbps
- · Conforms to CAN 2.0B ACTIVE Specification
- Fully Backward Compatible with PIC18XXX8 CAN modules
- Three Modes of Operation:
  - Legacy, Enhanced Legacy, FIFO
- · Three Dedicated Transmit Buffers with Prioritization
- Two Dedicated Receive Buffers
- Six Programmable Receive/Transmit Buffers
- · Three Full, 29-Bit Acceptance Masks
- 16 Full, 29-Bit Acceptance Filters w/Dynamic Association
- DeviceNet™ Data Byte Filter Support
- Automatic Remote Frame Handling
- Advanced Error Management Features

|            | Prog             | ram Memory                    | Data            | Memory            | 40 Dit |          | DIA CCP1/      | MSSP |                             | RТ   |       | <b>T</b> :         |
|------------|------------------|-------------------------------|-----------------|-------------------|--------|----------|----------------|------|-----------------------------|------|-------|--------------------|
| Device     | Flash<br>(bytes) | # Single-Word<br>Instructions | SRAM<br>(bytes) | EEPROM<br>(bytes) | I/O    | A/D (ch) | ECCP1<br>(PWM) | SPI  | Master<br>I <sup>2</sup> C™ | EUSA | Comp. | Timers<br>8/16-bit |
| PIC18F2682 | 80K              | 40960                         | 3328            | 1024              | 28     | 8        | 1/0            | Y    | Y                           | 1    | 0     | 1/3                |
| PIC18F2685 | 96K              | 49152                         | 3328            | 1024              | 28     | 8        | 1/0            | Y    | Y                           | 1    | 0     | 1/3                |
| PIC18F4682 | 80K              | 40960                         | 3328            | 1024              | 40/44  | 11       | 1/1            | Y    | Y                           | 1    | 2     | 1/3                |
| PIC18F4685 | 96K              | 49152                         | 3328            | 1024              | 40/44  | 11       | 1/1            | Y    | Y                           | 1    | 2     | 1/3                |

| Pin Name                                           | Pin<br>Number<br>PDIP,<br>SOIC | Pin<br>Type | Buffer<br>Type | Description                                                            |
|----------------------------------------------------|--------------------------------|-------------|----------------|------------------------------------------------------------------------|
|                                                    |                                |             |                | PORTA is a bidirectional I/O port.                                     |
| RA0/AN0                                            | 2                              |             |                |                                                                        |
| RA0                                                |                                | I/O         | TTL            | Digital I/O.                                                           |
| AN0                                                |                                | I           | Analog         | Analog input 0.                                                        |
| RA1/AN1                                            | 3                              |             |                |                                                                        |
| RA1                                                |                                | I/O         | TTL            | Digital I/O.                                                           |
| AN1                                                |                                | I           | Analog         | Analog input 1.                                                        |
| RA2/AN2/VREF-                                      | 4                              |             |                |                                                                        |
| RA2                                                |                                | I/O         | TTL            | Digital I/O.                                                           |
| AN2                                                |                                | I           | Analog         | Analog input 2.                                                        |
| VREF-                                              |                                | I           | Analog         | A/D reference voltage (low) input.                                     |
| RA3/AN3/VREF+                                      | 5                              |             |                |                                                                        |
| RA3                                                |                                | I/O         | TTL            | Digital I/O.                                                           |
| AN3                                                |                                | I           | Analog         | Analog input 3.                                                        |
| VREF+                                              |                                | I           | Analog         | A/D reference voltage (high) input.                                    |
| RA4/T0CKI                                          | 6                              |             |                |                                                                        |
| RA4                                                |                                | I/O         | TTL            | Digital I/O.                                                           |
| TOCKI                                              |                                | I           | ST             | Timer0 external clock input.                                           |
| RA5/AN4/SS/HLVDIN                                  | 7                              |             |                |                                                                        |
| RA5                                                |                                | I/O         | TTL            | Digital I/O.                                                           |
| AN4                                                |                                | I           | Analog         | Analog input 4.                                                        |
| SS                                                 |                                | I           | TTL            | SPI slave select input.                                                |
| HLVDIN                                             |                                | I           | Analog         | High/Low-Voltage Detect input.                                         |
| RA6                                                |                                |             |                | See the OSC2/CLKO/RA6 pin.                                             |
| RA7                                                |                                |             |                | See the OSC1/CLKI/RA7 pin.                                             |
| Legend: TTL = TTL co<br>ST = Schmitt<br>O = Output | t Trigger inp                  |             | CMOS le        | CMOS = CMOS compatible input or output<br>evels I = Input<br>P = Power |

| TABLE 1-2: | PIC18F2682/2685 PINOUT I/O DESCRIPTIONS (CONTINUE | ED) |
|------------|---------------------------------------------------|-----|
|            |                                                   |     |

| Pin Name                                            | Pin<br>Number<br>PDIP,<br>SOIC | Pin<br>Type     | Buffer<br>Type       | Description                                                                                                   |
|-----------------------------------------------------|--------------------------------|-----------------|----------------------|---------------------------------------------------------------------------------------------------------------|
|                                                     |                                |                 |                      | PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs. |
| RB0/INT0/AN10<br>RB0<br>INT0<br>AN10                | 21                             | I/O<br>I<br>I   | TTL<br>ST<br>Analog  | Digital I/O.<br>External interrupt 0.<br>Analog input 10.                                                     |
| RB1/INT1/AN8<br>RB1<br>INT1<br>AN8                  | 22                             | I/O<br>I<br>I   | TTL<br>ST<br>Analog  | Digital I/O.<br>External interrupt 1.<br>Analog input 8.                                                      |
| RB2/INT2/CANTX<br>RB2<br>INT2<br>CANTX              | 23                             | I/O<br>I<br>O   | TTL<br>ST<br>TTL     | Digital I/O.<br>External interrupt 2.<br>CAN bus TX.                                                          |
| RB3/CANRX<br>RB3<br>CANRX                           | 24                             | I/O<br>I        | TTL<br>TTL           | Digital I/O.<br>CAN bus RX.                                                                                   |
| RB4/KBI0/AN9<br>RB4<br>KBI0<br>AN9                  | 25                             | I/O<br>I<br>I   | TTL<br>TTL<br>Analog | Digital I/O.<br>Interrupt-on-change pin.<br>Analog input 9.                                                   |
| RB5/KBI1/PGM<br>RB5<br>KBI1<br>PGM                  | 26                             | I/O<br>I<br>I/O | TTL<br>TTL<br>ST     | Digital I/O.<br>Interrupt-on-change pin.<br>Low-Voltage ICSP™ Programming enable pin.                         |
| RB6/KBI2/PGC<br>RB6<br>KBI2<br>PGC                  | 27                             | I/O<br>I<br>I/O | TTL<br>TTL<br>ST     | Digital I/O.<br>Interrupt-on-change pin.<br>In-Circuit Debugger and ICSP programming clock pin.               |
| RB7/KBI3/PGD<br>RB7<br>KBI3<br>PGD                  | 28                             | I/O<br>I<br>I/O | TTL<br>TTL<br>ST     | Digital I/O.<br>Interrupt-on-change pin.<br>In-Circuit Debugger and ICSP programming data pin.                |
| Legend: TTL = TTL cor<br>ST = Schmitt<br>O = Output | npatible in<br>Trigger inp     |                 | n CMOS le            | CMOS = CMOS compatible input or output<br>evels I = Input<br>P = Power                                        |

