

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	96KB (48K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4685t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

28/40/44-Pin Enhanced Flash Microcontrollers with ECAN[™] Technology, 10-Bit A/D and nanoWatt Technology

Power-Managed Modes:

- · Run: CPU on, peripherals on
- Idle: CPU off, peripherals on
- · Sleep: CPU off, peripherals off
- Idle mode currents down to 5.8 μA typical
- Sleep mode currents down to 0.1 μÅ typical
- Timer1 Oscillator: 1.1 μA, 32 kHz, 2V
- Watchdog Timer: 2.1 μA
- Two-Speed Oscillator Start-up

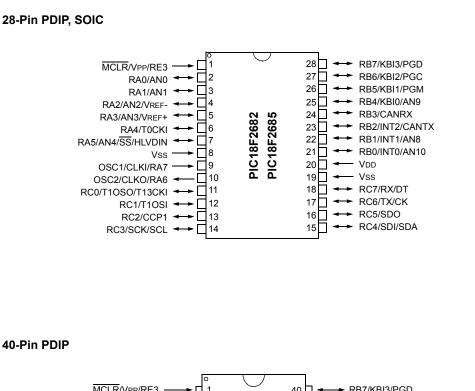
Flexible Oscillator Structure:

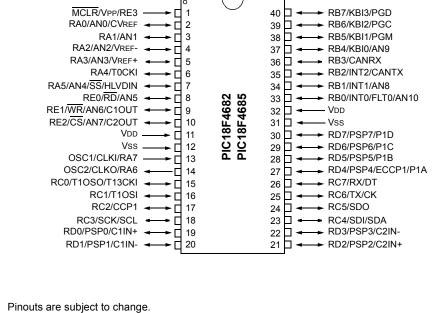
- Four Crystal modes, up to 40 MHz
- 4x Phase Lock Loop (PLL) available for crystal and internal oscillators
- · Two External RC modes, up to 4 MHz
- Two External Clock modes, up to 40 MHz
- Internal Oscillator Block:
 - 8 user-selectable frequencies, from 31 kHz to 8 MHz
 - Provides a complete range of clock speeds,
 - from 31 kHz to 32 MHz when used with PLL User-tunable to compensate for frequency drift
- Secondary Oscillator using Timer1 @ 32 kHz
- Fail-Safe Clock Monitor
 - Allows for safe shutdown if peripheral clock stops

Special Microcontroller Features:

- C compiler Optimized Architecture with optional Extended Instruction Set
- 100,000 Erase/Write Cycle Enhanced Flash Program Memory typical
- 1,000,000 Erase/Write Cycle Data EEPROM Memory typical
- Flash/Data EEPROM Retention: > 40 years
- Self-Programmable under Software Control
- Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
- Programmable period from 41 ms to 131s
- Single-Supply 5V In-Circuit Serial Programming[™] (ICSP[™]) via two pins
- In-Circuit Debug (ICD) via two pins
- Wide operating voltage range: 2.0V to 5.5V

Peripheral Highlights:


- High-Current Sink/source 25 mA/25 mA
- Three External Interrupts
- One Capture/Compare/PWM (CCP1) module
- Enhanced Capture/Compare/PWM (ECCP1) module (40/44-pin devices only):
 - One, two or four PWM outputs
 - Selectable polarity
 - Programmable dead time
 - Auto-shutdown and auto-restart
- Master Synchronous Serial Port (MSSP) module supporting 3-Wire SPI (all 4 modes) and I²C[™] Master and Slave modes
- Enhanced Addressable USART module:
 - Supports RS-485, RS-232 and LIN 1.3
 - RS-232 operation using internal oscillator block (no external crystal required)
 - Auto-wake-up on Start bit
 - Auto-Baud Detect
- 10-Bit, up to 11-Channel Analog-to-Digital Converter module (A/D), up to 100 ksps:
 - Auto-acquisition capability
 - Conversion available during Sleep
- · Dual Analog Comparators with Input Multiplexing


ECAN Module Features:

- Message bit rates up to 1 Mbps
- · Conforms to CAN 2.0B ACTIVE Specification
- Fully Backward Compatible with PIC18XXX8 CAN modules
- Three Modes of Operation:
 - Legacy, Enhanced Legacy, FIFO
- · Three Dedicated Transmit Buffers with Prioritization
- Two Dedicated Receive Buffers
- Six Programmable Receive/Transmit Buffers
- · Three Full, 29-Bit Acceptance Masks
- 16 Full, 29-Bit Acceptance Filters w/Dynamic Association
- DeviceNet™ Data Byte Filter Support
- Automatic Remote Frame Handling
- Advanced Error Management Features

	Prog	ram Memory	Data Memory CCP1/ MSSP		RT		Time and					
Device	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	EEPROM (bytes)	I/O	I/O 10-Bit A/D (ch)	ECCP1 (PWM)	SPI	Master I ² C™	EUSA	Comp.	Timers 8/16-bit
PIC18F2682	80K	40960	3328	1024	28	8	1/0	Y	Y	1	0	1/3
PIC18F2685	96K	49152	3328	1024	28	8	1/0	Y	Y	1	0	1/3
PIC18F4682	80K	40960	3328	1024	40/44	11	1/1	Y	Y	1	2	1/3
PIC18F4685	96K	49152	3328	1024	40/44	11	1/1	Y	Y	1	2	1/3

Pin Diagrams

Note:

