

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	80KB (40K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2682-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

					1010120				- /	
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
TXB1CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ	_	TXPRI1	TXPRI0	0000 0-00	56, 284
TXB2D7	TXB2D77	TXB2D76	TXB2D75	TXB2D74	TXB2D73	TXB2D72	TXB2D71	TXB2D70	XXXX XXXX	56, 286
TXB2D6	TXB2D67	TXB2D66	TXB2D65	TXB2D64	TXB2D63	TXB2D62	TXB2D61	TXB2D60	XXXX XXXX	57, 286
TXB2D5	TXB2D57	TXB2D56	TXB2D55	TXB2D54	TXB2D53	TXB2D52	TXB2D51	TXB2D50	XXXX XXXX	57, 286
TXB2D4	TXB2D47	TXB2D46	TXB2D45	TXB2D44	TXB2D43	TXB2D42	TXB2D41	TXB2D40	XXXX XXXX	57, 286
TXB2D3	TXB2D37	TXB2D36	TXB2D35	TXB2D34	TXB2D33	TXB2D32	TXB2D31	TXB2D30	XXXX XXXX	57, 286
TXB2D2	TXB2D27	TXB2D26	TXB2D25	TXB2D24	TXB2D23	TXB2D22	TXB2D21	TXB2D20	XXXX XXXX	57, 286
TXB2D1	TXB2D17	TXB2D16	TXB2D15	TXB2D14	TXB2D13	TXB2D12	TXB2D11	TXB2D10	XXXX XXXX	57, 286
TXB2D0	TXB2D07	TXB2D06	TXB2D05	TXB2D04	TXB2D03	TXB2D02	TXB2D01	TXB2D00	XXXX XXXX	57, 286
TXB2DLC	—	TXRTR	—	—	DLC3	DLC2	DLC1	DLC0	-x xxxx	57, 287
TXB2EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	57, 286
TXB2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	57, 285
TXB2SIDL	SID2	SID1	SID0	—	EXIDE	—	EID17	EID16	XXXX X-XX	57, 285
TXB2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxx- x-xx	57, 285
TXB2CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ	—	TXPRI1	TXPRI0	0000 0-00	57, 284
RXM1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	57, 307
RXM1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	57, 307
RXM1SIDL	SID2	SID1	SID0	_	EXIDEN	—	EID17	EID16	xxx- x-xx	57, 307
RXM1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	57, 306
RXM0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	57, 307
RXM0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	57, 307
RXM0SIDL	SID2	SID1	SID0	—	EXIDEN	—	EID17	EID16	xxx- x-xx	57, 307
RXM0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	57, 306
RXF5EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	57, 306
RXF5EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	57, 306
RXF5SIDL	SID2	SID1	SID0	—	EXIDEN	—	EID17	EID16	xxx- x-xx	57, 305
RXF5SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	57, 306
RXF4EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	57, 306
RXF4EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	57, 306
RXF4SIDL	SID2	SID1	SID0	—	EXIDEN	—	EID17	EID16	xxx- x-xx	57, 305
RXF4SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	57, 306
RXF3EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	57, 306
RXF3EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	57, 306
RXF3SIDL	SID2	SID1	SID0	—	EXIDEN	—	EID17	EID16	xxx- x-xx	58, 305
RXF3SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	58, 306
RXF2EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	58, 306
RXF2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	58, 306
RXF2SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	58, 305
RXF2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	58, 306
RXF1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	58, 306
RXF1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	58, 306

TABLE 5-2: REGISTER FILE SUMMARY (PIC18F2682/2685/4682/4685) (CONTINUED)

 $\label{eq:logarder} \mbox{Legend: } x \mbox{=} unknown, u \mbox{$

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

3: These registers and/or bits are not implemented on PIC18F2682/2685 devices and are read as '0'. Reset values are shown for PIC18F4682/4685 devices; individual unimplemented bits should be interpreted as '---'.

4: The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN[™] technology is set up in Mode 1 or Mode 2.