#### TABLE 1-2: PIC18F2682/2685 PINOUT I/O DESCRIPTIONS (CONTINUED)

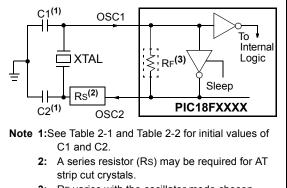
### 2.0 OSCILLATOR CONFIGURATIONS

#### 2.1 Oscillator Types

PIC18F2682/2685/4682/4685 devices can be operated in ten different oscillator modes. The user can program the Configuration bits, FOSC3:FOSC0, in Configuration Register 1H to select one of these ten modes:

- 1. LP Low-Power Crystal
- 2. XT Crystal/Resonator
- 3. HS High-Speed Crystal/Resonator
- 4. HSPLL High-Speed Crystal/Resonator with PLL enabled
- 5. RC External Resistor/Capacitor with Fosc/4 output on RA6
- 6. RCIO External Resistor/Capacitor with I/O on RA6
- 7. INTIO1 Internal Oscillator with Fosc/4 output on RA6 and I/O on RA7
- 8. INTIO2 Internal Oscillator with I/O on RA6 and RA7
- 9. EC External Clock with Fosc/4 output
- 10. ECIO External Clock with I/O on RA6

#### 2.2 Crystal Oscillator/Ceramic Resonators


In XT, LP, HS or HSPLL Oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 2-1 shows the pin connections.

The oscillator design requires the use of a parallel cut crystal.

**Note:** Use of a series cut crystal may give a frequency out of the crystal manufacturer's specifications.

FIGURE 2-1:

#### CRYSTAL/CERAMIC RESONATOR OPERATION (XT, LP, HS OR HSPLL CONFIGURATION)



3: RF varies with the oscillator mode chosen.

### TABLE 2-1:CAPACITOR SELECTION FOR<br/>CERAMIC RESONATORS

#### **Typical Capacitor Values Used:** Mode OSC1 OSC2 Freq XT 455 kHz 56 pF 56 pF 2.0 MHz 47 pF 47 pF 4.0 MHz 33 pF 33 pF 8.0 MHz 27 pF 27 pF HS 16.0 MHz 22 pF 22 pF

#### Capacitor values are for design guidance only.

These capacitors were tested with the resonators listed below for basic start-up and operation. **These values are not optimized**.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes on page 26 for additional information.

| Resonators Used: |         |  |  |  |  |  |
|------------------|---------|--|--|--|--|--|
| 455 kHz          | 4.0 MHz |  |  |  |  |  |
| 2.0 MHz          | 8.0 MHz |  |  |  |  |  |
| 16.0 MHz         |         |  |  |  |  |  |

Note: When using resonators with frequencies above 3.5 MHz, the use of HS mode, rather than XT mode, is recommended. HS mode may be used at any VDD for which the controller is rated. If HS is selected, it is possible that the gain of the oscillator will overdrive the resonator. Therefore, a series resistor should be placed between the OSC2 pin and the resonator. As a good starting point, the recommended value of Rs is 330Ω.

### 3.1.3 CLOCK TRANSITIONS AND STATUS INDICATORS

The length of the transition between clock sources is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Three bits indicate the current clock source and its status. They are:

- OSTS (OSCCON<3>)
- IOFS (OSCCON<2>)
- T1RUN (T1CON<6>)

In general, only one of these bits will be set while in a given power-managed mode. When the OSTS bit is set, the primary clock is providing the device clock. When the IOFS bit is set, the INTOSC output is providing a stable 8 MHz clock source to a divider that actually drives the device clock. When the T1RUN bit is set, the Timer1 oscillator is providing the clock. If none of these bits are set, then either the INTRC clock source is clocking the device, or the INTOSC source is not yet stable.

If the internal oscillator block is configured as the primary clock source by the FOSC3:FOSC0 Configuration bits, then both the OSTS and IOFS bits may be set when in PRI\_RUN or PRI\_IDLE modes. This indicates that the primary clock (INTOSC output) is generating a stable 8 MHz output. Entering another power-managed RC mode at the same frequency would clear the OSTS bit.

- Note 1: Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/FOSC specifications are violated.
  - 2: Executing a SLEEP instruction does not necessarily place the device into Sleep mode. It acts as the trigger to place the controller into either the Sleep mode or one of the Idle modes, depending on the setting of the IDLEN bit.

#### 3.1.4 MULTIPLE SLEEP COMMANDS

The power-managed mode that is invoked with the SLEEP instruction is determined by the setting of the IDLEN bit at the time the instruction is executed. If another SLEEP instruction is executed, the device will enter the power-managed mode specified by IDLEN at that time. If IDLEN has changed, the device will enter the new power-managed mode specified by the new setting.

#### 3.2 Run Modes

In the Run modes, clocks to both the core and peripherals are active. The difference between these modes is the clock source.

#### 3.2.1 PRI\_RUN MODE

The PRI\_RUN mode is the normal, full power execution mode of the microcontroller. This is also the default mode upon a device Reset, unless Two-Speed Start-up is enabled (see **Section 24.3 "Two-Speed Start-up"** for details). In this mode, the OSTS bit is set. The IOFS bit may be set if the internal oscillator block is the primary clock source (see **Section 2.7.1 "Oscillator Control Register"**).

#### 3.2.2 SEC\_RUN MODE

The SEC\_RUN mode is the compatible mode to the "clock switching" feature offered in other PIC18 devices. In this mode, the CPU and peripherals are clocked from the Timer1 oscillator. This gives users the option of lower power consumption while still using a high accuracy clock source.

SEC\_RUN mode is entered by setting the SCS1:SCS0 bits to '01'. The device clock source is switched to the Timer1 oscillator (see Figure 3-1), the primary oscillator is shut down, the T1RUN bit (T1CON<6>) is set and the OSTS bit is cleared.

Note: The Timer1 oscillator should already be running prior to entering SEC\_RUN mode. If the T1OSCEN bit is not set when the SCS1:SCS0 bits are set to '01', entry to SEC\_RUN mode will not occur. If the Timer1 oscillator is enabled but not yet running, device clocks will be delayed until the oscillator has started. In such situations, initial oscillator operation is far from stable and unpredictable operation may result.