2.7 Clock Sources and Oscillator Switching

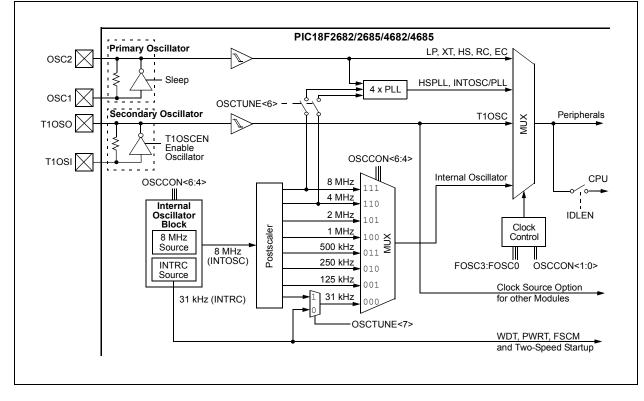
Like previous PIC18 devices, the PIC18F2682/2685/ 4682/4685 family includes a feature that allows the device clock source to be switched from the main oscillator to an alternate low-frequency clock source. PIC18F2682/2685/4682/4685 devices offer two alternate clock sources. When an alternate clock source is enabled, the various power-managed operating modes are available.

Essentially, there are three clock sources for these devices:

- · Primary oscillators
- · Secondary oscillators
- · Internal oscillator block

The **primary oscillators** include the External Crystal and Resonator modes, the External RC modes, the External Clock modes and the internal oscillator block. The particular mode is defined by the FOSC3:FOSC0 Configuration bits. The details of these modes are covered earlier in this chapter. The **secondary oscillators** are those external sources not connected to the OSC1 or OSC2 pins. These sources may continue to operate even after the controller is placed in a power-managed mode.

PIC18F2682/2685/4682/4685 devices offer the Timer1 oscillator as a secondary oscillator. In all power-managed modes, this oscillator is often the time base for functions such as a Real-Time Clock.


Most often, a 32.768 kHz watch crystal is connected between the RC0/T1OSO/T13CKI and RC1/T1OSI pins. Like the LP mode oscillator circuit, loading capacitors are also connected from each pin to ground.

The Timer1 oscillator is discussed in greater detail in **Section 12.3 "Timer1 Oscillator"**.

In addition to being a primary clock source, the **internal oscillator block** is available as a power-managed mode clock source. The INTRC source is also used as the clock source for several special features, such as the WDT and Fail-Safe Clock Monitor.

The clock sources for the PIC18F2682/2685/4682/4685 devices are shown in Figure 2-8. See **Section 24.0 "Special Features of the CPU"** for Configuration register details.

NOTES:

RXB1SIDH 26 RXB1CON 26 TXB0D7 26 TXB0D6 26 TXB0D5 26 TXB0D3 26 TXB0D2 26 TXB0D1 26 TXB0D2 26 TXB0D1 26		e Devi	ces	Power-on Reset,	MCLR Resets, WDT Reset,	Waka un via WDT		
RXB1CON 26 TXB0D7 26 TXB0D6 26 TXB0D5 26 TXB0D4 26 TXB0D3 26 TXB0D2 26 TXB0D1 26 TXB0D2 26 TXB0D1 26	00 000-			Brown-out Reset	RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt		
TXB0D7 26 TXB0D6 26 TXB0D5 26 TXB0D4 26 TXB0D3 26 TXB0D2 26 TXB0D1 26 TXB0D2 26 TXB0D1 26	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս		
TXB0D6 26 TXB0D5 26 TXB0D4 26 TXB0D3 26 TXB0D2 26 TXB0D1 26 TXB0D1 26	82 2685	4682	4685	0000 - 0000	000- 0000	uuu- uuuu		
TXB0D5 26 TXB0D4 26 TXB0D3 26 TXB0D2 26 TXB0D1 26 TXB0D1 26 TXB0D1 26	82 2685	4682	4685	XXXX XXXX	นนนน นนนน	นนนน นนนน		
TXB0D4 26 TXB0D3 26 TXB0D2 26 TXB0D1 26 TXB0D1 26 TXB0D1 26	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	นนนน นนนน		
TXB0D3 26 TXB0D2 26 TXB0D1 26 TXB0D1 26 TXB0D0 26	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս		
TXB0D2 26 TXB0D1 26 TXB0D0 26	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	uuuu uuuu		
TXB0D1 26 TXB0D0 26	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս		
TXB0D0 26	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս		
	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս		
	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս		
TXB0DLC 26	82 2685	4682	4685	-x xxxx	-u uuuu	-u uuuu		
TXB0EIDL 26	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս		
TXB0EIDH 26	82 2685	4682	4685	XXXX XXXX	นนนน นนนน	นนนน นนนน		
TXB0SIDL 26	82 2685	4682	4685	XXX- X-XX	uuu- u-uu	uuu- u-uu		
TXB0SIDH 26	82 2685	4682	4685	XXXX XXXX	นนนน นนนน	นนนน นนนน		
TXB0CON 26	82 2685	4682	4685	0000 0-00	0000 0-00	uuuu u-uu		
TXB1D7 26	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս		
TXB1D6 26	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս		
TXB1D5 26	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս		
TXB1D4 26	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս		
TXB1D3 26	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս		
TXB1D2 26	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս		
TXB1D1 26	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս		
TXB1D0 26	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս		
TXB1DLC 26	82 2685	4682	4685	-x xxxx	-u uuuu	-u uuuu		
	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս		
TXB1EIDH 26	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս		
TXB1SIDL 26	82 2685	4682	4685	XXX- X-XX	uuu- u-uu	uuu- uu-u		
TXB1SIDH 26	82 2685	4682	4685	XXXX XXXX	սսսս սսսս	սսսս սսսս		
TXB1CON 26								
TXB2D7 26	82 2685	4682	4685	0000 0-00	0000 0-00	uuuu u-uu		

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2.

