

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	96KB (48K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2685-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Request (Flag) registers (PIR1, PIR2).

- **Note 1:** Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global interrupt enable bit, GIE (INTCON<7>).
 - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt.

REGISTER 9-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	PSPIF: Paral	lel Slave Port R	ead/Write In	terrupt Flag bit ⁽	1)		
	1 = A read o 0 = No read	r a write operati or write has occ	on has taker curred	n place (must be	e cleared in soft	ware)	
bit 6	ADIF: A/D Co	onverter Interrup	ot Flag bit				
	1 = An A/D c 0 = The A/D	conversion comp conversion is n	oleted (must ot complete	be cleared in s	oftware)		
bit 5	RCIF: EUSA	RT Receive Inte	rrupt Flag bi	t			
	1 = The EUS 0 = The EUS	SART receive bu	Iffer, RCREG	6, is full (cleared	I when RCREG	is read)	
bit 4	TXIF: EUSAF	RT Transmit Inte	errupt Flag bi	t			
	1 = The EUS 0 = The EUS	SART transmit b	uffer, TXRE0	G, is empty (clea	ared when TXR	EG is written)	
bit 3	SSPIF: Maste	er Synchronous	Serial Port I	nterrupt Flag bi	t		
	1 = The tran 0 = Waiting t	smission/recept to transmit/recei	ion is comple ve	ete (must be cle	ared in softwar	e)	
bit 2	CCP1IF: CCI	P1 Interrupt Flag	g bit				
	Capture mod	<u>e:</u>					
	1 = A TMR1 0 = No TMR	register capture 1 register captu	e occurred (m re occurred	nust be cleared	in software)		
	Compare mo	<u>de:</u>					
	1 = A TMR1 0 = No TMR	register compai 1 register compa	re match occ are match oc	urred (must be curred	cleared in softw	vare)	
	<u>PWM mode:</u> Unused in thi	s mode.					
bit 1	TMR2IF: TM	R2 to PR2 Matc	h Interrupt F	lag bit			
	1 = TMR2 to	PR2 match occ	curred (must	be cleared in s	oftware)		
	0 = No TMR	2 to PR2 match	occurred				
bit 0	TMR1IF: TM	R1 Overflow Inte	errupt Flag b	it			
	1 = TMR1 re	gister overflowe	ed (must be o	cleared in softw	are)		
	0 = 1 M R 1 re	gister ald not ov	/eniow				

Note 1: This bit is reserved on PIC18F2682/2685 devices; always maintain this bit clear.

9.4 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Priority registers (IPR1, IPR2). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

REGISTER 9-10: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP					
bit 7							bit (
Legend:	a hit	VV - VV/ritabla	hit	II – Unimplo	monted hit rea	d oo 'O'						
		vv = vviitable		0 = 0	mented bit, rea							
-n = value at	PUR	I = BILIS SE	L		areo	x = Bit is unki	IOWN					
bit 7	PSPIP: Para	allel Slave Port I	Read/Write In	terrupt Priority	bit ⁽¹⁾							
	1 = High pri	iority		. ,								
	0 = Low prie	ority										
bit 6	ADIP: A/D C	Converter Interru	upt Priority bit									
	1 = High pri	iority										
	0 = Low prie	ority										
bit 5	RCIP: EUSA	ART Receive Int	errupt Priority	/ bit								
	1 = High pri	1 = High priority										
L:1 4		ority										
DIT 4	IXIP: EUSA		terrupt Priority	/ Dit								
	1 = High pri	iority										
hit 2		uniy tar Synabranau	o Coriol Dort I	ntarrunt Driarit	/ hit							
DILS	1 - High pri	iority	s Senai Port i	niemupi Phoni	y Dit							
	0 = Low prie	oritv										
bit 2	CCP1IP: CC	CP1 Interrupt Pr	iority bit									
	1 = High pri	iority	· · · · ·									
	0 = Low prie	ority										
bit 1	TMR2IP: TN	/IR2 to PR2 Mat	ch Interrupt P	riority bit								
	1 = High pri	iority										
	0 = Low prie	ority										
bit 0	TMR1IP: TN	/IR1 Overflow In	terrupt Priorit	y bit								
	1 = High pri	iority										
	0 = Low prie	ority										

10.3 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATC) is also memory mapped. Read-modify-write operations on the LATC register read and write the latched output value for PORTC.