9: These registers and/or bits are available on PIC18F4682/4685 devices only.

PIC18F2682/2685/4682/4685

Example 8-3 shows the sequence to do a 16 x 16 unsigned multiplication. Equation 8-1 shows the algorithm that is used. The 32-bit result is stored in four registers (RES3:RES0).

EQUATION 8-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0	=	ARG1H:ARG1L • ARG2H:ARG2L
	=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
		$(ARG1H \bullet ARG2L \bullet 2^8) +$
		$(ARG1L \bullet ARG2H \bullet 2^8) +$
		(ARG1L • ARG2L)

EXAMPLE 8-3: 16 x 16 UNSIGNED

MULTIPLY ROUTINE

	MOVF	ARG1L, W	v.	
	MULWF	ARG2L	;	ARG1L * ARG2L->
			;	PRODH:PRODL
	MOVFF	PRODH, F	RES1 ;	
	MOVFF	PRODL, F	RESO ;	
;				
	MOVF	ARG1H, W	v	
	MULWF	ARG2H	;	ARG1H * ARG2H->
			;	PRODH:PRODL
	MOVFF	PRODH, F	RES3 ;	
	MOVFF	PRODL, F	RES2 ;	
;				
	MOVF	ARG1L, W	v	
	MULWF	ARG2H	;	ARG1L * ARG2H->
			;	PRODH:PRODL
	MOVF	PRODL, W	v ;	
	ADDWF	RES1, F	;	Add cross
	MOVF	PRODH, W	v ;	products
	ADDWFC	RES2, F	;	
	CLRF	WREG	;	
	ADDWFC	RES3, F	;	
;				
	MOVF	ARG1H, W	v ;	
	MULWF	ARG2L	;	ARG1H * ARG2L->
			;	PRODH:PRODL
	MOVF	PRODL, W	v ;	
	ADDWF	RES1, F	;	Add cross
	MOVF	PRODH, W	v ;	products
	ADDWFC	RES2, F	;	
	CLRF	WREG	;	
	ADDWFC	RES3, F	;	

Example 8-4 shows the sequence to do a 16 x 16 signed multiply. Equation 8-2 shows the algorithm used. The 32-bit result is stored in four registers (RES3:RES0). To account for the signed bits of the arguments, the MSb for each argument pair is tested and the appropriate subtractions are done.

EQUATION 8-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:RES0=ARG1H:ARG1L • ARG2H:ARG2L	
$= (ARG1H \bullet ARG2H \bullet 2^{16}) +$	
$(ARG1H \bullet ARG2L \bullet 2^8) +$	
$(ARG1L \bullet ARG2H \bullet 2^8) +$	
$(ARG1L \bullet ARG2L) +$	
$(-1 \bullet ARG2H < 7 > \bullet ARG1H: ARG1L \bullet 2^{16}) +$	
$(-1 \bullet ARG1H < 7 > \bullet ARG2H: ARG2L \bullet 2^{16})$	