On transitions from SEC\_RUN to PRI\_RUN mode, the peripherals and CPU continue to be clocked from the Timer1 oscillator while the primary clock is started. When the primary clock becomes ready, a clock switch back to the primary clock occurs (see Figure 3-2). When the clock switch is complete, the T1RUN bit is cleared, the OSTS bit is set and the primary clock is providing the clock. The IDLEN and SCS bits are not affected by the wake-up; the Timer1 oscillator continues to run.

#### 4.5 Device Reset Timers

PIC18F2682/2685/4682/4685 devices incorporate three separate on-chip timers that help regulate the Power-on Reset process. Their main function is to ensure that the device clock is stable before code is executed. These timers are:

- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- PLL Lock Time-out

#### 4.5.1 POWER-UP TIMER (PWRT)

The Power-up Timer (PWRT) of PIC18F2682/2685/ 4682/4685 devices is an 11-bit counter which uses the INTRC source as the clock input. This yields an approximate time interval of 2048 x 32  $\mu$ s = 65.6 ms. While the PWRT is counting, the device is held in Reset.

The power-up time delay depends on the INTRC clock and will vary from chip-to-chip due to temperature and process variation. See DC parameter 33 for details.

The PWRT is enabled by clearing the PWRTEN Configuration bit.

#### 4.5.2 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter 33). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP, HS and HSPLL modes and only on Power-on Reset or on exit from most power-managed modes.

#### 4.5.3 PLL LOCK TIME-OUT

With the PLL enabled in its PLL mode, the time-out sequence following a Power-on Reset is slightly different from other oscillator modes. A separate timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator start-up time-out.

#### 4.5.4 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows:

- 1. After the POR pulse has cleared, PWRT time-out is invoked (if enabled).
- 2. Then, the OST is activated.

The total time-out will vary based on oscillator configuration and the status of the PWRT. Figure 4-3, Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 all depict time-out sequences on power-up, with the Power-up Timer enabled and the device operating in HS Oscillator mode. Figures 4-3 through 4-6 also apply to devices operating in XT or LP modes. For devices in RC mode and with the PWRT disabled, on the other hand, there will be no time-out at all.

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, all time-outs will expire. Bringing MCLR high will begin execution immediately (Figure 4-5). This is useful for testing purposes or to synchronize more than one PIC18FXXXX device operating in parallel.

| Oscillator<br>Configuration | Power-up <sup>(2)</sup> and                            | Exit From                       |                                 |  |
|-----------------------------|--------------------------------------------------------|---------------------------------|---------------------------------|--|
|                             | <b>PWRTEN =</b> 0                                      | PWRTEN = 1                      | Power-Managed Mode              |  |
| HSPLL                       | 66 ms <sup>(1)</sup> + 1024 Tosc + 2 ms <sup>(2)</sup> | 1024 Tosc + 2 ms <sup>(2)</sup> | 1024 Tosc + 2 ms <sup>(2)</sup> |  |
| HS, XT, LP                  | 66 ms <sup>(1)</sup> + 1024 Tosc                       | 1024 Tosc                       | 1024 Tosc                       |  |
| EC, ECIO                    | 66 ms <sup>(1)</sup>                                   | _                               | —                               |  |
| RC, RCIO                    | 66 ms <sup>(1)</sup>                                   | _                               | —                               |  |
| INTIO1, INTIO2              | 66 ms <sup>(1)</sup>                                   | _                               | —                               |  |

TABLE 4-2: TIME-OUT IN VARIOUS SITUATIONS

**Note 1:** 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.

2: 2 ms is the nominal time required for the PLL to lock.