PORTC is multiplexed with several peripheral functions (Table 10-5). The pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

Note: On a Power-on Reset, these pins are configured as digital inputs.

The contents of the TRISC register are affected by peripheral overrides. Reading TRISC always returns the current contents, even though a peripheral device may be overriding one or more of the pins.

EXAMPLE 10-3: INITIALIZING PORTC

CLRF	PORTC	; Initialize PORTC by ; clearing output
CIDE	тало	; data latches
CLRF	LAIC	; to clear output
MOUTH		; data latches
MOVLW	UCFN	; value used to ; initialize data
		; direction
MOVWF	TRISC	; Set RC<3:0> as inputs ; RC<5:4> as outputs
		; RC<7:6> as inputs

17.3.8 OPERATION IN POWER-MANAGED MODES

In SPI Master mode, module clocks may be operating at a different speed than when in full power mode. In the case of Sleep mode, all clocks are halted.

In most power-managed modes, a clock is provided to the peripherals. That clock should be from the primary clock source, the secondary clock (Timer1 oscillator at 32.768 kHz) or the INTOSC source. See **Section 2.7 "Clock Sources and Oscillator Switching"** for additional information.

In most cases, the speed that the master clocks SPI data is not important; however, this should be evaluated for each system.

If MSSP interrupts are enabled, they can wake the controller from Sleep mode, or one of the Idle modes, when the master completes sending data. If an exit from Sleep or Idle mode is not desired, MSSP interrupts should be disabled.

If the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the devices wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in any power-managed mode and data to be shifted into the SPI Transmit/ Receive Shift register. When all 8 bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

17.3.9 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

17.3.10 BUS MODE COMPATIBILITY

Table 17-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.

Standard SPI Mode	Control Bits State				
Terminology	СКР	CKE			
0, 0	0	1			
0, 1	0	0			
1, 0	1	1			
1, 1	1	0			

TABLE 17-1: SPI BUS MODES

There is also an SMP bit which controls when the data is sampled.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	51
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	54
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	54
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	54
TRISA	PORTA Da	ta Direction	Register						54
TRISC	PORTC Da	ata Direction	Register						54
SSPBUF	MSSP Receive Buffer/Transmit Register								52
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	52
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	52

 TABLE 17-2:
 REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the MSSP in SPI mode.

Note 1: These bits are unimplemented in PIC18F2682/2685 devices; always maintain these bits clear.

19.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has 8 inputs for the PIC18F2682/2685 devices and 11 for the PIC18F4682/4685 devices. This module allows conversion of an analog input signal to a corresponding 10-bit digital number.

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

The ADCON0 register, shown in Register 19-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 19-2, configures the functions of the port pins. The ADCON2 register, shown in Register 19-3, configures the A/D clock source, programmed acquisition time and justification.

REGISTER 19-1: ADCON0: A/D CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own		
bit 7-6 bit 5-2	t 7-6 Unimplemented: Read as '0' t 5-2 CHS3:CHS0: Analog Channel Select bits 0000 = Channel 0 (AN0)								
	0000 = Channel 0 (AN0) 0001 = Channel 1 (AN1) 0010 = Channel 2 (AN2) 0011 = Channel 3 (AN3) 0100 = Channel 4 (AN4) 0101 = Channel 5 (AN5) ^(1,2) 0110 = Channel 6 (AN6) ^(1,2) 0111 = Channel 7 (AN7) ^(1,2) 1000 = Channel 8 (AN8) 1001 = Channel 9 (AN9) 1010 = Channel 10 (AN10) 1011 = Unused 1100 = Unused								
bit 1	1101 = Unused 1110 = Unused 1111 = Unused CO/DONE: A/D Conversion Status bit								
	$\frac{\text{When ADON = 1:}}{1 = A/D \text{ conversion in progress}}$ $0 = A/D \text{ Idle}$								
bit 0	ADON: A/D On bit 1 = A/D converter module is enabled 0 = A/D converter module is disabled								
Note 1: The	se channels ar	e not impleme	nted on PIC1	8F2682/2685 d	evices.				