EXAMPLE 8-4: 16 x 16 SIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, W		
	MULWF	ARG2L	;	ARG1L * ARG2L ->
				PRODH · PRODI
	MOVEE	PRODH RESI		
	MOVEE	DDODI DECO	<i>.</i>	
	MOVEE	PRODL, RESU	;	
;				
	MOVF	ARG1H, W		
	MULWF	ARG2H	;	ARG1H * ARG2H ->
			;	PRODH:PRODL
	MOVFF	PRODH, RES3	;	
	MOVFF	PRODL, RES2	;	
;				
,	MOVE	ARG11.W		
	MUTWE	7DC2U		ADC1T * ADC2U ->
	MOLWE	ARGZI	,	ARGIL ~ ARGZH ->
			;	PRODH: PRODL
	MOVF	PRODL, W	;	
	ADDWF	RES1, F	;	Add cross
	MOVF	PRODH, W	;	products
	ADDWFC	RES2, F	;	
	CLRF	WREG	;	
	ADDWFC	RES3, F	;	
		,		
'	MOVE	ADC1H W		
	MUTWE	ARGIN, W	<i>.</i>	
	MOLWE	ARGZL		ARGIN ARGZL ->
	MOTE	DDODI M	,	PRODE
	MOVE	PRODL, W	;	
	ADDWF'	RESI, F	;	Add cross
	MOVE.	PRODH, W	;	products
	ADDWFC	RES2, F	;	
	CLRF	WREG	;	
	ADDWFC	RES3, F	;	
;				
	BTFSS	ARG2H, 7	;	ARG2H:ARG2L neg?
	BRA	SIGN ARG1	;	no, check ARG1
	MOVF	ARG1L, W	;	
	SUBWF	RES2	;	
	MOVE	ARG1H. W		
	SUBWEB	RES3	,	
	SODWID	1(100)		
,	N NDC1			
SIG	N_ARGI			
	BTFSS	ARGIH, 7	;	ARGIH:ARGIL neg?
	BRA	CONT_CODE	;	no, done
	MOVF	ARG2L, W	;	
	SUBWF	RES2	;	
	MOVF	ARG2H, W	;	
	SUBWFB	RES3		
;				
CON	T CODE			

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	54
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	LATA Data	Output Reg	gister				54
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA Da	ata Direction	n Register				54
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	52
CMCON ⁽²⁾	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	53
CVRCON ⁽²⁾	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	53

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTA.

Note 1: RA7:RA6 and their associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as '0'.

2: These registers are unimplemented on PIC18F2682/2685 devices.

10.4 PORTD, TRISD and LATD Registers

Note:	PORTD is only available on PIC18F4682/
	4685 devices.

PORTD is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Three of the PORTD pins are multiplexed with outputs P1A, P1B, P1C and P1D of the Enhanced CCP1 (ECCP1) module. The operation of these additional PWM output pins is covered in greater detail in Section 16.0 "Enhanced Capture/Compare/PWM (ECCP1) Module".

Note: On a Power-on Reset, these pins are configured as digital inputs.

PORTD can also be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit, PSPMODE (TRISE<4>). In this mode, the input buffers are TTL. See **Section 10.6 "Parallel Slave Port"** for additional information on the Parallel Slave Port (PSP).

Note:	When the Enhanced PWM mode is used		
	with either dual or quad outputs, the PSP		
	functions of PORTD are automatically		
	disabled.		

EXAMPLE 10-4: INITIALIZING PORTD

CLRF POR	TD ; Initialize PORTD by ; clearing output
CLRF LAT	; data latches D ; Alternate method ; to clear output
MOVLW OCF	; data latches h ; Value used to ; initialize data
MOVWF TRI	; direction SD ; Set RD<3:0> as inputs ; RD<5:4> as outputs ; RD<7:6> as inputs
1	

12.1 **Timer1** Operation

Timer1 can operate in one of these modes:

- Timer
- Synchronous Counter
- Asynchronous Counter

The operating mode is determined by the clock select bit, TMR3CS (T3CON<1>). When TMR3CS is cleared (= 0), Timer3 increments on every internal instruction cycle (Fosc/4). When the bit is set, Timer3 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.

When Timer1 is enabled, the RC1/T1OSI and RC0/ T1OSO/T13CKI pins become inputs. This means the values of TRISC<1:0> are ignored and the pins are read as '0'.

FIGURE 12-2: TIMER1 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)

TIMER1 BLOCK DIAGRAM FIGURE 12-1:

16.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the ECCPR1L register and to the ECCP1CON<5:4> bits. Up to 10-bit resolution is available. The ECCPR1L contains the eight MSbs and the ECCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by ECCPR1L:ECCP1CON<5:4>. The PWM duty cycle is calculated by the following equation.

EQUATION 16-2:

PWM Duty Cycle	=	(ECCPR1L:ECCP1CON<5:4> •
		TOSC • (TMR2 Prescale Value)

ECCPR1L and ECCP1CON<5:4> can be written to at any time, but the duty cycle value is not copied into ECCPR1H until a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, ECCPR1H is a read-only register.

The ECCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation. When the ECCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or two bits of the TMR2 prescaler, the ECCP1 pin is cleared. The maximum PWM resolution (bits) for a given PWM frequency is given by the following equation.

EQUATION 16-3:

PWM Resolution (max) =
$$\frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the ECCP1 pin will not be cleared.

16.4.3 PWM OUTPUT CONFIGURATIONS

The EPWM1M1:EPWM1M0 bits in the ECCP1CON register allow one of four configurations:

- Single Output
- · Half-Bridge Output
- Full-Bridge Output, Forward mode
- Full-Bridge Output, Reverse mode

The Single Output mode is the standard PWM mode discussed in **Section 16.4 "Enhanced PWM Mode"**. The Half-Bridge and Full-Bridge Output modes are covered in detail in the sections that follow.

The general relationship of the outputs in all configurations is summarized in Figure 16-2.

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h
Maximum Resolution (bits)	10	10	10	8	7	6.58

TABLE 16-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

17.3.6 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit (SSPCON1<4>).

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep.

17.3.7 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON1<3:0> = 04h). The pin must not be driven low for the \overline{SS} pin to function as an input. The data latch

must be high. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

- Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
 - If the SPI is used in Slave mode with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 17-4: SLAVE SYNCHRONIZATION WAVEFORM

PIC18F2682/2685/4682/4685

18.1.3 AUTO-BAUD RATE DETECT

The Enhanced USART module supports the automatic detection and calibration of baud rate. This feature is active only in Asynchronous mode and while the WUE bit is clear.

The automatic baud rate measurement sequence (Figure 18-1) begins whenever a Start bit is received and the ABDEN bit is set. The calculation is self-averaging.

In the Auto-Baud Rate Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. In ABD mode, the internal Baud Rate Generator is used as a counter to time the bit period of the incoming serial byte stream.

Once the ABDEN bit is set, the state machine will clear the BRG and look for a Start bit. The Auto-Baud Rate Detection must receive a byte with the value 55h (ASCII "U", which is also the LIN bus Sync character) in order to calculate the proper bit rate. The measurement is taken over both a low and high bit time in order to minimize any effects caused by asymmetry of the incoming signal. After a Start bit, the SPBRG begins counting up, using the preselected clock source on the first rising edge of RX. After eight bits on the RX pin or the fifth rising edge, an accumulated value totalling the proper BRG period is left in the SPBRGH:SPBRG register pair. Once the 5th edge is seen (this should correspond to the Stop bit), the ABDEN bit is automatically cleared.

If a rollover of the BRG occurs (an overflow from FFFFh to 0000h), the event is trapped by the ABDOVF status bit (BAUDCON<7>). It is set in hardware by BRG rollovers and can be set or cleared by the user in software. ABD mode remains active after rollover events and the ABDEN bit remains set (Figure 18-2).

While calibrating the baud rate period, the BRG registers are clocked at 1/8th the preconfigured clock rate. Note that the BRG clock will be configured by the BRG16 and BRGH bits. Independent of the BRG16 bit setting, both the SPBRG and SPBRGH will be used as a 16-bit counter. This allows the user to verify that no carry occurred for 8-bit modes by checking for 00h in the SPBRGH register. Refer to Table 18-4 for counter clock rates to the BRG.

While the ABD sequence takes place, the EUSART state machine is held in Idle. The RCIF interrupt is set once the fifth rising edge on RX is detected. The value in the RCREG needs to be read to clear the RCIF interrupt. The contents of RCREG should be discarded.

Note 1:	If the WUE bit is set with the ABDEN bit,							
	Auto-Baud Rate Detection will occur on							
	the byte following the Break character.							

2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible due to bit error rates. Overall system timing and communication baud rates must be taken into consideration when using the Auto-Baud Rate Detection feature.

