

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	96KB (48K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4685t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7 Clock Sources and Oscillator Switching

Like previous PIC18 devices, the PIC18F2682/2685/ 4682/4685 family includes a feature that allows the device clock source to be switched from the main oscillator to an alternate low-frequency clock source. PIC18F2682/2685/4682/4685 devices offer two alternate clock sources. When an alternate clock source is enabled, the various power-managed operating modes are available.

Essentially, there are three clock sources for these devices:

- Primary oscillators
- · Secondary oscillators
- · Internal oscillator block

The **primary oscillators** include the External Crystal and Resonator modes, the External RC modes, the External Clock modes and the internal oscillator block. The particular mode is defined by the FOSC3:FOSC0 Configuration bits. The details of these modes are covered earlier in this chapter. The **secondary oscillators** are those external sources not connected to the OSC1 or OSC2 pins. These sources may continue to operate even after the controller is placed in a power-managed mode.

PIC18F2682/2685/4682/4685 devices offer the Timer1 oscillator as a secondary oscillator. In all power-managed modes, this oscillator is often the time base for functions such as a Real-Time Clock.

Most often, a 32.768 kHz watch crystal is connected between the RC0/T1OSO/T13CKI and RC1/T1OSI pins. Like the LP mode oscillator circuit, loading capacitors are also connected from each pin to ground.

The Timer1 oscillator is discussed in greater detail in **Section 12.3 "Timer1 Oscillator"**.

In addition to being a primary clock source, the **internal oscillator block** is available as a power-managed mode clock source. The INTRC source is also used as the clock source for several special features, such as the WDT and Fail-Safe Clock Monitor.

The clock sources for the PIC18F2682/2685/4682/4685 devices are shown in Figure 2-8. See **Section 24.0 "Special Features of the CPU"** for Configuration register details.

12.2 Timer1 16-Bit Read/Write Mode

Timer1 can be configured for 16-bit reads and writes (see Figure 12-2). When the RD16 control bit (T1CON<7>) is set, the address for TMR1H is mapped to a buffer register for the high byte of Timer1. A read from TMR1L will load the contents of the high byte of Timer1 into the Timer1 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer1 must also take place through the TMR1H Buffer register. The Timer1 high byte is updated with the contents of TMR1H when a write occurs to TMR1L. This allows a user to write all 16 bits to both the high and low bytes of Timer1 at once.

The high byte of Timer1 is not directly readable or writable in this mode. All reads and writes must take place through the Timer1 High Byte Buffer register. Writes to TMR1H do not clear the Timer1 prescaler. The prescaler is only cleared on writes to TMR1L.

12.3 Timer1 Oscillator

An on-chip crystal oscillator circuit is incorporated between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting the Timer1 Oscillator Enable bit, T1OSCEN (T1CON<3>). The oscillator is a low-power circuit rated for 32 kHz crystals. It will continue to run during all power-managed modes. The circuit for a typical LP oscillator is shown in Figure 12-3. Table 12-1 shows the capacitor selection for the Timer1 oscillator.

The user must provide a software time delay to ensure proper start-up of the Timer1 oscillator.

FIGURE 12-3: EXTERNAL COMPONENTS FOR THE TIMER1 LP OSCILLATOR

TABLE 12-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR^(1,2,3,4)

Osc Type	Freq	C1	C2					
LP	32.768 kHz	27 pF	27 pF					
Note 1: Microchip suggests these values as a starting point in validating the oscillator circuit.								
2: H	Higher capacitance increases the stability of the oscillator but also increases the start-up time.							
3: 5 t a	 Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components. 							
4: (4: Capacitor values are for design guidance only 							

12.3.1 USING TIMER1 AS A CLOCK SOURCE

The Timer1 oscillator is also available as a clock source in power-managed modes. By setting the Clock Select bits, SCS1:SCS0 (OSCCON<1:0>), to '01', the device switches to SEC_RUN mode; both the CPU and peripherals are clocked from the Timer1 oscillator. If the IDLEN bit (OSCCON<7>) is cleared and a SLEEP instruction is executed, the device enters SEC_IDLE mode. Additional details are available in **Section 3.0 "Power-Managed Modes"**.

Whenever the Timer1 oscillator is providing the clock source, the Timer1 system clock status flag, T1RUN (T1CON<6>), is set. This can be used to determine the controller's current clocking mode. It can also indicate the clock source being currently used by the Fail-Safe Clock Monitor. If the Clock Monitor is enabled and the Timer1 oscillator fails while providing the clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

12.3.2 LOW-POWER TIMER1 OPTION

The Timer1 oscillator can operate at two distinct levels of power consumption based on device configuration. When the LPT1OSC Configuration bit is set, the Timer1 oscillator operates in a low-power mode. When LPT1OSC is not set, Timer1 operates at a higher power level. Power consumption for a particular mode is relatively constant, regardless of the device's operating mode. The default Timer1 configuration is the higher power mode.

As the low-power Timer1 mode tends to be more sensitive to interference, high noise environments may cause some oscillator instability. The low-power option is, therefore, best suited for low noise applications where power conservation is an important design consideration.