2: Performing a conversion on unimplemented channels will return full-scale measurements.

20.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that occurred. The CMIF bit (PIR2<6>) is the Comparator Interrupt Flag. The CMIF bit must be reset by clearing it. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

Both the CMIE bit (PIE2<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit (INTCON<7>) must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition and allow flag bit CMIF to be cleared.

20.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from Sleep mode, when enabled. While the comparator is powered up, higher Sleep currents than shown in the power-down current specification will occur. Each operational comparator will consume additional current, as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators (CM2:CM0 = 111) before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.

20.8 Effects of a Reset

A device Reset forces the CMCON register to its Reset state, causing the comparator module to be in the Comparator Reset mode (CM2:CM0 = 000). This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at Reset time. The comparators are powered down during the Reset interval.

Mode 0	R/C-0	R/C-0	R-0	R-0	R-0	R-0	R-0	R-0			
inoue e	RXB00VFL	RXB10VFL	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN			
		D/0.0	D 0		D 0	D 0					
Mode 1	R/C-0		R-0	R-0	R-0						
	—	RXBNOVFL	I XBU	TXBP	RXBP	TXWARN	RXWARN	EWARN			
	R/C-0	R/C-0	R-0	R-0	R-0	R-0	R-0	R-0			
Mode 2	FIFOFMPTY	RXBnOVFI	TXBO	TXBP	RXBP	TXWARN	RXWARN	FWARN			
	bit 7							bit 0			
Legend:											
R = Read	lable bit		C = Clearabl	le bit	U = Unimple	emented bit, r	ead as '0'				
-n = Value	e at POR		'1' = Bit is se	et	'0' = Bit is c	leared	x = Bit is unk	nown			
bit 7	Mode 0: RXB0OVFL: Receive Buffer 0 Overflow bit 1 = Receive Buffer 0 overflowed 0 = Receive Buffer 0 has not overflowed										
	 a Receive Buffer 0 has not overflowed <u>Mode 1:</u> Unimplemented: Read as '0' <u>Mode 2:</u> FIFOEMPTY: FIFO Not Empty bit 1 = Receive FIFO is not empty 0 = Receive FIFO is empty 										
bit 6	0 = Receive FIFO is empty <u>Mode 0:</u> RXB1OVFL: Receive Buffer 1 Overflow bit 1 = Receive Buffer 1 overflowed 0 = Receive Buffer 1 has not overflowed <u>Mode 1, 2:</u> RXBnOVFL: Receive Buffer n Overflow bit 1 = Receive Buffer n has overflowed										
bit 5	TXBO: Trans	smitter Bus-Of	f bit								
	1 = Transmit 0 = Transmit	error counter error counter	> 255 ≤ 255								
bit 4	TXBP: Trans 1 = Transmit 0 = Transmit	mitter Bus Pa error counter error counter	ssive bit > 127 ≤ 127								
bit 3	RXBP: Receiver Bus Passive bit 1 = Receive error counter > 127 0 = Receive error counter ≤ 127										
bit 2	TXWARN: Transmitter Warning bit 1 = Transmit error counter > 95 0 = Transmit error counter < 95										
bit 1	RXWARN: R 1 = 127 ≥ Re 0 = Receive 0	eceiver Warni ceive error co error counter	ng bit unter > 95 ≤ 95								
bit 0	EWARN: Erro This bit is a fl 1 = The RXW	or Warning bit lag of the RXV VARN or the T	· VARN and TX XWARN bits	WARN bits. are set							