TABLE 18-4:BRG COUNTERCLOCK RATES

BRG16	BRGH	BRG Counter Clock
0	0	Fosc/512
0	1	Fosc/128
1	0	Fosc/128
1	1	Fosc/32

Note: During the ABD sequence, SPBRG and SPBRGH are both used as a 16-bit counter, independent of the BRG16 setting.

18.1.3.1 ABD and EUSART Transmission

Since the BRG clock is reversed during ABD acquisition, the EUSART transmitter cannot be used during ABD. This means that whenever the ABDEN bit is set, TXREG cannot be written to. Users should also ensure that ABDEN does not become set during a transmit sequence. Failing to do this may result in unpredictable EUSART operation.

19.4 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part, by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ACQT2:ACQT0 and ADCS2:ADCS0 bits in ADCON2 should be updated in accordance with the clock source to be used in that mode. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in the Sleep mode requires the A/D FRC clock to be selected. If the ACQT2:ACQT0 bits are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

19.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISB and TRISE registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS3:CHS0 bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.
 - 3: The PBADEN bit in Configuration Register 3H configures PORTB pins to reset as analog or digital pins by controlling how the PCFG0 bits in ADCON1 are reset.

20.2 Comparator Operation

A single comparator is shown in Figure 20-2, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 20-2 represent the uncertainty, due to input offsets and response time.

20.3 Comparator Reference

Depending on the comparator operating mode, either an external or internal voltage reference may be used. The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is adjusted accordingly (Figure 20-2).

FIGURE 20-2: SINGLE COMPARATOR

20.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between Vss and VDD and can be applied to either pin of the comparator(s).

20.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference from the comparator voltage reference module. This module is described in more detail in **Section 21.0 "Comparator Voltage Reference Module"**.

The internal reference is only available in the mode where four inputs are multiplexed to two comparators (CM2:CM0 = 110). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

20.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (see Section 27.0 "Electrical Characteristics").

20.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read-only. The comparator outputs may also be directly output to the RE1 and RE2 I/O pins. When enabled, multiplexors in the output path of the RE1 and RE2 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 20-3 shows the comparator output block diagram.

The TRISE bits will still function as an output enable/ disable for the RE1 and RE2 pins while in this mode.

The polarity of the comparator outputs can be changed using the C2INV and C1INV bits (CMCON<5:4>).

- Note 1: When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - 2: Analog levels on any pin defined as a digital input may cause the input buffer to consume more current than is specified.

REGISTER 23-39: RXFnEIDH: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTERS, HIGH BYTE $[0 \le n \le 15]^{(1)}$

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 7							
Legend:							
R = Readable	Readable bit W = Writable bit U = Unimplemented bit, read as '0'			as '0'			
-n = Value at P	n = Value at POR '1' = Bit is set '0' = Bit is cleared x = F		x = Bit is unki	nown			

bit 7-0 EID15:EID8: Extended Identifier Filter bits

Note 1: Registers RXF6EIDH:RXF15EIDH are available in Mode 1 and 2 only.

REGISTER 23-40: RXFnEIDL: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTERS, LOW BYTE [0 \leq n \leq 15]^{(1)}

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	adable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 EID7:EID0: Extended Identifier Filter bits

Note 1: Registers RXF6EIDL:RXF15EIDL are available in Mode 1 and 2 only.

REGISTER 23-41: RXMnSIDH: RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK REGISTERS, HIGH BYTE [0 \leq n \leq 1]

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3		
bit 7 bit 0									
Legend:									
R = Readable b	R = Readable bit W = Writable bit			U = Unimpler	nented bit, read	as '0'			
-n = Value at P	n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						

bit 7-0 SID10:SID3: Standard Identifier Mask bits or Extended Identifier Mask bits EID28:EID21

REGISTER 23-42: RXMnSIDL: RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK REGISTERS, LOW BYTE [0 \leq n \leq 1]