5.0 MEMORY ORGANIZATION

There are three types of memory in PIC18 Enhanced microcontroller devices:

- Program Memory
- Data RAM
- Data EEPROM

As Harvard architecture devices, the data and program memories use separate busses; this allows for concurrent access of the two memory spaces. The data EEPROM, for practical purposes, can be regarded as a peripheral device, since it is addressed and accessed through a set of control registers.

Additional detailed information on the operation of the Flash program memory is provided in **Section 6.0 "Flash Program Memory"**. Data EEPROM is discussed separately in **Section 7.0 "Data EEPROM Memory"**.

5.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOP instruction).

The PIC18F2682 and PIC18F4682 each have 80 Kbytes of Flash memory and can store up to 40,960 single-word instructions. The PIC18F2685 and PIC18F4685 each have 96 Kbytes of Flash memory and can store up to 49,152 single-word instructions.

PIC18 devices have two interrupt vectors. The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

The program memory maps for PIC18F2682/4682 and PIC18F2685/4685 devices are shown in Figure 5-1.

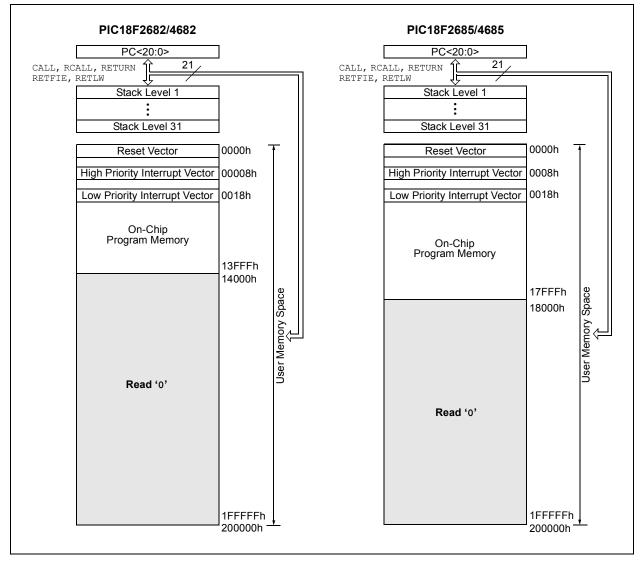


FIGURE 5-1: PROGRAM MEMORY MAP AND STACK FOR PIC18F2682/2685/4682/4685 DEVICES

TABLE 5-1:SPECIAL FUNCTION REGISTER MAP FOR
PIC18F2682/2685/4682/4685 DEVICES (CONTINUED)

Address	Name	Address	Name	Address	Name	Address	Name
EFFh	_	EDFh	_	EBFh	_	E9Fh	_
EFEh	_	EDEh	_	EBEh	_	E9Eh	_
EFDh	—	EDDh	_	EBDh	_	E9Dh	_
EFCh	—	EDCh	_	EBCh	_	E9Ch	_
EFBh	—	EDBh	_	EBBh	_	E9Bh	_
EFAh	_	EDAh	_	EBAh	_	E9Ah	_
EF9h	—	ED9h	—	EB9h		E99h	—
EF8h	—	ED8h	_	EB8h	_	E98h	_
EF7h	—	ED7h	_	EB7h	_	E97h	_
EF6h	—	ED6h	—	EB6h		E96h	—
EF5h	_	ED5h	—	EB5h		E95h	_
EF4h	—	ED4h	—	EB4h	-	E94h	—
EF3h	—	ED3h	—	EB3h		E93h	—
EF2h	—	ED2h	—	EB2h		E92h	—
EF1h	—	ED1h	—	EB1h	—	E91h	—
EF0h		ED0h		EB0h	—	E90h	—
EEFh	—	ECFh	—	EAFh		E8Fh	—
EEEh	—	ECEh	—	EAEh	-	E8Eh	—
EEDh	—	ECDh	—	EADh		E8Dh	—
EECh	—	ECCh	—	EACh		E8Ch	—
EEBh	—	ECBh	—	EABh	—	E8Bh	—
EEAh	—	ECAh	—	EAAh		E8Ah	—
EE9h	—	EC9h	—	EA9h		E89h	—
EE8h		EC8h		EA8h	—	E88h	—
EE7h		EC7h		EA7h	—	E87h	—
EE6h	—	EC6h	—	EA6h		E86h	—
EE5h		EC5h		EA5h	_	E85h	—
EE4h		EC4h		EA4h	—	E84h	—
EE3h	—	EC3h	—	EA3h	_	E83h	—
EE2h	—	EC2h	_	EA2h	_	E82h	_
EE1h	—	EC1h	_	EA1h	_	E81h	—
EE0h	_	EC0h	_	EA0h	_	E80h	_

Note 1: Registers available only on PIC18F4X8X devices; otherwise, the registers read as '0'.

2: When any TX_ENn bit in RX_TX_SELn is set, then the corresponding bit in this register has transmit properties.

3: This is not a physical register.