REGISTER 23-4: COMSTAT: COMMUNICATION STATUS REGISTER

REGISTER 23-21: RXERRCNT: RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
REC7	REC6	REC5	REC4	REC3	REC2	REC1	REC0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 REC7:REC0: Receive Error Counter bits

This register contains the receive error value as defined by the CAN specifications. When RXERRCNT > 127, the module will go into an error-passive state. RXERRCNT does not have the ability to put the module in "bus-off" state.

EXAMPLE 23-5: READING A CAN MESSAGE

```
; Need to read a pending message from RXBO buffer.
; To receive any message, filter, mask and RXM1:RXM0 bits in RXB0CON registers must be
; programmed correctly.
;
; Make sure that there is a message pending in RXBO.
BTFSS RXBOCON, RXFUL
                                   ; Does RXB0 contain a message?
BRA
      NoMessage
                                    ; No. Handle this situation...
; We have verified that a message is pending in RXBO buffer.
; If this buffer can receive both Standard or Extended Identifier messages,
; identify type of message received.
BTFSS RXBOSIDL, EXID
                                    ; Is this Extended Identifier?
BRA
      StandardMessage
                                    ; No. This is Standard Identifier message.
                                     ; Yes. This is Extended Identifier message.
; Read all 29-bits of Extended Identifier message.
; Now read all data bytes
MOVFF RXB0DO, MY DATA BYTE1
. . .
; Once entire message is read, mark the RXB0 that it is read and no longer FULL.
     RXB0CON, RXFUL
                                   ; This will allow CAN Module to load new messages
BCF
                                    ; into this buffer.
. . .
```

REGISTER 23-35: BnDLC: TX/RX BUFFER n DATA LENGTH CODE REGISTERS IN TRANSMIT MODE $[0 \le n \le 5, TXnEN (BSEL \le n) = 1]^{(1)}$

U-0	R/W-x	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x		
	TXRTR	—		DLC3	DLC2	DLC1	DLC0		
bit 7							bit 0		
]		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 7	Unimplemented: Read as '0'								
bit 6	TXRTR: Transmitter Remote Transmission Request bit								
	1 = Transmitte	ed message wi	ll have RTR b	it set					
	0 = Transmitte	ed message wi	ll have RTR b	it cleared					
bit 5-4	Unimplemen	ted: Read as ')'						
bit 3-0	DLC3:DLC0:	Data Length C	ode bits						
	1111-1001 =	Reserved							
	1000 = Data 	ength = 8 byte	S						
	0111 = Data I	length = 7 byte	S						
	0110 = Data I	length = 6 byte	5						
	0100 = Data I	length = 4 byte	S						
	0011 = Data length = 3 bytes								
	0010 = Data I	length = 2 byte	S						
	0001 = Data length = 1 bytes								
	0000 = Data length = 0 bytes								

Note 1: These registers are available in Mode 1 and 2 only.

REGISTER 23-36: BSEL0: BUFFER SELECT REGISTER 0⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
B5TXEN	B4TXEN	B3TXEN	B2TXEN	B1TXEN	B0TXEN	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2 B5TXEN:B0TXEN: Buffer 5 to Buffer 0 Transmit Enable bit

- 1 = Buffer is configured in Transmit mode
- 0 = Buffer is configured in Receive mode
- bit 1-0 Unimplemented: Read as '0'

Note 1: These registers are available in Mode 1 and 2 only.

REGISTER 23-39: RXFnEIDH: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTERS, HIGH BYTE $[0 \le n \le 15]^{(1)}$

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				

bit 7-0 EID15:EID8: Extended Identifier Filter bits

Note 1: Registers RXF6EIDH:RXF15EIDH are available in Mode 1 and 2 only.