| TABLE 5-2                              |       |       |         |         |         |         |         |                |                      |                    |  |
|----------------------------------------|-------|-------|---------|---------|---------|---------|---------|----------------|----------------------|--------------------|--|
| File Name                              | Bit 7 | Bit 6 | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1   | Bit 0          | Value on<br>POR, BOR | Details<br>on page |  |
| RXF1SIDL                               | SID2  | SID1  | SID0    | —       | EXIDEN  | _       | EID17   | EID16          | xxx- x-xx            | 58, 305            |  |
| RXF1SIDH                               | SID10 | SID9  | SID8    | SID7    | SID6    | SID5    | SID4    | SID3           | XXXX XXXX            | 58, 306            |  |
| RXF0EIDL                               | EID7  | EID6  | EID5    | EID4    | EID3    | EID2    | EID1    | EID0           | XXXX XXXX            | 58, 306            |  |
| RXF0EIDH                               | EID15 | EID14 | EID13   | EID12   | EID11   | EID10   | EID9    | EID8           | XXXX XXXX            | 58, 306            |  |
| RXF0SIDL                               | SID2  | SID1  | SID0    | —       | EXIDEN  | —       | EID17   | EID16          | xxx- x-xx            | 58, 305            |  |
| RXF0SIDH                               | SID10 | SID9  | SID8    | SID7    | SID6    | SID5    | SID4    | SID3           | XXXX XXXX            | 58, 306            |  |
| B5D7 <sup>(8)</sup>                    | B5D77 | B5D76 | B5D75   | B5D74   | B5D73   | B5D72   | B5D71   | B5D70          | XXXX XXXX            | 58, 302            |  |
| B5D6 <sup>(8)</sup>                    | B5D67 | B5D66 | B5D65   | B5D64   | B5D63   | B5D62   | B5D61   | B5D60          | XXXX XXXX            | 58, 302            |  |
| B5D5 <sup>(8)</sup>                    | B5D57 | B5D56 | B5D55   | B5D54   | B5D53   | B5D52   | B5D51   | B5D50          | XXXX XXXX            | 58, 302            |  |
| B5D4 <sup>(8)</sup>                    | B5D47 | B5D46 | B5D45   | B5D44   | B5D43   | B5D42   | B5D41   | B5D40          | XXXX XXXX            | 58, 302            |  |
| B5D3 <sup>(8)</sup>                    | B5D37 | B5D36 | B5D35   | B5D34   | B5D33   | B5D32   | B5D31   | B5D30          | XXXX XXXX            | 58, 302            |  |
| B5D2 <sup>(8)</sup>                    | B5D27 | B5D26 | B5D25   | B5D24   | B5D23   | B5D22   | B5D21   | B5D20          | XXXX XXXX            | 58, 302            |  |
| B5D1 <sup>(8)</sup>                    | B5D17 | B5D16 | B5D15   | B5D14   | B5D13   | B5D12   | B5D11   | B5D10          | XXXX XXXX            | 58, 302            |  |
| B5D0 <sup>(8)</sup>                    | B5D07 | B5D06 | B5D05   | B5D04   | B5D03   | B5D02   | B5D01   | B5D00          | XXXX XXXX            | 58, 302            |  |
| B5DLC <sup>(8)</sup><br>Receive mode   |       | RXRTR | RB1     | RB0     | DLC3    | DLC2    | DLC1    | DLC0           | -xxx xxxx            | 58, 303            |  |
| B5DLC <sup>(8)</sup><br>Transmit mode  |       | TXRTR | —       | -       | DLC3    | DLC2    | DLC1    | DLC0           | -x xxxx              | 58, 304            |  |
| B5EIDL <sup>(8)</sup>                  | EID7  | EID6  | EID5    | EID4    | EID3    | EID2    | EID1    | EID0           | XXXX XXXX            | 58, 301            |  |
| B5EIDH <sup>(8)</sup>                  | EID15 | EID14 | EID13   | EID12   | EID11   | EID10   | EID9    | EID8           | XXXX XXXX            | 58, 301            |  |
| B5SIDL <sup>(8)</sup><br>Receive mode  | SID2  | SID1  | SID0    | SRR     | EXID    | —       | EID17   | EID16          | хххх х-хх            | 58, 300            |  |
| B5SIDL <sup>(8)</sup><br>Transmit mode | SID2  | SID1  | SID0    | —       | EXIDE   | _       | EID17   | EID16          | xxx- x-xx            | 58, 300            |  |
| B5SIDH <sup>(8)</sup>                  | SID10 | SID9  | SID8    | SID7    | SID6    | SID5    | SID4    | SID3           | xxxx x-xx            | 58, 299            |  |
| B5CON <sup>(8)</sup><br>Receive mode   | RXFUL | RXM1  | RXRTRRO | FILHIT4 | FILHIT3 | FILHIT2 | FILHIT1 | <b>FILHITO</b> | 0000 0000            | 58, 298            |  |
| B5CON <sup>(8)</sup><br>Transmit mode  | TXBIF | TXABT | TXLARB  | TXERR   | TXREQ   | RTREN   | TXPRI1  | TXPRI0         | 0000 0000            | 58, 298            |  |
| B4D7 <sup>(8)</sup>                    | B4D77 | B4D76 | B4D75   | B4D74   | B4D73   | B4D72   | B4D71   | B4D70          | XXXX XXXX            | 58, 302            |  |
| B4D6 <sup>(8)</sup>                    | B4D67 | B4D66 | B4D65   | B4D64   | B4D63   | B4D62   | B4D61   | B4D60          | XXXX XXXX            | 58, 302            |  |
| B4D5 <sup>(8)</sup>                    | B4D57 | B4D56 | B4D55   | B4D54   | B4D53   | B4D52   | B4D51   | B4D50          | XXXX XXXX            | 58, 302            |  |
| B4D4 <sup>(8)</sup>                    | B4D47 | B4D46 | B4D45   | B4D44   | B4D43   | B4D42   | B4D41   | B4D40          | XXXX XXXX            | 59, 302            |  |
| B4D3 <sup>(8)</sup>                    | B4D37 | B4D36 | B4D35   | B4D34   | B4D33   | B4D32   | B4D31   | B4D30          | XXXX XXXX            | 59, 302            |  |
| B4D2 <sup>(8)</sup>                    | B4D27 | B4D26 | B4D25   | B4D24   | B4D23   | B4D22   | B4D21   | B4D20          | XXXX XXXX            | 59, 302            |  |
| B4D1 <sup>(8)</sup>                    | B4D17 | B4D16 | B4D15   | B4D14   | B4D13   | B4D12   | B4D11   | B4D10          | XXXX XXXX            | 59, 302            |  |
| B4D0 <sup>(8)</sup>                    | B4D07 | B4D06 | B4D05   | B4D04   | B4D03   | B4D02   | B4D01   | B4D00          | XXXX XXXX            | 58, 302            |  |
| B4DLC <sup>(8)</sup><br>Receive mode   |       | RXRTR | RB1     | RB0     | DLC3    | DLC2    | DLC1    | DLC0           | -xxx xxxx            | 58, 303            |  |
| B4DLC <sup>(8)</sup><br>Transmit mode  | _     | TXRTR | —       | —       | DLC3    | DLC2    | DLC1    | DLC0           | -x xxxx              | 58, 304            |  |
| B4EIDL <sup>(8)</sup>                  | EID7  | EID6  | EID5    | EID4    | EID3    | EID2    | EID1    | EID0           | XXXX XXXX            | 59, 301            |  |
| B4EIDH <sup>(8)</sup>                  | EID15 | EID14 | EID13   | EID12   | EID11   | EID10   | EID9    | EID8           | XXXX XXXX            | 59, 301            |  |

#### 

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented, read as '0'.

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

These registers and/or bits are not implemented on PIC18F2682/2685 devices and are read as '0'. Reset values are shown for PIC18F4682/4685 3: devices; individual unimplemented bits should be interpreted as '---'

The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC 4: Modes"

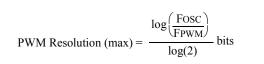
The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only. 5:

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

CAN bits have multiple functions depending on the selected mode of the CAN module. 7:

This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2. 8:

9: These registers and/or bits are available on PIC18F4682/4685 devices only.


NOTES:

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the equation.

#### **EQUATION 15-3:**



Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

#### TABLE 15-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

| PWM Frequency              | 2.44 kHz | 9.77 kHz | 39.06 kHz | 156.25 kHz | 312.50 kHz | 416.67 kHz |
|----------------------------|----------|----------|-----------|------------|------------|------------|
| Timer Prescaler (1, 4, 16) | 16       | 4        | 1         | 1          | 1          | 1          |
| PR2 Value                  | FFh      | FFh      | FFh       | 3Fh        | 1Fh        | 17h        |
| Maximum Resolution (bits)  | 14       | 12       | 10        | 8          | 7          | 6.58       |

#### 15.4.3 PWM AUTO-SHUTDOWN (ECCP1 ONLY)

The PWM auto-shutdown features of the Enhanced CCP1 module are available to ECCP1 in PIC18F4682/ 4685 (40/44-pin) devices. The operation of this feature is discussed in detail in **Section 16.4.7 "Enhanced PWM Auto-Shutdown"**.

Auto-shutdown features are not available for CCP1.

#### 15.4.4 SETUP FOR PWM OPERATION

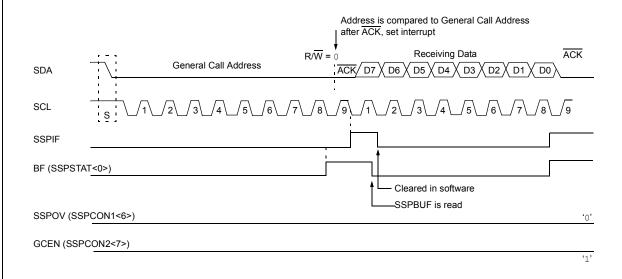
The following steps should be taken when configuring the CCP1 module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the appropriate TRIS bit.
- 4. Set the TMR2 prescale value, then enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

#### 17.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I<sup>2</sup>C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the  $I^2C$  protocol. It consists of all '0's with R/W = 0.