							82/4685) (0		Value on	Details
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR, BOR	on page:
TXB1CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ	_	TXPRI1	TXPRI0	0000 0-00	56, 284
TXB2D7	TXB2D77	TXB2D76	TXB2D75	TXB2D74	TXB2D73	TXB2D72	TXB2D71	TXB2D70	XXXX XXXX	56, 286
TXB2D6	TXB2D67	TXB2D66	TXB2D65	TXB2D64	TXB2D63	TXB2D62	TXB2D61	TXB2D60	XXXX XXXX	57, 286
TXB2D5	TXB2D57	TXB2D56	TXB2D55	TXB2D54	TXB2D53	TXB2D52	TXB2D51	TXB2D50	XXXX XXXX	57, 286
TXB2D4	TXB2D47	TXB2D46	TXB2D45	TXB2D44	TXB2D43	TXB2D42	TXB2D41	TXB2D40	XXXX XXXX	57, 286
TXB2D3	TXB2D37	TXB2D36	TXB2D35	TXB2D34	TXB2D33	TXB2D32	TXB2D31	TXB2D30	XXXX XXXX	57, 286
TXB2D2	TXB2D27	TXB2D26	TXB2D25	TXB2D24	TXB2D23	TXB2D22	TXB2D21	TXB2D20	XXXX XXXX	57, 286
TXB2D1	TXB2D17	TXB2D16	TXB2D15	TXB2D14	TXB2D13	TXB2D12	TXB2D11	TXB2D10	XXXX XXXX	57, 286
TXB2D0	TXB2D07	TXB2D06	TXB2D05	TXB2D04	TXB2D03	TXB2D02	TXB2D01	TXB2D00	XXXX XXXX	57, 286
TXB2DLC	_	TXRTR	_		DLC3	DLC2	DLC1	DLC0	-x xxxx	57, 287
TXB2EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	57, 286
TXB2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	57, 285
TXB2SIDL	SID2	SID1	SID0	-	EXIDE	_	EID17	EID16	xxxx x-xx	57, 285
TXB2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxx- x-xx	57, 285
TXB2CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ	_	TXPRI1	TXPRI0	0000 0-00	57, 284
RXM1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	57, 307
RXM1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	57, 307
RXM1SIDL	SID2	SID1	SID0	-	EXIDEN	_	EID17	EID16	xxx- x-xx	57, 307
RXM1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	57, 306
RXM0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	57, 307
RXM0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	57, 307
RXM0SIDL	SID2	SID1	SID0		EXIDEN	_	EID17	EID16	xxx- x-xx	57, 307
RXM0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	57, 306
RXF5EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	57, 306
RXF5EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	57, 306
RXF5SIDL	SID2	SID1	SID0		EXIDEN	_	EID17	EID16	xxx- x-xx	57, 305
RXF5SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	57, 306
RXF4EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	57, 306
RXF4EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	57, 306
RXF4SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	57, 305
RXF4SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	57, 306
RXF3EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	57, 306
RXF3EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	57, 306
RXF3SIDL	SID2	SID1	SID0		EXIDEN	_	EID17	EID16	xxx- x-xx	58, 305
RXF3SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	58, 306
RXF2EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	58, 306
RXF2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	58, 306
RXF2SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	58, 305
RXF2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	58, 306
RXF1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	58, 306
RXF1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	58, 306

TABLE 5-2:	REGISTER FILE SUMMARY (PIC18F2682/2685/4682/4685	(CONTINUED)
			(

 $\label{eq:logarder} \mbox{Legend: } x \mbox{=} unknown, u \mbox{$

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

3: These registers and/or bits are not implemented on PIC18F2682/2685 devices and are read as '0'. Reset values are shown for PIC18F4682/4685 devices; individual unimplemented bits should be interpreted as '---'.

4: The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2.

9: These registers and/or bits are available on PIC18F4682/4685 devices only.

	ORTB I/O	i			D 1.4
Pin Name	Function	I/O	TRIS	Buffer	Description
RB0/INT0/FLT0/AN10	RB0	OUT	0	DIG	LATB<0> data output.
		IN	1	TTL	PORTB<0> data input. Weak pull-up available only in this mode.
	INT0	IN	1	ST	External interrupt 0 input.
	FLT0 ⁽¹⁾	IN	1	ST	Enhanced PWM Fault input.
	AN10	IN	1	ANA	A/D input channel 10. Enabled on POR, this analog input overrides the digital input (read as clear – low level).
RB1/INT1/AN8	RB1	OUT	0	DIG	LATB<1> data output.
		IN	PORTB<1> data input. Weak pull-up available only in this mode.		
	INT1	IN	1	ST	External interrupt 1 input.
	AN8	IN	1	ANA	A/D input channel 8. Enabled on POR, this analog input overrides the digital input (read as clear – low level).
RB2/INT2/CANTX	RB2	OUT	х	DIG	LATB<2> data output.
		IN	1	TTL	PORTB<2> data input. Weak pull-up available only in this mode.
	INT2	IN	1	ST	External interrupt 2 input.
	CANTX	OUT	1	DIG	CAN transmit signal output. The CAN interface overrides the TRIS<2> control when enabled.
RB3/CANRX	RB3	OUT	0	DIG	LATB<3> data output.
		IN	1	TTL	PORTB<3> data input. Weak pull-up available only in this mode.
	CANRX	IN	1	ST	CAN receive signal input. Pin must be configured as a digital input b setting TRISB<3>.
RB4/KBI0/AN9	RB4	OUT	0	DIG	LATB<4> data output.
		IN	1	TTL	PORTB<4> data input. Weak pull-up available only in this mode.
	KBI0	IN	1	TTL	Interrupt-on-pin change.
	AN9	IN	1	ANA	A/D input channel 9. Enabled on POR, this analog input overrides the digital input (read as clear – low level).
RB5/KBI1/PGM	RB5	OUT	0	DIG	LATB<5> data output.
		IN	1	TTL	PORTB<5> data input. Weak pull-up available only in this mode.
	KBI1	IN	1	TTL	Interrupt-on-pin change.
	PGM	IN	х	ST	Low-Voltage Programming mode entry (ICSP™). Enabling this function overrides digital output.
RB6/KBI2/PGC	RB6	OUT	0	DIG	LATB<6> data output.
		IN	1	TTL	PORTB<6> data input. Weak pull-up available only in this mode.
	KBI2	IN	1	TTL	Interrupt-on-pin change.
	PGC	IN	Х	ST	Low-Voltage Programming mode entry (ICSP) clock input.
RB7/KBI3/PGD	RB7	OUT	0	DIG	LATB<7> data output.
		IN	1	TTL	PORTB<7> data input. Weak pull-up available only in this mode.
	KBI3	IN	1	TTL	Interrupt-on-pin change.
	PGD	OUT	х	DIG	Low-Voltage Programming mode entry (ICSP) clock output.
		IN	х	ST	Low-Voltage Programming mode entry (ICSP) clock input.