REGISTER 23-40: RXFnEIDL: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTERS, LOW BYTE [0 \leq n \leq 15]^{(1)}

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID7:EID0: Extended Identifier Filter bits

Note 1: Registers RXF6EIDL:RXF15EIDL are available in Mode 1 and 2 only.

REGISTER 23-41: RXMnSIDH: RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK REGISTERS, HIGH BYTE [0 \leq n \leq 1]

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 7		•					bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 7-0 SID10:SID3: Standard Identifier Mask bits or Extended Identifier Mask bits EID28:EID21

23.11 Programming Time Segments

Some requirements for programming of the time segments:

- Prop_Seg + Phase_Seg 1 \geq Phase_Seg 2
- Phase_Seg $2 \ge$ Sync Jump Width.

For example, assume that a 125 kHz CAN baud rate is desired, using 20 MHz for Fosc. With a Tosc of 50 ns, a baud rate prescaler value of 04h gives a TQ of 500 ns. To obtain a Nominal Bit Rate of 125 kHz, the Nominal Bit Time must be 8 μ s or 16 TQ.

Using 1 TQ for the Sync_Seg, 2 TQ for the Prop_Seg and 7 TQ for Phase Segment 1 would place the sample point at 10 TQ after the transition. This leaves 6 TQ for Phase Segment 2.

By the rules above, the Sync Jump Width could be the maximum of 4 Tq. However, normally a large SJW is only necessary when the clock generation of the different nodes is inaccurate or unstable, such as using ceramic resonators. Typically, an SJW of 1 is enough.

23.12 Oscillator Tolerance

As a rule of thumb, the bit timing requirements allow ceramic resonators to be used in applications with transmission rates of up to 125 Kbit/sec. For the full bus speed range of the CAN protocol, a quartz oscillator is required. A maximum node-to-node oscillator variation of 1.7% is allowed.

23.13 Bit Timing Configuration Registers

The Baud Rate Control registers (BRGCON1, BRGCON2, BRGCON3) control the bit timing for the CAN bus interface. These registers can only be modified when the PIC18F2682/2685/4682/4685 devices are in Configuration mode.

23.13.1 BRGCON1

The BRP bits control the baud rate prescaler. The SJW<1:0> bits select the synchronization jump width in terms of multiples of TQ.

23.13.2 BRGCON2

The PRSEG bits set the length of the propagation segment in terms of Tq. The SEG1PH bits set the length of Phase Segment 1 in To. The SAM bit controls how many times the RXCAN pin is sampled. Setting this bit to a '1' causes the bus to be sampled three times: twice at TQ/2 before the sample point and once at the normal sample point (which is at the end of Phase Segment 1). The value of the bus is determined to be the value read during at least two of the samples. If the SAM bit is set to a '0', then the RXCAN pin is sampled only once at the sample point. The SEG2PHTS bit controls how the length of Phase Segment 2 is determined. If this bit is set to a '1', then the length of Phase Segment 2 is determined by the SEG2PH bits of BRGCON3. If the SEG2PHTS bit is set to a '0', then the length of Phase Segment 2 is the greater of Phase Segment 1 and the Information Processing Time (which is fixed at 2 TQ for the PIC18F2682/2685/4682/4685).

23.13.3 BRGCON3

The PHSEG2<2:0> bits set the length (in TQ) of Phase Segment 2 if the SEG2PHTS bit is set to a '1'. If the SEG2PHTS bit is set to a '0', then the PHSEG2<2:0> bits have no effect.

24.0 SPECIAL FEATURES OF THE CPU

PIC18F2682/2685/4682/4685 devices include several features intended to maximize reliability and minimize cost through elimination of external components. These are:

- Oscillator Selection
- Resets:
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Fail-Safe Clock Monitor
- · Two-Speed Start-up
- Code Protection
- ID Locations
- · In-Circuit Serial Programming

The oscillator can be configured for the application depending on frequency, power, accuracy and cost. All of the options are discussed in detail in **Section 2.0 "Oscillator Configurations"**.