The general call address is recognized when the General Call Enable bit, GCEN, is enabled (SSPCON2<7> set). Following a Start bit detect, 8 bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware.

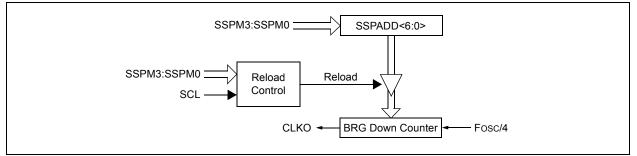
If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit) and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device specific or a general call address.

In 10-Bit Address mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-Bit Address mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 17-15).






#### 17.4.7 BAUD RATE

In I<sup>2</sup>C Master mode, the Baud Rate Generator (BRG) reload value is placed in the lower 7 bits of the SSPADD register (Figure 17-17). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TcY) on the Q2 and Q4 clocks. In I<sup>2</sup>C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state.

Table 17-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

#### FIGURE 17-17: BAUD RATE GENERATOR BLOCK DIAGRAM



#### TABLE 17-3: I<sup>2</sup>C<sup>™</sup> CLOCK RATE w/BRG

| Fcy    | Fcy*2  | BRG Value | FscL<br>(2 Rollovers of BRG) |
|--------|--------|-----------|------------------------------|
| 10 MHz | 20 MHz | 19h       | 400 kHz <sup>(1)</sup>       |
| 10 MHz | 20 MHz | 20h       | 312.5 kHz                    |
| 10 MHz | 20 MHz | 64h       | 100 kHz                      |
| 4 MHz  | 8 MHz  | 0Ah       | 400 kHz <sup>(1)</sup>       |
| 4 MHz  | 8 MHz  | 0Dh       | 308 kHz                      |
| 4 MHz  | 8 MHz  | 28h       | 100 kHz                      |
| 1 MHz  | 2 MHz  | 03h       | 333 kHz <sup>(1)</sup>       |
| 1 MHz  | 2 MHz  | 0Ah       | 100 kHz                      |
| 1 MHz  | 2 MHz  | 00h       | 1 MHz <sup>(1)</sup>         |

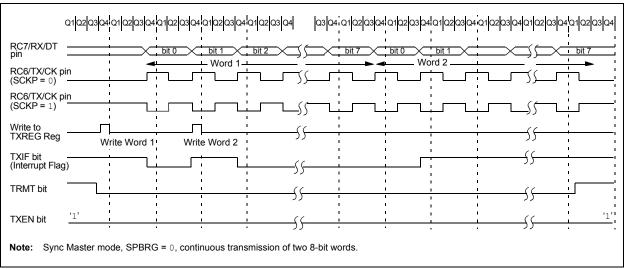
**Note 1:** The I<sup>2</sup>C<sup>™</sup> interface does not conform to the 400 kHz I<sup>2</sup>C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

#### 18.3 EUSART Synchronous Master Mode

The Synchronous Master mode is entered by setting the CSRC bit (TXSTA<7>). In this mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition, enable bit, SPEN (RCSTA<7>), is set in order to configure the TX and RX pins to CK (clock) and DT (data) lines, respectively.

The Master mode indicates that the processor transmits the master clock on the CK line. Clock polarity is selected with the SCKP bit (BAUDCON<4>); setting SCKP sets the Idle state on CK as high, while clearing the bit sets the Idle state as low. This option is provided to support Microwire devices with this module.

#### 18.3.1 EUSART SYNCHRONOUS MASTER TRANSMISSION


The EUSART transmitter block diagram is shown in Figure 18-3. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available).

Once the TXREG register transfers the data to the TSR register (occurs in one TCYCLE), the TXREG is empty and the TXIF flag bit (PIR1<4>) is set. The interrupt can be enabled or disabled by setting or clearing the interrupt enable bit, TXIE (PIE1<4>). TXIF is set regardless of the state of enable bit TXIE; it cannot be cleared in software. It will reset only when new data is loaded into the TXREG register.

While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. TRMT is a read-only bit which is set when the TSR is empty. No interrupt logic is tied to this bit so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory so it is not available to the user.

To set up a Synchronous Master Transmission:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits SYNC SPEN and CSRC.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.



#### FIGURE 18-11: SYNCHRONOUS TRANSMISSION

#### 23.2 CAN Module Registers

| Note: | Not all CAN registers are available in the |
|-------|--------------------------------------------|
|       | Access Bank.                               |

There are many control and data registers associated with the CAN module. For convenience, their descriptions have been grouped into the following sections:

- · Control and Status Registers
- Dedicated Transmit Buffer Registers
- · Dedicated Receive Buffer Registers
- · Programmable TX/RX and Auto RTR Buffers
- Baud Rate Control Registers
- I/O Control Register
- · Interrupt Status and Control Registers

Detailed descriptions of each register and their usage are described in the following sections.

#### 23.2.1 CAN CONTROL AND STATUS REGISTERS

The registers described in this section control the overall operation of the CAN module and show its operational status.

#### 23.2.3.2 Message Acceptance Filters and Masks

This section describes the message acceptance filters and masks for the CAN receive buffers.

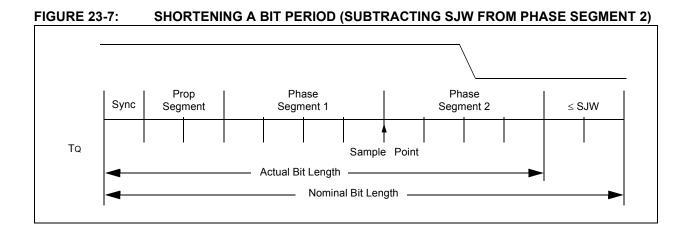
### REGISTER 23-37: RXFnSIDH: RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER REGISTERS, HIGH BYTE [0 $\le$ n $\le$ 15]<sup>(1)</sup>

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID10 | SID9  | SID8  | SID7  | SID6  | SID5  | SID4  | SID3  |
| bit 7 |       |       |       |       |       |       | bit 0 |

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

bit 7-0 SID10:SID3: Standard Identifier Filter bits (if EXIDEN = 0) Extended Identifier Filter bits EID28:EID21 (if EXIDEN = 1).

Note 1: Registers RXF6SIDH:RXF15SIDH are available in Mode 1 and 2 only.