|--|

Legend: OUT = Output; IN = Input; ANA = Analog Signal; DIG = Digital Output; ST = Schmitt Buffer Input; TTL – TTL Buffer Input Note 1: This bit is unimplemented on PIC18F2682/2685 devices.

11.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable; its value is set by the PSA and T0PS2:T0PS0 bits (T0CON<3:0>) which determine the prescaler assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the Timer0 module. When it is assigned, prescale values from 1:2 through 1:256 in power-of-2 increments are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) clear the prescaler count.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count but will not change the prescaler assignment.

11.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control and can be changed "on-the-fly" during program execution.

11.4 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit (INTCON<5>). Before reenabling the interrupt, the TMR0IF bit must be cleared in software by the Interrupt Service Routine.

Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep.

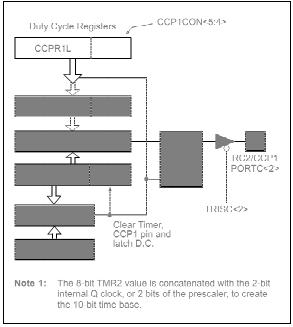
Name	Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							
TMR0L Timer0 Register Low Byte								52			
TMR0H	TMR0H Timer0 Register High Byte								52		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	51		
TOCON	TMR0ON	T08BIT	TOCS	52							
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA Da	ta Direction	Register				54		

TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER0

Legend: x = unknown, u = unchanged, — = unimplemented locations, read as '0'. Shaded cells are not used by Timer0.

Note 1: RA7:RA6 and their associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as '0'.

15.4 PWM Mode


In Pulse-Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with a PORTB or PORTC data latch, the appropriate TRIS bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the RC2 output latch to the default low
	level. This is not the PORTC I/O data latch.

Figure 15-3 shows a simplified block diagram of the CCP1 module in PWM mode.

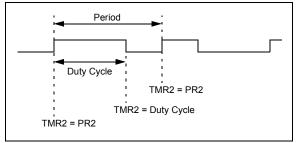

For a step-by-step procedure on how to set up the CCP1 module for PWM operation, see Section 15.4.4 "Setup for PWM Operation".

FIGURE 15-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 15-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/ period).

FIGURE 15-4: PWM OUTPUT

15.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2 (PR4) register. The PWM period can be calculated using the following formula.

EQUATION 15-1:

$$PWM Period = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 Prescale Value)$$

PWM frequency is defined as 1/[PWM period].

When TMR1 (TMR3) is equal to PR2 (PR4), the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

```
Note: The Timer2 postscaler (see Section 13.0
"Timer2 Module") is not used in the
determination of the PWM frequency. The
postscaler could be used to have a servo
update rate at a different frequency than
the PWM output.
```

15.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time.

EQUATION 15-2:

PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 Prescale Value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
ADFM		ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0					
bit 7							bit (
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 7	ADFM: A/D F	Result Format S	Select bit									
	1 = Right just 0 = Left justifi											
bit 6	Unimplemen	Unimplemented: Read as '0'										
bit 5-3	ACQT2:ACQ	T0: A/D Acquis	sition Time Se	elect bits								
	111 = 20 T AD											
	110 = 16 TAD											
	101 = 12 TAD											
	100 = 8 TAD 011 = 6 TAD											
	011 = 6 TAD 010 = 4 TAD											
	001 = 2 TAD											
	$000 = 0 \text{ TAD}^{(1)}$											
bit 2-0	ADCS2:ADC	S0: A/D Conve	ersion Clock S	elect bits								
	111 = FRC (C	lock derived fro	om A/D RC os	cillator) ⁽¹⁾								
	111 = FRC (clock derived from A/D RC oscillator) ⁽¹⁾ 110 = Fosc/64											
	101 = Fosc/16											
	100 = Fosc/4			···· (1)								
	•	011 = FRC (clock derived from A/D RC oscillator) ⁽¹⁾										
	010 = Fosc/3 001 = Fosc/8											
)										

REGISTER 19-3: ADCON2: A/D CONTROL REGISTER 2

Note 1: If the A/D FRC clock source is selected, a delay of one TcY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

$\label{eq:register23-24: BnSIDH: TX/RX BUFFER n STANDARD IDENTIFIER REGISTERS, \\ HIGH BYTE IN RECEIVE MODE [0 \le n \le 5, TXnEN (BSEL0<n>) = 0]^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 SID10:SID3: Standard Identifier bits (if EXIDE (BnSIDL<3>) = 0) Extended Identifier bits EID28:EID21 (if EXIDE = 1).