R/W-x	R/W-x	R/W-x	U-0	R/W-0	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	EXIDEN ⁽¹⁾	—	EID17	EID16
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5	SID2:SID0: Standard Identifier Mask bits or Extended Identifier Mask bits EID20:EID18
h:+ 1	Unimplemented, Deed es (o)

	Ommplemented. Acad as 0
bit 3	Mode 0:
	Unimplemented: Read as '0'
	<u>Mode 1, 2</u> :
	EXIDEN: Extended Identifier Filter Enable Mask bit ⁽¹⁾
	 1 = Messages selected by the EXIDEN bit in RXFnSIDL will be accepted 0 = Both standard and extended identifier messages will be accepted
bit 2	Unimplemented: Read as '0'
bit 1-0	EID17:EID16: Extended Identifier Mask bits

Note 1: This bit is available in Mode 1 and 2 only.

REGISTER 23-43: RXMnEIDH: RECEIVE ACCEPTANCE MASK n EXTENDED IDENTIFIER MASK REGISTERS, HIGH BYTE [0 \leq n \leq 1]

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	
bit 7 bit 0								

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 EID15:EID8: Extended Identifier Mask bits

REGISTER 23-44: RXMnEIDL: RECEIVE ACCEPTANCE MASK n EXTENDED IDENTIFIER MASK REGISTERS, LOW BYTE [0 \leq n \leq 1]

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID7:EID0: Extended Identifier Mask bits

23.2.5 CAN MODULE I/O CONTROL REGISTER

This register controls the operation of the CAN module's I/O pins in relation to the rest of the microcontroller.

REGISTER 23-55: CIOCON: CAN I/O CONTROL REGISTER

U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	—	ENDRHI ⁽¹⁾	CANCAP	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5	ENDRHI: Enable Drive High bit ⁽¹⁾
	1 = CANTX pin will drive VDD when recessive0 = CANTX pin will be tri-state when recessive
bit 4	CANCAP: CAN Message Receive Capture Enable bit
	 1 = Enable CAN capture, CAN message receive signal replaces input on RC2/CCP1 0 = Disable CAN capture, RC2/CCP1 input to CCP1 module
bit 3-0	Unimplemented: Read as '0'

Note 1: Always set this bit when using differential bus to avoid signal crosstalk in CANTX from other nearby pins.

REGISTER 23-59: TXBIE: TRANSMIT BUFFERS INTERRUPT ENABLE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0
—	—	—	TXB2IE ⁽²⁾	TXB1IE ⁽²⁾	TXB0IE ⁽²⁾	—	—
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5	Unimplemented: Read as '0'
bit 4-2	TXB2IE:TXB0IE: Transmit Buffer 2-0 Interrupt Enable bit ⁽²⁾
	1 = Transmit buffer interrupt is enabled
	0 = Transmit buffer interrupt is disabled
bit 1-0	Unimplemented: Read as '0'

Note 1: This register is available in Mode 1 and 2 only.

2: TXBnIE in PIE3 register must be set to get an interrupt.

REGISTER 23-60: BIE0: BUFFER INTERRUPT ENABLE REGISTER 0⁽¹⁾

R/W-0	R/W-0						
B5IE ⁽²⁾	B4IE ⁽²⁾	B3IE ⁽²⁾	B2IE ⁽²⁾	B1IE ⁽²⁾	B0IE ⁽²⁾	RXB1IE ⁽²⁾	RXB0IE ⁽²⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2 B5IE:B0IE: Programmable Transmit/Receive Buffer 5-0 Interrupt Enable bit⁽²⁾ 1 = Interrupt is enabled 0 = Interrupt is disabled bit 1-0 RXB1IE:RXB0IE: Dedicated Receive Buffer 1-0 Interrupt Enable bit⁽²⁾ 1 = Interrupt is enabled 0 = Interrupt is disabled

Note 1: This register is available in Mode 1 and 2 only.

2: Either TXBnIE or RXBnIE in PIE3 register must be set to get an interrupt.