### REGISTER 23-38: RXFnSIDL: RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER REGISTERS, LOW BYTE [0 $\le$ n $\le$ 15]<sup>(1)</sup>

| R/W-x | R/W-x | R/W-x | U-0 | R/W-x                 | U-0 | R/W-x | R/W-x |
|-------|-------|-------|-----|-----------------------|-----|-------|-------|
| SID2  | SID1  | SID0  | —   | EXIDEN <sup>(2)</sup> |     | EID17 | EID16 |
| bit 7 |       |       |     |                       |     |       | bit 0 |

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

| bit 7-5 | SID2:SID0: Standard Identifier Filter bits (if EXIDEN = 0)   |
|---------|--------------------------------------------------------------|
|         | Extended Identifier Filter bits EID20:EID18 (if EXIDEN = 1). |
| bit 4   | Unimplemented: Read as '0'                                   |
| bit 3   | EXIDEN: Extended Identifier Filter Enable bit <sup>(2)</sup> |
|         | 1 = Filter will only accept extended ID messages             |
|         | 0 = Filter will only accept standard ID messages             |
| bit 2   | Unimplemented: Read as '0'                                   |
| bit 1-0 | EID17:EID16: Extended Identifier Filter bits                 |

- **Note 1:** Registers RXF6SIDL:RXF15SIDL are available in Mode 1 and 2 only.
  - 2: In Mode 0, this bit must be set/cleared as required, irrespective of corresponding mask register value.



### 23.11 Programming Time Segments

Some requirements for programming of the time segments:

- Prop\_Seg + Phase\_Seg 1  $\geq$  Phase\_Seg 2
- Phase\_Seg  $2 \ge$  Sync Jump Width.

For example, assume that a 125 kHz CAN baud rate is desired, using 20 MHz for Fosc. With a Tosc of 50 ns, a baud rate prescaler value of 04h gives a TQ of 500 ns. To obtain a Nominal Bit Rate of 125 kHz, the Nominal Bit Time must be 8  $\mu$ s or 16 TQ.

Using 1 TQ for the Sync\_Seg, 2 TQ for the Prop\_Seg and 7 TQ for Phase Segment 1 would place the sample point at 10 TQ after the transition. This leaves 6 TQ for Phase Segment 2.

By the rules above, the Sync Jump Width could be the maximum of 4 Tq. However, normally a large SJW is only necessary when the clock generation of the different nodes is inaccurate or unstable, such as using ceramic resonators. Typically, an SJW of 1 is enough.

#### 23.12 Oscillator Tolerance

As a rule of thumb, the bit timing requirements allow ceramic resonators to be used in applications with transmission rates of up to 125 Kbit/sec. For the full bus speed range of the CAN protocol, a quartz oscillator is required. A maximum node-to-node oscillator variation of 1.7% is allowed.

#### 23.13 Bit Timing Configuration Registers

The Baud Rate Control registers (BRGCON1, BRGCON2, BRGCON3) control the bit timing for the CAN bus interface. These registers can only be modified when the PIC18F2682/2685/4682/4685 devices are in Configuration mode.

#### 23.13.1 BRGCON1

The BRP bits control the baud rate prescaler. The SJW<1:0> bits select the synchronization jump width in terms of multiples of TQ.

#### 23.13.2 BRGCON2

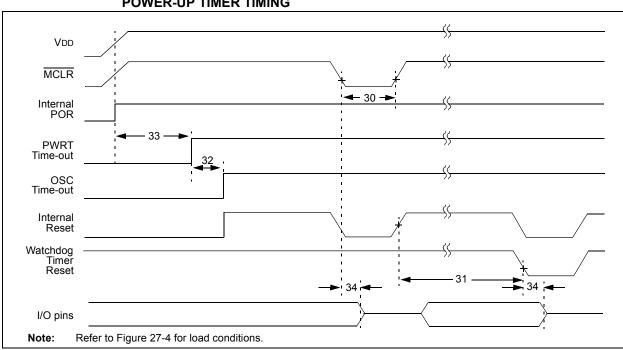
The PRSEG bits set the length of the propagation segment in terms of Tq. The SEG1PH bits set the length of Phase Segment 1 in To. The SAM bit controls how many times the RXCAN pin is sampled. Setting this bit to a '1' causes the bus to be sampled three times: twice at TQ/2 before the sample point and once at the normal sample point (which is at the end of Phase Segment 1). The value of the bus is determined to be the value read during at least two of the samples. If the SAM bit is set to a '0', then the RXCAN pin is sampled only once at the sample point. The SEG2PHTS bit controls how the length of Phase Segment 2 is determined. If this bit is set to a '1', then the length of Phase Segment 2 is determined by the SEG2PH bits of BRGCON3. If the SEG2PHTS bit is set to a '0', then the length of Phase Segment 2 is the greater of Phase Segment 1 and the Information Processing Time (which is fixed at 2 TQ for the PIC18F2682/2685/4682/4685).

#### 23.13.3 BRGCON3

The PHSEG2<2:0> bits set the length (in TQ) of Phase Segment 2 if the SEG2PHTS bit is set to a '1'. If the SEG2PHTS bit is set to a '0', then the PHSEG2<2:0> bits have no effect.