16.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the ECCPR1L register and to the ECCP1CON<5:4> bits. Up to 10-bit resolution is available. The ECCPR1L contains the eight MSbs and the ECCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by ECCPR1L:ECCP1CON<5:4>. The PWM duty cycle is calculated by the following equation.

EQUATION 16-2:

PWM Duty Cycle	=	(ECCPR1L:ECCP1CON<5:4> •
		TOSC • (TMR2 Prescale Value)

ECCPR1L and ECCP1CON<5:4> can be written to at any time, but the duty cycle value is not copied into ECCPR1H until a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, ECCPR1H is a read-only register.

The ECCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation. When the ECCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or two bits of the TMR2 prescaler, the ECCP1 pin is cleared. The maximum PWM resolution (bits) for a given PWM frequency is given by the following equation.

EQUATION 16-3:

PWM Resolution (max) =
$$\frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the ECCP1 pin will not be cleared.

16.4.3 PWM OUTPUT CONFIGURATIONS

The EPWM1M1:EPWM1M0 bits in the ECCP1CON register allow one of four configurations:

- Single Output
- · Half-Bridge Output
- Full-Bridge Output, Forward mode
- Full-Bridge Output, Reverse mode

The Single Output mode is the standard PWM mode discussed in **Section 16.4 "Enhanced PWM Mode"**. The Half-Bridge and Full-Bridge Output modes are covered in detail in the sections that follow.

The general relationship of the outputs in all configurations is summarized in Figure 16-2.

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h
Maximum Resolution (bits)	10	10	10	8	7	6.58

TABLE 16-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

FIGURE 17-5: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)

REGISTER 17-3: SSPSTAT: MSSP STATUS REGISTER (I²C[™] MODE)

R/W-0) R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/Ā	P ⁽¹⁾	S ⁽¹⁾	R/W ^(2,3)	UA	BF
bit 7	·				·		bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value	e at POR	'1' = Bit is set	:	'0' = Bit is cl	eared	x = Bit is unkr	nown
bit 7	SMP: Slew R	ate Control bit					
	In Master or S	<u>Slave mode:</u>					
	1 = Slew rate	e control disab	ed for Standa	rd Speed mod	e (100 kHz and	1 MHz)	
hit C					JU KHZ)		
DILO	In Master or S	Select bit					
	1 = Enable Si	MBus specific	inputs				
	0 = Disable S	MBus specific	inputs				
bit 5	D/A: Data/Ad	dress bit					
	In Master mod	<u>de:</u>					
	Reserved.						
	In Slave mode	<u>e:</u> that the lest b	to received o	transmitted	vaa data		
	0 = Indicates	that the last by	te received of	r transmitted v	vas uala		
bit 4	P: Stop bit ⁽¹⁾						
	1 = Indicates	that a Stop bit	has been dete	ected last			
	0 = Stop bit w	as not detecte	d last				
bit 3	S: Start bit ⁽¹⁾						
	1 = Indicates	that a Start bit	has been det	ected last			
	0 = Start bit w	as not detecte	d last	(2.3)			
bit 2	R/W: Read/W	rite Informatio	n bit (I ² C mod	e only)(2,3)			
	<u>In Slave mode</u> 1 = Read	<u>ə:</u>					
	0 = Write						
	In Master mod	de:					
	1 = Transmit i	is in progress					
1.11.4		is not in progre	SS	1 I X			
DIT 1	UA: Update A	ddress bit (10	-Bit Slave mo	de only)	in the CODADD		
	1 = Indicates 0 = Address of	loes not need	to be updated	e the address	in the SSPADD	register	
bit 0	BF: Buffer Fu	Il Status bit					
	In Receive mo	ode:					
	1 = Receive c	complete, SSP	BUF is full				
	0 = Receive is	s not complete	, SSPBUF is e	empty			
	In Transmit m	<u>ode:</u> mit in prograd	a (daga pat in	aluda tha ACk	and Stan hita)		
	0 = Data trans	smit complete	does not inclu	ude the ACK a	and Stop bits), S	SPBUF is empt	ty
Not- 1				in ala I	• // -	F	-
NOTE 1:	This bit holds the C	$\frac{1}{100}$ Keset and $\frac{1}{100}$	when SSPEN	the least addre	oc motob Thick	hit is only valid.	from the
Ζ.	address match to t	he next Start h	hit. Stop bit or	not ACK bit	ss materi. This i		

3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Idle mode.

19.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has 8 inputs for the PIC18F2682/2685 devices and 11 for the PIC18F4682/4685 devices. This module allows conversion of an analog input signal to a corresponding 10-bit digital number.

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

The ADCON0 register, shown in Register 19-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 19-2, configures the functions of the port pins. The ADCON2 register, shown in Register 19-3, configures the A/D clock source, programmed acquisition time and justification.