Note 1: These registers are available in Mode 1 and 2 only.

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID10 | SID9 | SID8 | SID7 | SID6 | SID5 | SID4 | SID3 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **SID10:SID3:** Standard Identifier bits (if EXIDE (BnSIDL<3>) = 0) Extended Identifier bits EID28:EID21 (if EXIDE = 1).

Note 1: These registers are available in Mode 1 and 2 only.

BCF	Bit Clear f	BN	Branch if Negative			
Syntax:	BCF	Syntax:	BN n			
Operands:	$0 \le f \le 255$	Operands:	$-128 \le n \le 127$			
	$\begin{array}{l} 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$	Operation:	if Negative bit is '1' (PC) + 2 + 2n \rightarrow PC			
Operation:	$0 \rightarrow f \le b >$	Status Affected:	None			
Status Affected:	None	Encoding:	1110 0110 nnnn nnnn			
Encoding: Description:	1001bbbaffffffBit 'b' in register 'f' is cleared.If 'a' is '0', the Access Bank is selected.If 'a' is '1', the BSR is used to select theGPR bank (default).If 'a' is '0' and the extended instructionset is enabled, this instruction operatesin Indexed Literal Offset Addressingmode whenever $f \le 95$ (5Fh). SeeSection 25.2.3 "Byte-Oriented andBit-Oriented Instructions in IndexedLiteral Offset Mode" for details.	Description: Words: Cycles:	If the Negative bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. 1 1(2)			
Words:	1	Q Cycle Activity: If Jump:				
Cycles:	1	Q1	Q2 Q3 Q4			
Q Cycle Activity:		Decode	Read literal Process Write to PC 'n' Data Vite to PC			
Q1 Decode	Q2 Q3 Q4 Read Process Write	No operation	NoNoNooperationoperationoperation			
	register 'f' Data register 'f'	If No Jump:				
Evennley		Q1	Q2 Q3 Q4			
Example: Before Instruc FLAG_R	BCF FLAG_REG, 7, 0 tion EG = C7h	Decode	Read literalProcessNo'n'Dataoperation			
After Instruction		Example: Before Instruct PC After Instruction If Negati PC If Negati PC	= address (HERE) on ive = 1; = address (Jump) ive = 0;			

BNC	C	Branch if	Not Carry		BNN	l	Branch if	Not Negat	ive			
Synt	ax:	BNC n			Synta	Syntax: BNN		NN n				
Ope	rands:	-128 ≤ n ≤ 1	27		Oper	ands:	-128 ≤ n ≤ ′	127				
Ope	ration:	if Carry bit i (PC) + 2 + 2			Oper	ation:	0	if Negative bit is '0' (PC) + 2 + 2n \rightarrow PC				
Statu	us Affected:	None			Statu	s Affected:	None					
Enco	oding:	1110	0011 nn	nn nnnn	Enco	ding:	1110	0111 n:	nnn nnnn			
Desc	cription:	If the Carry will branch.	bit is '0', then	the program	Desc	ription:	If the Nega program wi	tive bit is '0', Il branch.	then the			
		added to th have incren instruction,	nplement num e PC. Since the nented to fetch the new addro n. This instruction.	ne PC will h the next ess will be			added to th incremente instruction,	d to fetch the the new add n. This instru	he PC will have next			
Wor	ds:	1			Word	ls:	1					
Cycl	es:	1(2)			Cycle	es:	1(2)					
	Cycle Activity: ump:				Q C If Ju	ycle Activity: mp:						
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC			
	No operation	No operation	No operation	No operation		No operation	No operation	No operation	No operation			
lf N	o Jump:				lf No	o Jump:						
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	No operation		Decode	Read literal 'n'	Process Data	No operation			
<u>Exar</u>	<u>mple:</u>	HERE	BNC Jump		Exan	<u>nple:</u>	HERE	BNN Jum	p			
	Before Instruct PC After Instructi If Carry PC If Carry PC	= ad on = 0; = ad = 1;	dress (HERE dress (Jump dress (HERE)		Before Instruc PC After Instructi If Negat PC If Negat PC	= ad on ive = 0; = ad ive = 1;	dress (HER dress (Jum) dress (HER	p)			

RCA	LL	Relative (Call		RES	ET	Reset			
Synta	ix:	RCALL n			Synt	Syntax: RESET				
Opera	ands:	-1024 ≤ n ≤	-1024 ≤ n ≤ 1023			ands:	None			
Opera	ation:	$(PC) + 2 \rightarrow TOS, (PC) + 2 + 2n \rightarrow PC$		Ope	Operation:		Reset all registers and flags that are affected by a MCLR Reset.			
Statu	s Affected:	None			Statu	is Affected:	All			
Enco	ding:	1101	1nnn nn	nn nnnn	Enco	oding:	0000	0000	1111	1111
Desc	ription:		call with a jur		Desc	cription:	This instrue			
		•	C + 2) is push		Wore	ds:	1			
			stack. Then, add the 2's complement number '2n' to the PC. Since the PC will		Cycl	es:	1			
			ave incremented to fetch the next			ycle Activity:				
		,	the new addr			Q1	Q2	Q	3	Q4
		two-cycle ir		ation is a		Decode	Start	No		No
Word	s:	1					Reset	opera	tion o	peration
Cycle	S:	2			E way					
Q C	cle Activity:				Exar	<u>nple:</u>	RESET			
	Q1	Q2	Q3	Q4		After Instruction Register		/alue		
	Decode	Read literal 'n'	Process	Write to PC		Flags*	= Reset			
		Push PC to	Data							
		stack								
	No	No	No	No						
l	operation	operation	operation	operation						
Exam	iple:	HERE	RCALL Jump)						
I	Before Instru PC =									
	PC = After Instruct	Address (H)	EKE)							
-										