REGISTER 24-10: CONFIG7L: CONFIGURATION REGISTER 7 LOW (BYTE ADDRESS 30000Ch)

U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1
_	_	EBTR5 ⁽¹⁾	EBTR4	EBTR3	EBTR2	EBTR1	EBTR0
bit 7		•		•			bit 0
Legend:							
R = Readable	bit	C = Clearable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value when device is unprogrammed u = Unchanged from programmed state							
		-		-	-		
bit 7-6	Unimplemen	ted: Read as ')'				
bit 5	EBTR5: Table	e Read Protecti	on bit ⁽¹⁾				
	1 = Block 5 (014000-017FFFh) not protected from table reads executed in other blocks						
	0 = Block 5 (0	14000-017FFF	h) protected	from table read	Is executed in o	ther blocks	
bit 4	EBTR4: Table	e Read Protecti	on bit				
	1 = Block 4 (0	10000-013FFF	h) not protec	ted from table i	reads executed	in other blocks	
	0 = Block 4 (0)	10000-013FFF	h) protected	from table read	is executed in o	ther blocks	
bit 3	EBTR3: Table	e Read Protecti	on bit				
	1 = Block 3(0)	0C000-00FFF	Fh) not protec	ted from table	reads executed	in other blocks	
h # 0			n) protected	ITOITI LADIE TEA	us executed in t	DITIEL DIOCKS	
DIL 2				to d from to blo		in other blocks	
	$\perp = Block 2 (0)$ 0 = Block 2 (0)	08000-00BFF1	-n) not protected	from table read	reads executed in c	ther blocks	
hit 1	FBTR1. Table	Read Protecti	on hit				
	1 = Block 1 (0	04000-007FFF	h) not protec	ted from table i	reads executed	in other blocks	
	0 = Block 1 (0)	04000-007FFF	h) protected	from table read	Is executed in o	ther blocks	
bit 0	EBTR0: Table	e Read Protecti	on bit				
	1 = Block 0 (0	00800-003FFF	h) not protec	ted from table i	reads executed	in other blocks	
	0 = Block 0 (0	00800-003FFF	h) protected	from table read	Is executed in o	ther blocks	

Note 1: Unimplemented in PIC18F2682/4682 devices; maintain this bit set.

REGISTER 24-11: CONFIG7H: CONFIGURATION REGISTER 7 HIGH (BYTE ADDRESS 30000Dh)

U-0	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
—	EBTRB	—	—	—	—	—	—
bit 7							bit 0

Legend:					
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'			
-n = Value when device is	unprogrammed	u = Unchanged from programmed state			

bit 7	Unimplemented: Read as '0'
bit 6	EBTRB: Boot Block Table Read Protection bit
	 1 = Boot Block (000000-0007FFh) not protected from table reads executed in other blocks 0 = Boot Block (000000-0007FFh) protected from table reads executed in other blocks
bit 5-0	Unimplemented: Read as '0'

BRA MYFUNC

BC MYFUNC

FIGURE 25-1: **GENERAL FORMAT FOR INSTRUCTIONS** Byte-oriented file register operations **Example Instruction** 15 10 9 8 7 0 OPCODE d f (FILE #) ADDWF MYREG, W, B а d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address Byte to Byte move operations (2-word) 15 12 11 0 OPCODE f (Source FILE #) MOVFF MYREG1, MYREG2 15 12 11 0 f (Destination FILE #) 1111 f = 12-bit file register address Bit-oriented file register operations 987 15 12 11 0 f (FILE #) OPCODE b (BIT #) а BSF MYREG, bit, B b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address Literal operations 15 8 7 0 OPCODE k (literal) MOVLW 7Fh k = 8-bit immediate value **Control** operations CALL, GOTO and Branch operations 15 8 7 0 OPCODE n<7:0> (literal) GOTO Label 12 11 15 0 1111 n<19:8> (literal) n = 20-bit immediate value 15 8 7 0 CALL MYFUNC OPCODE S n<7:0> (literal) 15 12 11 0 n<19:8> (literal) 1111 S = Fast bit 15 11 10 0

n<10:0> (literal)

n<7:0> (literal)