REGISTER 19-1: ADCON0: A/D CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own		
bit 7-6 Unimplemented: Read as '0' bit 5-2 CHS3:CHS0: Analog Channel Select bits 0000 = Channel 0 (AN0)									
0000 = Channel 0 (AN0) 0001 = Channel 1 (AN1) 0010 = Channel 2 (AN2) 0011 = Channel 3 (AN3) 0100 = Channel 4 (AN4) $0101 = Channel 5 (AN5)^{(1,2)}$ $0110 = Channel 6 (AN6)^{(1,2)}$ $0111 = Channel 7 (AN7)^{(1,2)}$ 1000 = Channel 8 (AN8) 1001 = Channel 9 (AN9) 1010 = Channel 10 (AN10) 1011 = Unused 1100 = Unused									
bit 1	1101 = Unused 1110 = Unused 1111 = Unused GO/DONE: A/D Conversion Status bit								
	When ADON = 1: 1 = A/D conversion in progress 0 = A/D Idle								
bit 0	t 0 ADON: A/D On bit 1 = A/D converter module is enabled 0 = A/D converter module is disabled								
Note 1: The	Note 1: These channels are not implemented on PIC18F2682/2685 devices.								

2: Performing a conversion on unimplemented channels will return full-scale measurements.

U-0	U-0		R/W	-0	R/V	V-0	R/V	V-0 ⁽¹⁾	F	R/W-q ⁽	1)	R/W	′-q ⁽¹⁾	R/W-q ⁽¹⁾
	—		VCF	G1	VCF	-G0	PC	FG3	F	PCFG	2	PCI	-G1	PCFG0
bit 7														bit 0
Legend:														
R = Readab	ole bit	V	V = Wri	table t	bit		U = L	Inimple	emente	ed bit,	read	as '0'		
-n = Value a	at POR	'1	' = Bit	is set			'0' = I	Bit is cl	eared			x = Bit	is unkr	nown
bit 7-6	Unimpler	nenteo	d: Rea	d as '0	,									
bit 5	VCFG1: \	/oltage	Refer	ence (Configu	iration	bit (VR	EF- SO	urce)					
	1 = VREF- 0 = AVSS	· (AN2)												
bit 4	VCFG0: \	/oltage	Refer	ence (Configu	iration	bit (VR	EF+ SC	urce)					
	1 = VREF	+ (AN3)											
	0 = AV DD													
bit 3-0	PCFG3:P	CFG0	: A/D F	Port Co	onfigura	ation C	control	bits:		T				
	PCFG3:	10	6	8	7 ⁽²⁾	6 ⁽²⁾	5 ⁽²⁾	4	e	2	.	0		
	PCFG0	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN		
	0000 (1)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α		
	0001	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α		
	0010	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α		
	0011	А	Α	Α	А	А	А	Α	А	Α	А	Α		
	0100	А	Α	Α	Α	А	А	Α	А	А	А	Α		
	0101	D	Α	А	А	А	А	Α	А	А	А	А		
	0110	D	D	Α	Α	Α	Α	Α	А	А	Α	Α		
	0111(1)	D	D	D	Α	Α	Α	Α	Α	А	Α	Α		
	1000	D	D	D	D	Α	Α	Α	Α	Α	Α	Α		
	1001	D	D	D	D	D	Α	Α	Α	Α	Α	Α		
	1010	D	D	D	D	D	D	Α	Α	Α	Α	Α		
	1011	D	D	D	D	D	D	D	Α	Α	Α	Α		
	1100	D	D	D	D	D	D	D	D	Α	Α	Α		
	1101	D	D	D	D	D	D	D	D	D	Α	Α		
	1110	D	D	D	D	D	D	D	D	D	D	А		

REGISTER 19-2: ADCON1: A/D CONTROL REGISTER 1

Note 1: The POR value of the PCFG bits depends on the value of the PBADEN bit in Configuration Register 3H. When PBADEN = 1, PCFG<3:0> = 0000; when PBADEN = 0, PCFG<3:0> = 0111.

D

D

D

D

D

D

D

2: AN5 through AN7 are available only on PIC18F4682/4685 devices.

D

D

D = Digital I/O

1111

D

A = Analog input

D

The value in the ADRESH/ADRESL registers is not modified for a Power-on Reset. The ADRESH/ADRESL registers will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs. To determine acquisition time, see **Section 19.1 "A/D Acquisition Requirements"**. After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time can be programmed to occur between setting the GO/DONE bit and the actual start of the conversion. The following steps should be followed to perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D acquisition time (ADCON2)
 - Select A/D conversion clock (ADCON2)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - · Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time (if required).
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0 register)
- 5. Wait for A/D conversion to complete, by either:
 Polling for the GO/DONE bit to be cleared

OR

- Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH:ADRESL); clear bit, ADIF, if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before next acquisition starts.