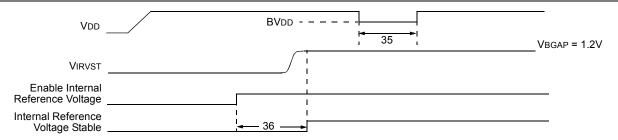
| RETURN                       | Return fro                         | om Subrout                          | ine         | RLCF              | Rotate Le                                              | Rotate Left f through Carry         |                             |  |  |
|------------------------------|------------------------------------|-------------------------------------|-------------|-------------------|--------------------------------------------------------|-------------------------------------|-----------------------------|--|--|
| Syntax:                      | RETURN                             | {s}                                 |             | Syntax:           | RLCF f                                                 | {,d {,a}}                           |                             |  |  |
| Operands:                    | $s \in \left[0,1\right]$           |                                     |             | Operands:         | $0 \leq f \leq 255$                                    |                                     |                             |  |  |
| Operation:                   | $(TOS) \rightarrow PO$             | С;                                  |             |                   | d ∈ [0,1]                                              |                                     |                             |  |  |
|                              | if $s = 1$ ,                       |                                     |             | Operation         | a ∈ [0,1]                                              | ooten 1 12                          |                             |  |  |
|                              | $(WS) \rightarrow W,$<br>(STATUSS) | $\rightarrow$ STATUS,               |             | Operation:        | $(f < n >) \rightarrow d$<br>$(f < 7 >) \rightarrow C$ |                                     |                             |  |  |
|                              | $(BSRS) \rightarrow I$             |                                     |             |                   | $(C) \rightarrow dest$                                 | <0>                                 |                             |  |  |
|                              |                                    | CLATH are ur                        | nchanged    | Status Affected:  | C, N, Z                                                |                                     |                             |  |  |
| Status Affected:             | None                               |                                     |             | Encoding:         | 0011                                                   | 01da ff                             | ff ffff                     |  |  |
| Encoding:                    | 0000                               | 0000 000                            |             | Description:      |                                                        |                                     | 'f' are rotated             |  |  |
| Description:                 |                                    | n subroutine. T<br>I the top of the |             |                   |                                                        | ne left through<br>6 '0', the resul |                             |  |  |
|                              |                                    | to the program                      | ( )         |                   | 0                                                      |                                     | is stored back              |  |  |
|                              |                                    | ontents of the                      |             |                   | in register                                            | ,                                   |                             |  |  |
|                              | •                                  | /S, STATUSS                         |             |                   | ,                                                      | the Access Ba                       | ank is<br>3SR is used to    |  |  |
|                              |                                    | I, STATUS and                       |             |                   |                                                        | GPR bank (de                        |                             |  |  |
|                              | 's' = 0, no u<br>occurs (defa      | pdate of these                      | e registers |                   | <b>lf 'a' is '</b> 0' a                                | nd the extend                       | ded instruction             |  |  |
| Words:                       | 1                                  | auit).                              |             |                   |                                                        | Ied, this instru<br>Indexed Lite    |                             |  |  |
|                              | 2                                  |                                     |             |                   | •                                                      | mode whene                          |                             |  |  |
| Cycles:<br>Q Cycle Activity: |                                    |                                     |             |                   | •                                                      | . See Section                       |                             |  |  |
| Q Cycle Activity.<br>Q1      | Q2                                 | Q3                                  | Q4          |                   |                                                        | nted and Bit                        | -Oriented<br>Literal Offset |  |  |
| Decode                       | No                                 | Process                             | POP PC      |                   | Mode" for                                              |                                     |                             |  |  |
|                              | operation                          | Data                                | from stack  |                   | C C                                                    | - registe                           | erf ◄                       |  |  |
| No                           | No                                 | No                                  | No          |                   |                                                        |                                     |                             |  |  |
| operation                    | operation                          | operation                           | operation   | Words:            | 1                                                      |                                     |                             |  |  |
|                              |                                    |                                     |             | Cycles:           | 1                                                      |                                     |                             |  |  |
| Example:                     | RETURN                             |                                     |             | Q Cycle Activity: |                                                        |                                     |                             |  |  |
| After Interru                |                                    |                                     |             | Q1                | Q2                                                     | Q3                                  | Q4                          |  |  |
| PC =                         |                                    |                                     |             | Decode            | Read<br>register 'f'                                   | Process<br>Data                     | Write to<br>destination     |  |  |
|                              |                                    |                                     |             |                   |                                                        |                                     |                             |  |  |
|                              |                                    |                                     |             | Example:          | RLCF                                                   | REG, 0,                             | 0                           |  |  |
|                              |                                    |                                     |             | Before Instruc    | ction                                                  |                                     |                             |  |  |
|                              |                                    |                                     |             | REG<br>C          | = 1110 C<br>= 0                                        | 110                                 |                             |  |  |
|                              |                                    |                                     |             | After Instructi   | Ũ                                                      |                                     |                             |  |  |
|                              |                                    |                                     |             | REG               | = 1110 C<br>= 1100 1                                   |                                     |                             |  |  |
|                              |                                    |                                     |             | W                 |                                                        |                                     |                             |  |  |

| DC Characteristics |       | Standard Operating Conditions (unless otherwise stated)<br>Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial |      |      |            |      |                                                                  |
|--------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------|------|------|------------|------|------------------------------------------------------------------|
| Param<br>No.       | Sym   | Characteristic                                                                                                                         | Min  | Typ† | Conditions |      |                                                                  |
|                    |       | Internal Program Memory<br>Programming Specifications <sup>(1)</sup>                                                                   |      |      |            |      |                                                                  |
| D110               | Vpp   | Voltage on MCLR/VPP/RE3 pin                                                                                                            | 9.00 | —    | 13.25      | V    | (Note 3)                                                         |
| D113               | IDDP  | Supply Current during<br>Programming                                                                                                   | —    | —    | 10         | mA   |                                                                  |
|                    |       | Data EEPROM Memory                                                                                                                     |      |      |            |      |                                                                  |
| D120               | ED    | Byte Endurance                                                                                                                         | 100K | 1M   | —          | E/W  | -40°C to +85°C                                                   |
| D121               | Vdrw  | VDD for Read/Write                                                                                                                     | VMIN | _    | 5.5        | V    | Using EECON to read/write<br>VMIN = Minimum operating<br>voltage |
| D122               | TDEW  | Erase/Write Cycle Time                                                                                                                 | _    | 4    | _          | ms   |                                                                  |
| D123               | TRETD | Characteristic Retention                                                                                                               | 40   | —    | —          | Year | Provided no other specifications are violated                    |
| D124               | TREF  | Number of Total Erase/Write<br>Cycles before Refresh <sup>(2)</sup>                                                                    | 1M   | 10M  | —          | E/W  | -40°C to +85°C                                                   |
|                    |       | Program Flash Memory                                                                                                                   |      |      |            |      |                                                                  |
| D130               | Eр    | Cell Endurance                                                                                                                         | 10K  | 100K |            | E/W  | -40°C to +85°C                                                   |
| D131               | Vpr   | VDD for Read                                                                                                                           | VMIN | —    | 5.5        | V    | Vміn = Minimum operating<br>voltage                              |
| D132               | VIE   | VDD for Block Erase                                                                                                                    | 4.5  | _    | 5.5        | V    | Using ICSP™ port                                                 |
| D132A              | Viw   | VDD for Externally Timed Erase<br>or Write                                                                                             | 4.5  | —    | 5.5        | V    | Using ICSP port                                                  |
| D132B              | Vpew  | VDD for Self-timed Write                                                                                                               | VMIN | —    | 5.5        | V    | Vміn = Minimum operating<br>voltage                              |
| D133               | TIE   | ICSP™ Block Erase Cycle Time                                                                                                           | —    | 4    | —          | ms   | VDD > 4.5V                                                       |
| D133A              | Tiw   | ICSP Erase or Write Cycle Time (externally timed)                                                                                      | 1    | _    | _          | ms   | VDD > 4.5V                                                       |
| D133A              | Tiw   | Self-timed Write Cycle Time                                                                                                            | —    | 2    | —          | ms   |                                                                  |
| D134               | TRETD | Characteristic Retention                                                                                                               | 40   | 100  | _          | Year | Provided no other specifications are violated                    |


#### TABLE 27-1: MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

**Note 1:** These specifications are for programming the on-chip program memory through the use of table write instructions.