PC = TOS= Address (Jump) Address (HERE + 2)

25.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18 instruction set, PIC18F2682/2685/4682/4685 devices also provide an optional extension to the core CPU functionality. The added features include eight additional instructions that augment indirect and indexed addressing operations and the implementation of Indexed Literal Offset Addressing mode for many of the standard PIC18 instructions.

The additional features are disabled by default. To enable them, users must set the XINST Configuration bit.

The instructions in the extended set can all be classified as literal operations, which either manipulate the File Select Registers or use them for indexed addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

- Dynamic allocation and deallocation of software stack space when entering and leaving subroutines
- Function Pointer invocation
- Software Stack Pointer manipulation
- Manipulation of variables located in a software stack

A summary of the instructions in the extended instruction set is provided in Table 25-3. Detailed descriptions are provided in **Section 25.2.2 "Extended Instruction Set**". The opcode field descriptions in Table 25-1 apply to both the standard and extended PIC18 instruction sets.

Note: The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimizing applications written in C; the user may likely never use these instructions directly in assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler.

25.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed arguments, using one of the File Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of indexed addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. MPASM[™] Assembler will flag an error if it determines that an index or offset value is not bracketed.

When the extended instruction set is enabled, brackets are also used to indicate index arguments in bitoriented and byte-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 25.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands".

Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces ("{}").

Mnemonic, Operands		Description	Cycles	16-E	Status			
		Description	Cycles	MSb			LSb	Affected
ADDFSR	f, k	Add literal to FSR	1	1110	1000	ffkk	kkkk	None
ADDULNK	k	Add literal to FSR2 and return	2	1110	1000	11kk	kkkk	None
CALLW		Call subroutine using WREG	2	0000	0000	0001	0100	None
MOVSF	z _s , f _d	Move z _s (source) to 1st word	2	1110	1011	0 z z z	ZZZZ	None
		f _d (destination) 2nd word		1111	ffff	ffff	ffff	
MOVSS	z _s , z _d	Move z _s (source) to 1st word	2	1110	1011	1zzz	ZZZZ	None
	u u	z _d (destination) 2nd word		1111	XXXX	XZZZ	ZZZZ	
PUSHL	k	Store literal at FSR2, decrement FSR2	1	1110	1010	kkkk	kkkk	None
SUBFSR	f, k	Subtract literal from FSR	1	1110	1001	ffkk	kkkk	None
SUBULNK	k	Subtract literal from FSR2 and	2	1110	1001	11kk	kkkk	None
		return						

TABLE 25-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

27.2 DC Characteristics: Power-Down and Supply Current PIC18F2682/2685/4682/4685 (Industrial) PIC18LF2682/2685/4682/4685 (Industrial) (Continued)

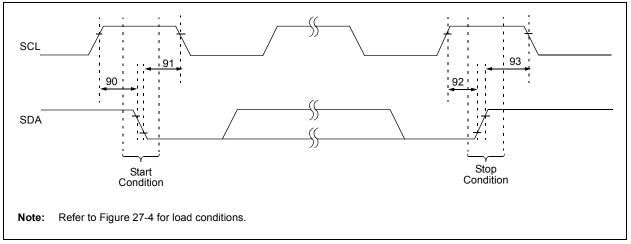
PIC18LF2682/2685/4682/4685 (Industrial) PIC18F2682/2685/4682/4685 (Industrial, Extended)			i rd Ope i ing temp		•	ss otherwise state $A \leq +85^{\circ}C$ for indus			
		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Device	Тур	Max	Units	Conditions				
	Supply Current (IDD) ^(2,3)								
	PIC18LF268X/468X	65	220	μA	-40°C				
		65	220	μA	+25°C	VDD = 2.0V			
		70	220	μA	+85°C				
	PIC18LF268X/468X	120	330	μA	-40°C				
		120	330	μA	+25°C	VDD = 3.0V	Fosc = 1 MHz		
		130	330	μA	+85°C		(PRI_IDLE mode, EC oscillator)		
	All devices	300	600	μA	-40°C				
		240	600	μA	+25°C				
		300	600	μA	+85°C	VDD = 5.0V			
	Extended devices only	320	600	μA	+125°C				
	PIC18LF268X/468X	260	760	μA	-40°C				
		255	760	μA	+25°C	VDD = 2.0V			
		270	760	μA	+85°C				
	PIC18LF268X/468X	420	1.4	μA	-40°C				
		430	1.4	μA	+25°C	VDD = 3.0V	Fosc = 4 MHz (PRI IDLE mode,		
		450	1.4	μA	+85°C		EC oscillator)		
	All devices	0.9	2.2	mA	-40°C		,		
		0.9	2.2	mA	+25°C	VDD = 5.0V			
		0.9	2.2	mA	+85°C	VDD - 5.0V			
	Extended devices only	1	3	mA	+125°C				
	Extended devices only	2.8	7	mA	+125°C	VDD = 4.2V	Fosc = 25 MHz		
		4.3	11	mA	+125°C	VDD = 5.0V	(PRI_IDLE mode, EC oscillator)		
	All devices	6	18	mA	-40°C				
		6.2	18	mA	+25°C	VDD = 4.2 V			
		6.6	18	mA	+85°C		Fosc = 40 MHz		
	All devices	8.1	22	mA	-40°C		 (PRI_IDLE mode, EC oscillator) 		
		9.1	22	mA	+25°C	VDD = 5.0V			
		8.3	22	mA	+85°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