Mode 0	R/C-0	R/C-0	R-0	R-0	R-0	R-0	R-0	R-0			
inoue e	RXB00VFL	RXB10VFL	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN			
		D/0.0	D 0		D 0	D 0					
Mode 1	R/C-0		R-0	R-0	R-0						
	—	RXBNOVFL	I XBU	TXBP	RXBP	TXWARN	RXWARN	EWARN			
	R/C-0	R/C-0	R-0	R-0	R-0	R-0	R-0	R-0			
Mode 2	FIFOFMPTY	RXBnOVFI	TXBO	TXBP	RXBP	TXWARN	RXWARN	FWARN			
	bit 7							bit 0			
Legend:	Legend:										
R = Read	lable bit		C = Clearabl	le bit	U = Unimple	emented bit, r	ead as '0'				
-n = Value	e at POR		'1' = Bit is se	et	'0' = Bit is c	leared	x = Bit is unk	nown			
bit 7	bit 7 <u>Mode 0:</u> RXB00VFL: Receive Buffer 0 Overflow bit 1 = Receive Buffer 0 overflowed 0 = Receive Buffer 0 has not overflowed										
	 0 = Receive Buffer 0 has not overflowed <u>Mode 1:</u> Unimplemented: Read as '0' <u>Mode 2:</u> FIFOEMPTY: FIFO Not Empty bit 1 = Receive FIFO is not empty 0 = Receive FIFO is empty 										
bit 6	 0 = Receive FIFO is empty <u>Mode 0:</u> RXB10VFL: Receive Buffer 1 Overflow bit 1 = Receive Buffer 1 overflowed 0 = Receive Buffer 1 has not overflowed <u>Mode 1, 2:</u> RXBn0VFL: Receive Buffer n Overflow bit 1 = Receive Buffer n has overflowed 0 = Receive Buffer n has not overflowed 										
bit 5	TXBO: Trans	smitter Bus-Of	f bit								
	1 = Transmit 0 = Transmit	error counter error counter	> 255 ≤ 255								
bit 4	TXBP: Trans 1 = Transmit 0 = Transmit	mitter Bus Pa error counter error counter	ssive bit > 127 ≤ 127								
bit 3	RXBP: Receiver Bus Passive bit 1 = Receive error counter > 127 0 = Receive error counter ≤ 127										
bit 2	TXWARN: Transmitter Warning bit 1 = Transmit error counter > 95 0 = Transmit error counter < 95										
bit 1	RXWARN: Receiver Warning bit 1 = $127 \ge$ Receive error counter > 95 0 = Receive error counter < 95										
bit 0	EWARN: Erro This bit is a fl 1 = The RXW	0 = Receive error counter ≤ 95 EWARN: Error Warning bit This bit is a flag of the RXWARN and TXWARN bits. 1 = The RXWARN or the TXWARN bits are set									

REGISTER 23-4: COMSTAT: COMMUNICATION STATUS REGISTER

$\label{eq:register} \textbf{REGISTER 23-19:} \quad \textbf{RXBnDLC: RECEIVE BUFFER n DATA LENGTH CODE REGISTERS [0 \leq n \leq 1]}$

U-0	R-x	R-x	R-x	R-x	R-x	R-x	R-x
—	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0

Legend:				
R = Readat	ole bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	Unimple	emented: Read as '0'		
bit 6	RXRTR	Receiver Remote Transmiss	sion Request bit	
	1 = Rem 0 = No r	note transfer request emote transfer request		
bit 5	RB1: Re	eserved bit 1		
	Reserve	d by CAN Spec and read as	'0'.	
bit 4	RB0: Re	eserved bit 0		
	Reserve	d by CAN Spec and read as	'0'.	
bit 3-0	DLC3:D	LC0: Data Length Code bits		
	1111 =	Invalid		
	1110 =	Invalid		
	1101 =	Invalid		
	1100 =	Invalid		
	1011 =	Invalid		
	1010 =	Invalid		
	1001 =	Data length = 8 bytes		
	0111 =	Data length = 7 bytes		
	0110 =	Data length = 6 bytes		
	0101 =	Data length = 5 bytes		
	0100 =	Data length = 4 bytes		
	0011 =	Data length = 3 bytes		
	0010 =	Data length = 2 bytes		
	0001 =	Data length = 1 bytes		

0000 = Data length = 0 bytes

REGISTER 23-20: RXBnDm: RECEIVE BUFFER n DATA FIELD BYTE m REGISTERS $[0 \le n \le 1, \, 0 \le m \le 7]$

| R-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXBnDm7 | RXBnDm6 | RXBnDm5 | RXBnDm4 | RXBnDm3 | RXBnDm2 | RXBnDm1 | RXBnDm0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **RXBnDm7:RXBnDm0:** Receive Buffer n Data Field Byte m bits (where 0 ≤ n < 1 and 0 < m < 7) Each receive buffer has an array of registers. For example, Receive Buffer 0 has 8 registers: RXB0D0 to RXB0D7.

REGISTER 23-21: RXERRCNT: RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
REC7	REC6	REC5	REC4	REC3	REC2	REC1	REC0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 REC7:REC0: Receive Error Counter bits

This register contains the receive error value as defined by the CAN specifications. When RXERRCNT > 127, the module will go into an error-passive state. RXERRCNT does not have the ability to put the module in "bus-off" state.