2: Refer to Section 7.8 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

**3:** Required only if Single-Supply Programming is disabled.



### FIGURE 27-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

#### FIGURE 27-8: BROWN-OUT RESET TIMING



### TABLE 27-10:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER<br/>AND BROWN-OUT RESET REQUIREMENTS

| Param.<br>No. | Sym    | Characteristic                                           | Min       | Тур  | Мах       | Units | Conditions                |
|---------------|--------|----------------------------------------------------------|-----------|------|-----------|-------|---------------------------|
| 30            | ТмсL   | MCLR Pulse Width (low)                                   | 2         |      |           | μS    |                           |
| 31            | Twdt   | Watchdog Timer Time-out Period (no postscaler)           | 3.4       | 4.00 | 4.6       | ms    |                           |
| 32            | Tost   | Oscillation Start-up Timer Period                        | 1024 Tosc | _    | 1024 Tosc | _     | Tosc = OSC1 period        |
| 33            | TPWRT  | Power-up Timer Period                                    | 55.6      | 65.5 | 75        | ms    |                           |
| 34            | Tioz   | I/O High-Impedance from MCLR Low or Watchdog Timer Reset | —         | 2    | _         | μS    |                           |
| 35            | TBOR   | Brown-out Reset Pulse Width                              | 200       |      | _         | μS    | $VDD \le BVDD$ (see D005) |
| 36            | Tirvst | Time for Internal Reference Voltage to become stable     | _         | 20   | 50        | μS    |                           |
| 37            | Tlvd   | High/Low-Voltage Detect Pulse Width                      | 200       |      | _         | μS    | $VDD \leq VLVD$           |
| 38            | TCSD   | CPU Start-up Time                                        | —         | 10   | _         | μS    |                           |
| 39            | TIOBST | Time for INTOSC to stabilize                             | —         | 1    | _         | μS    |                           |

| Capture (CCP1 Module)1<br>Associated Registers1 |    |
|-------------------------------------------------|----|
| CAN Message Time-Stamp                          |    |
| CCP1 Pin Configuration                          |    |
|                                                 |    |
| CCPR1H:CCPR1L Registers1                        |    |
| Prescaler                                       |    |
| Software Interrupt1                             |    |
| Timer1/Timer3 Mode Selection1                   |    |
| Capture (ECCP1 Module)1                         |    |
| Capture/Compare/PWM (CCP1)10                    | 65 |
| Capture Mode. See Capture.                      |    |
| CCP1 Mode and Timer Resources1                  |    |
| CCPR1H or ECCPR1H Register1                     | 66 |
| CCPR1L or ECCPR1L Register10                    | 66 |
| Compare Mode. See Compare.                      |    |
| Interaction Between CCP1 and ECCP1              |    |
| for Timer Resources1                            | 66 |
| Module Configuration                            |    |
| Clock Sources                                   |    |
| Effects of Power-Managed Modes                  |    |
|                                                 |    |
| Selecting the 31 kHz Source                     |    |
| Selection Using OSCCON Register                 |    |
| CLRF                                            |    |
| CLRWDT                                          | 81 |
| Code Examples                                   |    |
| 16 x 16 Signed Multiply Routine1                |    |
| 16 x 16 Unsigned Multiply Routine1              | 14 |
| 8 x 8 Signed Multiply Routine1                  | 13 |
| 8 x 8 Unsigned Multiply Routine1                |    |
| Changing Between Capture Prescalers1            | 67 |
| Changing to Configuration Mode24                |    |
| Computed GOTO Using an Offset Value             |    |
| Data EEPROM Read                                |    |
| Data EEPROM Refresh Routine                     | 10 |
| Data EEPROM Write                               |    |
| Erasing a Flash Program Memory Row              |    |
| Fast Register Stack                             |    |
| How to Clear RAM (Bank 1) Using                 | 00 |
|                                                 | ~~ |
| Indirect Addressing                             | 90 |
| Implementing a Real-Time Clock Using            |    |
| a Timer1 Interrupt Service                      |    |
| Initializing PORTA                              |    |
| Initializing PORTB1                             |    |
| Initializing PORTC1                             | 37 |
| Initializing PORTD14                            | 40 |
| Initializing PORTE14                            |    |
| Loading the SSPBUF (SSPSR) Register1            | 92 |
| Reading a CAN Message2                          | 96 |
| Reading a Flash Program Memory Word1            |    |
| Saving STATUS, WREG and BSR                     |    |
| Registers in RAM1                               | 30 |
| Transmitting a CAN Message Using                |    |
| Banked Method                                   | 88 |
| Transmitting a CAN Message Using WIN Bits       |    |
| WIN and ICODE Bits Usage in Interrupt Service   | 53 |
| Routine to Access TX/RX Buffers                 | 00 |
|                                                 |    |
| Writing to Flash Program Memory                 |    |
| Code Protection                                 |    |
| COMF                                            | 82 |

| Comparator                               | <br> | 259 |
|------------------------------------------|------|-----|
| Analog Input Connection Considerations . | <br> | 263 |
| Associated Registers                     | <br> | 263 |
| Configuration                            |      |     |
| Effects of a Reset                       | <br> | 262 |
| Interrupts                               | <br> | 262 |
| Operation                                | <br> | 261 |
| Operation During Sleep                   | <br> | 262 |
| Outputs                                  | <br> | 261 |
| Reference                                | <br> | 261 |
| External Signal                          | <br> | 261 |
| Internal Signal                          | <br> | 261 |
| Response Time                            | <br> | 261 |
| Comparator Specifications                | <br> | 433 |
| Comparator Voltage Reference             | <br> | 265 |
| Accuracy and Error                       |      |     |
| Associated Registers                     |      |     |
| Configuring                              |      |     |
| Connection Considerations                | <br> | 266 |
| Effects of a Reset                       |      |     |
| Operation During Sleep                   |      |     |
| Compare (CCP1 Module)                    |      |     |
| Associated Registers                     |      |     |
| CCP1 Pin Configuration                   |      |     |
| CCPR1 Register                           |      |     |
| Software Interrupt                       |      |     |
| Special Event Trigger                    |      |     |
| Timer1/Timer3 Mode Selection             | <br> | 169 |
| Compare (ECCP1 Module)                   |      |     |
| Special Event Trigger                    |      |     |
| Configuration Bits                       |      |     |
| Configuration Mode                       |      |     |
| Configuration Register                   |      |     |
| Protection                               | <br> | 364 |
| Context Saving During Interrupts         |      |     |
| Conversion Considerations                |      |     |
| CPFSEQ                                   |      |     |
| CPFSGT                                   |      |     |
| CPFSLT                                   |      |     |
| Crystal Oscillator/Ceramic Resonators    |      |     |
| Customer Change Notification Service     |      |     |
| Customer Notification Service            | <br> | 481 |
| Customer Support                         |      |     |
| D                                        |      |     |
| Data Addressing Modes                    |      | 90  |
| Comparing Addressing Options with the    |      |     |

| Data Addressing Modes                          | 90  |
|------------------------------------------------|-----|
| Comparing Addressing Options with the Extended | In- |
| struction Set Enabled                          | 94  |
| Direct                                         | 90  |
| Indexed Literal Offset                         | 93  |
| Affected Instructions                          | 93  |
| BSR                                            | 95  |
| Mapping the Access Bank                        | 95  |
| Indirect                                       | 90  |
| Inherent and Literal                           | 90  |
| Data EEPROM                                    |     |
| Code Protection                                | 364 |