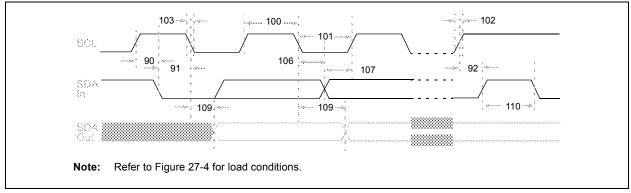
The test conditions for all IDD measurements in active operation mode are:


OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

 \overline{MCLR} = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through RExT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.


FIGURE 27-18: MASTER SSP I²C[™] BUS START/STOP BITS TIMING WAVEFORMS

Param. No.	Symbol	Charac	teristic	Min	Max	Units	Conditions
90	TSU:STA	Start condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)			Repeated Start condition
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the first
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)			clock pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ns	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ns	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

FIGURE 27-19: MASTER SSP I²C[™] BUS DATA TIMING

Enhanced Capture/Compare/PWM (ECCP1) Associated Registers Capture and Compare Modes	188
Capture Mode. See Capture (ECCP1 Module).	170
Outputs and Configuration	176
Pin Configurations for ECCP1	
PWM Mode. See PWM (ECCP1 Module).	
Standard PWM Mode	176
Timer Resources	
Enhanced Universal Synchronous Receiver Transmitter (EU-
SART). See EUSART.	
Equations	
A/D Acquisition Time	254
A/D Minimum Charging Time	254
Calculating the Minimum Required A/D Acquisition T	
· · · ·	
Errata	7
Error Recognition Mode	327
EUSART	
Asynchronous Mode	238
Associated Registers, Receive	
Associated Registers, Transmit	239
Auto-Wake-up on Sync Break Character	
Break Character Sequence	
Receiver	
Receiving a Break Character	243
Setting Up 9-Bit Mode with	
Address Detect	240
Transmitter	238
Baud Rate Generator (BRG)	233
Associated Registers	
Auto-Baud Rate Detect	
Baud Rate Error, Calculating	
Baud Rates, Asynchronous Modes	
High Baud Rate Select (BRGH Bit)	
Operation in Power-Managed Modes	
Sampling	
Synchronous Master Mode	244
Associated Registers, Receive	246
Associated Registers, Transmit	
Reception	246
Transmission	244
Synchronous Slave Mode	247
Associated Registers, Receive	248
Associated Registers, Transmit	247
Reception	248
Transmission	247
Extended Instruction Set	
ADDFSR	408
ADDULNK	408
CALLW	409
MOVSF	
MOVSS	
PUSHL	410
SUBFSR	411
SUBULNK	
External Clock Input	26
-	

F

Fail-Safe Clock Monitor	345, 358
Exiting Operation	
Interrupts in Power-Managed Modes	
POR or Wake-up from Sleep	
Watchdog Timer (WDT)	

Fast Register Stack	66
Firmware Instructions	365
Flash Program Memory	97
Associated Registers	105
Control Registers	98
EECON1	98
EECON2	98
TABLAT	
TABLAT (Table Latch) Register	100
TBLPTR	
TBLPTR (Table Pointer) Register	100
Erase Sequence	102
Erasing	102
Operation During Code-Protect	105
Reading	101
Table Pointer	
Boundaries Based on Operation	100
Table Pointer Boundaries	100
Table Pointer Operations (table)	100
Table Reads and Table Writes	97
Write Sequence	103
Write Verify	105
Writing	103
Protection Against Spurious Writes	105
Unexpected Termination	105
FSCM. See Fail-Safe Clock Monitor.	

G

GOTO	36
н	
Hardware Multiplier11	13
Introduction11	13
Operation11	13
Performance Comparison11	13
High/Low-Voltage Detect	66
Associated Registers27	73
Characteristics	34
Current Consumption27	71
Effects of a Reset	73
Operation27	70
Operation During Sleep27	73
Setup	71
Start-up Time	71
Typical Application27	72
HLVD. See High/Low-Voltage Detect 26	
I	
I/O Ports	31
I ² C Mode (MSSP)	
Acknowledge Sequence Timing 22	22

;	Mode (MSSP)	
	Acknowledge Sequence Timing	222
	Baud Rate Generator	215
	Bus Collision	
	During a Repeated Start Condition	226
	During a Start Condition	224
	During a Stop Condition	227
	Clock Arbitration	216
	Clock Stretching	208
	10-Bit Slave Receive Mode (SEN = 1)	208
	10-Bit Slave Transmit Mode	208
	7-Bit Slave Receive Mode (SEN = 1)	208
	7-Bit Slave Transmit Mode	208
	Clock Synchronization and the CKP Bit	209
	Effect of a Reset	223
	General Call Address Support	212
	I ² C Clock Rate w/BRG	215