EXAMPLE 23-5: READING A CAN MESSAGE

```
; Need to read a pending message from RXBO buffer.
; To receive any message, filter, mask and RXM1:RXM0 bits in RXB0CON registers must be
; programmed correctly.
;
; Make sure that there is a message pending in RXBO.
BTFSS RXBOCON, RXFUL
                                   ; Does RXB0 contain a message?
BRA
      NoMessage
                                    ; No. Handle this situation...
; We have verified that a message is pending in RXBO buffer.
; If this buffer can receive both Standard or Extended Identifier messages,
; identify type of message received.
BTFSS RXBOSIDL, EXID
                                    ; Is this Extended Identifier?
BRA
      StandardMessage
                                    ; No. This is Standard Identifier message.
                                     ; Yes. This is Extended Identifier message.
; Read all 29-bits of Extended Identifier message.
; Now read all data bytes
MOVFF RXB0DO, MY DATA BYTE1
. . .
; Once entire message is read, mark the RXB0 that it is read and no longer FULL.
     RXBOCON, RXFUL
                                   ; This will allow CAN Module to load new messages
BCF
                                    ; into this buffer.
. . .
```

TABLE 25-1: OPCODE FIELD DESCRIPTIONS

Field	Description							
a	RAM access bit							
	a = 0: RAM location in Access RAM (BSR register is ignored)							
	a = 1: RAM bank is specified by BSR register							
bbb	Bit address within an 8-bit file register (0 to 7).							
BSR	Bank Select Register. Used to select the current RAM bank.							
C, DC, Z, OV, N	ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.							
d	Destination select bit							
	d = 0: store result in WREG							
	d = 1: store result in file register f							
dest	Destination: either the WREG register or the specified register file location.							
Í.	8-bit Register file address (00n to FFn), or 2-bit FSR designator (0n to 3n).							
Í _s	12-bit Register file address (000h to FFFh). This is the docting time address.							
f _d	12-bit Register file address (000h to FFFh). This is the destination address.							
GIE	Global Interrupt Enable bit.							
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value)							
label								
mm	I ne mode of the IBLPIR register for the table read and table write instructions.							
*	No change to register (such as TRI PTR with table reads and writes)							
*+	Post-Increment register (such as TBL PTR with table reads and writes)							
*_	Post-Decrement register (such as TBL PTR with table reads and writes)							
+ *	Pre-Increment register (such as TBL PTR with table reads and writes)							
n	The relative address (2's complement number) for relative branch instructions or the direct address for							
	Call/Branch and Return instructions							
PC	Program Counter.							
PCL	Program Counter Low Byte.							
PCH	Program Counter High Byte.							
PCLATH	Program Counter High Byte Latch.							
PCLATU	Program Counter Upper Byte Latch.							
PD	Power-down bit.							
PRODH	Product of Multiply High Byte.							
PRODL	Product of Multiply Low Byte.							
s	Fast Call/Return mode select bit							
	s = 0: do not update into/from shadow registers							
	s = 1: certain registers loaded into/from shadow registers (Fast mode)							
TBLPTR	2 1-bit Table Pointer (points to a Program Memory location).							
TABLAT	5-bit Table Latch.							
TO	Time-out bit.							
TUS								
u MDM	Watehdea Timor							
WDEC	Watchuog Timel.							
WREG	Don't care ('0' or '1') The assembler will generate code with $x = 0$. It is the recommended form of use for							
~	compatibility with all Microchip software tools.							
Zs	7-bit offset value for indirect addressing of register files (source).							
Zd	7-bit offset value for indirect addressing of register files (destination).							
{ }	Optional argument.							
[text]	Indicates an indexed address.							
(text)	The contents of text.							
[expr] <n></n>	Specifies bit n of the register indicated by the pointer expr.							
\rightarrow	Assigned to.							
< >	Register bit field.							
e	In the set of.							
italics	User defined term (font is Courier).							

Mnem	onic,	Description		16-E	Bit Instr	uction V	Vord	Status Bits	Natas
Opera	ands	Description	Cycles	MSb		LSt		Affected	Notes
BIT-ORIEN	NTED OP	ERATIONS							
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, b, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2
CONTROL	OPERA	TIONS	•						
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call subroutine1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	—	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	n	Go to address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	—	No Operation	1	0000	0000	0000	0000	None	_
NOP		No Operation	1	1111	XXXX	XXXX	XXXX	None	4
POP		Pop top of return stack (TOS)	1	0000	0000	0000	0110	None	
PUSH		Push top of return stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n		2	1101	lnnn	nnnn	nnnn	None	
RESET		Software device Reset	1	0000	0000	1111	1111		
KEIFIE	S	Return from interrupt enable	2	0000	0000	0001	000s	GIE/GIEH,	
DETUN	Ŀ		2	0000	1100	1-1-1-1	1-1-1-1	PEIE/GIEL	
	ĸ	Return with literal in WREG	2	0000	TINO	KKKK	KKKK	None	
	S	Return from Subroutine	2	0000	0000	0001	UULS		
SLEEP		Go into Standby mode	1	0000	0000	0000	0011	10, PD	