0

8 7

OPCODE

OPCODE

15

PIC18F2682/2685/4682/4685

TBL	RD	Table Read						
Synta	ax:	TBLRD (*; *+; *-; +*)						
Oper	ands:	None						
Operation: if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLAT, TBLPTR - No Change; if TBLRD *+, (Prog Mem (TBLPTR)) \rightarrow TABLAT, (TBLPTR) + 1 \rightarrow TBLPTR; if TBLRD *-, (Prog Mem (TBLPTR)) \rightarrow TABLAT, (TBLPTR) - 1 \rightarrow TBLPTR; if TBLRD +*, (TBLPTR) + 1 \rightarrow TBLPTR, (Prog Mem (TBLPTR)) \rightarrow TABLAT							т, т, т, т	
Statu	s Affected:	None						
Enco	oding:	0000	0	000	00	00	10nn nn=0 * =1 *+ =2 *- =3 +*	
Description: This instruction is used to of Program Memory (P.M program memory, a point Pointer (TBLPTR), is use					d to re P.M.). pinter, used.	ad th To ad calle	e contents dress the d Table	
		The TBLPTF each byte in has a 2-Mby	R (a the te a	21-bit progra addres	: point am me s rang	er) po emory je.	oints to /. TBLPTR	
		TBLPTR[0] = 0: Least Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte of						
		The TBLRD instruction can modify the value of TBLPTR as follows:						
		no change						
		post-increment						
		 post-decrement pre-increment 						
Words:		1						
Cycles:		2						
	vcle Activity	-						
20	Q1	Q2		O	3		Q4	
	Decode	No		No)		No	
		operation		opera	ition	op	eration	

No operation (Write

TÀBLAT)

TBLRD Table Read (Continued)

Example 1:	TBLRD	*+	;	
Before Instruction	on			
TABLAT			=	55h
TBLPTR	0040504		=	00A356h
MEMORY(00A356N)		=	34N
After Instruction				
			=	34h
IDLPIK			-	00A35711
Example 2:	TBLRD	+*	;	
Before Instruction	on			
TABLAT			=	0AAh
TBLPTR			=	01A357h
MEMORY(01A357h)		=	12h
MEMORY(01A358h)		=	34n
After Instruction				
TABLAT			=	34h
IBLPIR			=	01A358h

No

operation

No operation

(Read Program Memory) No

operation

27.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, Iık (Vı < 0 or Vı > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports	200 mA

Note 1: Power dissipation is calculated as follows:

- $\mathsf{Pdis} = \mathsf{VDD} \times \{\mathsf{IDD} \sum \mathsf{IOH}\} + \sum \{(\mathsf{VDD} \mathsf{VOH}) \times \mathsf{IOH}\} + \sum (\mathsf{VOL} \times \mathsf{IOL})$
- **2:** Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP/RE3 pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

27.1 DC Characteristics:

Supply Voltage PIC18F2682/2685/4682/4685 (Industrial) PIC18LF2682/2685/4682/4685 (Industrial)

PIC18LF2682/2685/4682/4685 (Industrial)			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
PIC18F2682/2685/4682/4685 (Industrial, Extended)			$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
	Vdd	Supply Voltage						
D001		PIC18LF268X/468X	2.0	_	5.5	V		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—		V		
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	—	0.7	V	See section on Power-on Reset for details	
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms	See section on Power-on Reset for details	
	VBOR	Brown-out Reset Voltage						
D005 PIC18LF268X/468X								
		BORV1:BORV0 = 11	2.00	2.05	2.16	V		
		BORV1:BORV0 = 10	2.65	2.79	2.93	V		
D005 All Devices								
		BORV1:BORV0 = 01	4.11	4.33	4.55	V		
		BORV1:BORV0 = 00	4.36	4.59	4.82	V		

Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.