TABLE 25-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

ANDWF	AND W with f										
Syntax:	ANDWF	f {,d {,a}}									
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$										
Operation:	(W) .AND. (N) .AND. (f) \rightarrow dest									
Status Affected:	N, Z										
Encoding:	0001	01da f	fff	ffff							
Description:	The contents of W are ANDed with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '0', the ASR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed										
Words:	1										
Cycles:	1										
Q Cycle Activity:											
Q1	Q2	Q3		Q4							
Decode	Read	Process	N.	/rite to							
	register 'f'	Data	des	stination							
Example:	ANDWF	REG, 0,	0								
Before Instruct W REG After Instructio W	ion = 17h = C2h n = 02h										

вС		Branch if	Branch if Carry								
Synta	ax:	BC n									
Oper	ands:	-128 ≤ n ≤ 1	$-128 \le n \le 127$								
Oper	ation:	if Carry bit (PC) + 2 +	if Carry bit is '1' (PC) + 2 + 2n \rightarrow PC								
Statu	is Affected:	None	None								
Enco	oding:	1110	0010	nnnn	nnnn						
Desc	cription:	If the Carry will branch.	If the Carry bit is '1', then the program will branch.								
added to the PC. Since the PC will hav incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.											
Word	ls:	1									
Cycle	es:	1(2)									
QC	ycle Activity:										
lf Ju	imp:										
	Q1	Q2	Q3	5	Q4						
	Decode	Read literal 'n'	Proce Data	ess V a	Vrite to PC						
	No	No	No		No						
	operation	operation	operat	ion	operation						
lf No	o Jump:										
	Q1	Q2	Q3	5	Q4						
	Decode	Read literal	Proce	SS	No						
		'n'	Data	a	operation						
<u>Exan</u>	nple:	HERE	BC	5							
	Before Instruction	ction = ad	dress (1	HERE)							

1; address (HERE + 12) 0; address (HERE + 2)

If Carry PC If Carry PC

= = =

ADD	ADDWF ADD W to Indexed (Indexed Literal Offset mode)											
Synta	ax:	AD	DWF	[k] {,	d}							
Oper	ands:	0 ⊴ d ∉ a =	≤ k ≤ 95 ≡ [0,1] = 0									
Oper	ation:	(W	$(W) + ((FSR2) + k) \rightarrow dest$									
Statu	s Affected:	N,	OV, C, E	DC, Z								
Enco	oding:		0010	01	d0	kkkk		kkkk				
Desc	ription:	Th of va	e conten the regist ue 'k'.	ts of V er ind	V are a licated	added to by FSR	the 2, of	contents ffset by the				
		lf 'e	If a is 0 , the result is stored in vv. If a is 1° , the result is stored back in register 'f' (default).									
Word	ls:	1										
Cycle	es:	1										
QC	ycle Activit	y:										
	Q1		Q2		1	Q3	Q4					
	Decode		Read	'k'	Pro D	Process Data		Write to stination				
<u>Exan</u>	nple:		ADDWI	E	[OFS]],0						
	Before Ins W OFS1 FSR2 Conte of 0A After Instru W Conte of 0A	tion 1 9n	= = = =	17h 2Ch 0A0 20h 37h 20h	า วOh เ เ							

BSF Bit Set Indexed (Indexed Literal Offset mode)										
Syntax:		BSF [k],	BSF [k], b							
Operands: $0 \le f \le 95$ $0 \le b \le 7$ a = 0										
Operation:		$1 \rightarrow ((FS))$	R2	+ k)) <b< td=""><td>></td><td></td><td></td></b<>	>					
Status Affeo	cted:	None								
Encoding:	1000		bbb0	kk]	ck	kkkk				
Description	Bit 'b' of th offset by	Bit 'b' of the register indicated by FSR2, offset by the value 'k', is set.								
Words:		1	1							
Cycles:	1									
Q Cycle A	ctivity:									
(Q1	Q2		Q3		Q4				
Dec	code	Read register 'f'		Proce: Data	ss I	W des	/rite to stination			
Example:		BSF	[]	FLAG_O	FST]	, 7				
Before F C o After In C	e Instruc LAG_O SR2 Contents f 0A0Ah nstructic Contents	tion FST = = n = on	=	0Ah 0A00h 55h	I					
0	f 0A0Ah	. =	=	D5h						

SET	F	Set Indexed (Indexed Literal Offset mode)										
Synta	ax:	SETF [SETF [k]									
Oper	ands:	$0 \leq k \leq 95$										
Oper	ation:	$FFh \rightarrow ((FSR2) + k)$										
Statu	is Affected:	None	None									
Enco	oding:	0110		1000	kkk	k	kkkk					
Desc	ription:	The con FSR2, o	The contents of the register indicated by FSR2, offset by 'k', are set to FFh.									
Word	ls:	1										
Cycle	es:	1										
QC	ycle Activity:											
	Q1	Q2		Q3	3 Q4		Q4					
	Decode	Read 'k'		Proce Data	SS A	Write register						
Exan	nple:	SETF		OFST]								
	Before Instructi OFST FSR2 Contents of 0A2Ch	on = = =	2C 0A 00	ch 100h h								
	After Instructior Contents of 0A2Ch) =	FF	ĥ								

27.1 DC Characteristics:

Supply Voltage PIC18F2682/2685/4682/4685 (Industrial) PIC18LF2682/2685/4682/4685 (Industrial)

PIC18LF (Indu	PIC18LF2682/2685/4682/4685 (Industrial)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F2682/2685/4682/4685 (Industrial, Extended)			$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$									
Param No.	Symbol	Characteristic	Min	Min Typ Max Units Conditions								
VDD Supply Voltage												
D001		PIC18LF268X/468X	2.0	_	5.5	V						
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—		V						
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	—	0.7	V	See section on Power-on Reset for details					
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms	See section on Power-on Reset for details					
	VBOR	Brown-out Reset Voltage										
D005		PIC18LF268X/468X										
		BORV1:BORV0 = 11	2.00	2.05	2.16	V						
		BORV1:BORV0 = 10	2.65	2.79	2.93	V						
D005		All Devices										
		BORV1:BORV0 = 01	4.11	4.33	4.55	V						
		BORV1:BORV0 = 00	4.36	4.59	4.82	V						

Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.

27.2 DC Characteristics:

Power-Down and Supply Current PIC18F2682/2685/4682/4685 (Industrial) PIC18LF2682/2685/4682/4685 (Industrial) (Continued)

PIC18LF: (Indus	2682/2685/4682/4685 strial)	$\begin{array}{llllllllllllllllllllllllllllllllllll$									
PIC18F20 (Indus	682/2685/4682/4685 strial, Extended)	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$									
Param No.	Device	Typ Max Units Conditions									
Supply Current (IDD) ^(2,3)											
	All devices	9.00	18.00	mA	-40°C						
		8.90	17.00	mA	+25°C	VDD = 4.2V	FOSC = 4 MHZ (PRI RUN HSPLL)				
		8.80	16.00	mA	+85°C		(
	All devices	12.00	24.00	mA	-40°C						
		12.00	22.00	mA	+25°C	VDD = 5.0V	(PRI RUN HSPLL)				
		12.00	21.00	mA	+85°C		(***_**********************************				
	All devices	21.00	39.00	mA	-40°C						
		21.00	39.00	mA	+25°C	VDD = 4.2V	(PRI RUN HSPLL)				
		21.00	39.00	mA	+85°C		(··· _ ·································				
	All devices	28.00	44.00	mA	-40°C						
		28.00	44.00	mA	+25°C	VDD = 5.0V					
		28.00	44.00	mA	+85°C		()				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** For RC oscillator configurations, current through RExT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

TABLE 27-22: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions	
120	TCKH2DTV	SYNC XMIT (MASTER & SLAVE)					
		Clock High to Data Out Valid	PIC18FXXXX	_	40	ns	
			PIC18LFXXXX		100	ns	VDD = 2.0V
121	TCKRF	Clock Out Rise Time and Fall Time	PIC18FXXXX	_	20	ns	
		(Master mode)	PIC18LFXXXX	—	50	ns	VDD = 2.0V
122	TDTRF	Data Out Rise Time and Fall Time	PIC18FXXXX	—	20	ns	
			PIC18LFXXXX		50	ns	VDD = 2.0V

FIGURE 27-21: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 27-23: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Мах	Units	Conditions
125	TDTV2CKL	SYNC RCV (MASTER & SLAVE) Data Hold before CK \downarrow (DT hold time)	10	_	ns	
126	TCKL2DTL	Data Hold after CK \downarrow (DT hold time)	15	_	ns	

т

T0CON Register	
PSA Bit	. 151
T0CS Bit	. 150
T0PS2:T0PS0 Bits	. 151
T0SE Bit	. 150
Table Reads/Table Writes	66
TBLRD	. 403
TBLWT	. 404
Time-out in Various Situations (table)	
Timer0	149
Associated Registers	151
Clock Source Edge Select (T0SE Bit)	150
Clock Source Select (TOCS Bit)	150
Operation	150
	151
Proscalor, See Proscalor, Timor0	. 131
Prescale: See Frescaler, Timero.	150
Time and Whites in To-Dit Mode	450
	. 153
	.155
Associated Registers	.157
Interrupt	. 156
Operation	. 154
Oscillator	. 155
Layout Considerations	. 156
Resetting, Using a Special Event Trigger	
Output (CCP1)	. 156
Special Event Trigger (ECCP1)	. 176
Use as a Real-Time Clock	. 156
Timer2	. 159
Associated Registers	. 160
Interrupt	. 160
Operation	. 159
Output	. 160
PR2 Register	177
TMR2 to PR2 Match Interrupt	.171
Timer3	161
16-Bit Read/Write Mode	163
Associated Registers	163
Operation	162
Oscillator 153 161	163
Overflow Interrupt	163
Special Event Trigger (ECCP1)	163
TMP3H Pogistor 153	161
TMP3L Degister 153,	161
Timing Diagrama	101
	454
A/D COnversion	.404
Acknowledge Sequence	. 222
Asynchronous Reception	. 241
Asynchronous Transmission	.239
Asynchronous Transmission (Back-to-Back)	.239
Automatic Baud Rate Calculation	.237
Auto-Wake-up Bit (WUE) During Normal Operation	242
Auto-Wake-up Bit (WUE) During Sleep	. 242
Baud Rate Generator with Clock Arbitration	. 216
BRG Overflow Sequence	. 237
BRG Reset Due to SDA Arbitration	
During Start Condition	. 225
Brown-out Reset (BOR)	.440
Bus Collision During a Repeated Start Condition	
(Case 1)	. 226
Bus Collision During a Repeated Start Condition	
(Case 2)	. 226

Bus Collision During a Start Condition
(SCL = 0)
Bus Collision During a Start Condition
(3DA OIIIy)
Bus Collision During a Stop Condition
(Case 1) 227
Bus Collision During a Stop Condition
(Case 2)
Bus Collision for Transmit and
Asknowledge
Acknowledge
Capture/Compare/PWM (All CCP Modules)
CLKO and I/O 439
Clock Synchronization
Clock/Instruction Cycle 67
ELISART Synchronous Receive
(Master/Claus)
(Master/Slave)
EUSART Synchronous Transmission
(Master/Slave) 452
Example SPI Master Mode (CKE = 0)
Example SPI Master Mode (CKE = 1) 445
Example SPI Slave Mode ($CKE = 0$) 446
Example SPI Slave Mode (CKE = 0)
Example SPI Slave Mode (CKE = 1)
External Clock (All Modes Except PLL) 437
Fail-Safe Clock Monitor
First Start Bit Timing
Full-Bridge PWM Output 181
Half Bridge DW/M Output
High // any Valence Detect Characteristics
High/Low-voltage Detect Characteristics
High-Voltage Detect (VDIRMAG = 1)
I ² C Bus Data
I ² C Bus Start/Stop Bits
I ² C Master Mode (7 or 10-Bit Transmission)
I^2 C Master Mode (7-Bit Recention) 221
I^2 C Slave Mode (10 Bit Reception) SEN = 0) 206
I^2 C Clave Mode (10-Dit Reception, SEN = 0)
$I^{-}C$ Slave Mode (10-Bit Reception, SEN = 1)
I ² C Slave Mode (10-Bit Transmission)
I^2C Slave Mode (7-Bit Reception, SEN = 0)
I ² C Slave Mode (7-Bit Reception, SEN = 1)
I ² C Slave Mode (7-Bit Transmission) 205
I^2 C Slave Mode General Call Address Sequence (7 or
1 C Slave Mode General Call Address Sequence (7 0)
10-Bit Address Mode)
Low-Voltage Detect (VDIRMAG = 0)
Master SSP I ² C Bus Data 450
Master SSP I ² C Bus Start/Stop Bits
Parallel Slave Port (PIC18F4682/4685) 443
Parallel Slave Port (PSP) Read 147
Parallel Olave Port (POP) Nette
Parallel Slave Port (PSP) write
PWM Auto-Shutdown (PRSEN = 0,
Auto-Restart Disabled) 186
PWM Auto-Shutdown (PRSEN = 1.
Auto-Restart Enabled) 186
PWM Direction Change 183
PWM Direction Change 183
PWM Direction Change
PWM Direction Change 183 PWM Direction Change at Near 100% Duty Cycle 183 PWM Output 171
PWM Direction Change 183 PWM Direction Change at Near 100% Duty Cycle 183 PWM Output 171 Repeated Start Condition 218
PWM Direction Change 183 PWM Direction Change at Near 100% Duty Cycle 183 PWM Output 171 Repeated Start Condition 218 Reset, Watchdog Timer (WDT). Oscillator
PWM Direction Change 183 PWM Direction Change at Near 100% Duty Cycle 183 PWM Output 171 Repeated Start Condition 218 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST) and
PWM Direction Change 183 PWM Direction Change at Near 100% Duty Cycle 183 PWM Output 171 Repeated Start Condition 218 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) 440
PWM Direction Change 183 PWM Direction Change at Near 100% Duty Cycle 183 PWM Output 171 Repeated Start Condition 218 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) 440
PWM Direction Change 183 PWM Direction Change at Near 100% Duty Cycle 183 PWM Output 171 Repeated Start Condition 218 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) 440 Send Break Character Sequence 243
PWM Direction Change 183 PWM Direction Change at Near 100% Duty Cycle 183 PWM Output 171 Repeated Start Condition 218 Reset, Watchdog Timer (WDT), Oscillator 218 Start-up Timer (OST) and 440 Send Break Character Sequence 243 Slave Synchronization 195
PWM Direction Change 183 PWM Direction Change at Near 100% Duty Cycle 183 PWM Output 171 Repeated Start Condition 218 Reset, Watchdog Timer (WDT), Oscillator 218 Start-up Timer (OST) and 90wer-up Timer (PWRT) Power-up Timer (PWRT) 440 Send Break Character Sequence 243 Slave Synchronization 195 Slow Rise Time (MCLR Tied to VDD,
PWM Direction Change 183 PWM Direction Change at Near 100% Duty Cycle 183 PWM Output 171 Repeated Start Condition 218 Reset, Watchdog Timer (WDT), Oscillator 218 Start-up Timer (OST) and 100% Power-up Timer (PWRT) 440 Send Break Character Sequence 243 Slave Synchronization 195 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)