A complete discussion of device Resets and interrupts is available in previous sections of this data sheet.

In addition to their Power-up and Oscillator Start-up Timers provided for Resets, PIC18F2682/2685/4682/ 4685 devices have a Watchdog Timer, which is either permanently enabled via the Configuration bits or software controlled (if configured as disabled). The inclusion of an internal RC oscillator also provides the additional benefits of a Fail-Safe Clock Monitor (FSCM) and Two-Speed Start-up. FSCM provides for background monitoring of the peripheral clock and automatic switchover in the event of its failure. Two-Speed Start-up enables code to be executed almost immediately on start-up, while the primary clock source completes its start-up delays.

All of these features are enabled and configured by setting the appropriate Configuration register bits.

24.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped starting at program memory location 300000h.

The user will note that address 300000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (300000h-3FFFFh), which can only be accessed using table reads and table writes.

Programming the Configuration registers is done in a manner similar to programming the Flash memory. The WR bit in the EECON1 register starts a self-timed write to the Configuration register. In normal operation mode, a TBLWT instruction with the TBLPTR pointing to the Configuration register sets up the address and the data for the Configuration register write. Setting the WR bit starts a long write to the Configuration registers are written a byte at a time. To write or erase a configuration cell, a TBLWT instruction can write a '1' or a '0' into the cell. For additional details on Flash programming, refer to Section 6.5 "Writing to Flash Program Memory".

 TABLE 24-1:
 CONFIGURATION BITS AND DEVICE IDs

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300001h	CONFIG1H	IESO	FCMEN	_		FOSC3	FOSC2	FOSC1	FOSC0	00 0111
300002h	CONFIG2L	_		_	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111
300003h	CONFIG2H	_		_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111
300005h	CONFIG3H	MCLRE		_		_	LPT10SC	PBADEN	_	101-
300006h	CONFIG4L	DEBUG	XINST	BBSIZ1	BBSIZ2	_	LVP		STVREN	1000 -1-1
300008h	CONFIG5L	_	-	CP5 ⁽¹⁾	CP4	CP3	CP2	CP1	CP0	11 1111
300009h	CONFIG5H	CPD	CPB	_	_	—	—	_	—	11
30000Ah	CONFIG6L	_		WRT5 ⁽¹⁾	WRT4	WRT3	WRT2	WRT1	WRT0	11 1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC		_	_		_	111
30000Ch	CONFIG7L	—		EBTR5 ⁽¹⁾	EBTR4	EBTR3	EBTR2	EBTR1	EBTR0	11 1111
30000Dh	CONFIG7H	_	EBTRB	_	_	_	_		_	-1
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	×××× ×××××(2)
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	×××× ×××××(2)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented, read as '0'. **Note 1:** Unimplemented in PIC18F2682/4682 devices; maintain this blt set.

2: See Register 24-12 and Register 24-13 for DEVID1 and DEVID2 values. DEVID registers are read-only and cannot be programmed by the user.

REGISTER 24-10: CONFIG7L: CONFIGURATION REGISTER 7 LOW (BYTE ADDRESS 30000Ch)

U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1
_	_	EBTR5 ⁽¹⁾	EBTR4	EBTR3	EBTR2	EBTR1	EBTR0
bit 7		•		•			bit 0
Legend:							
R = Readable	bit	C = Clearable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value whe	en device is unp	programmed		u = Unchange	ed from progran	nmed state	
		-		-	-		
bit 7-6	Unimplemen	ted: Read as ')'				
bit 5	EBTR5: Table	e Read Protecti	on bit ⁽¹⁾				
	1 = Block 5 (0	14000-017FFF	h) not protec	ted from table i	reads executed	in other blocks	
	0 = Block 5 (0	14000-017FFF	h) protected	from table read	Is executed in o	ther blocks	
bit 4	EBTR4: Table	e Read Protecti	on bit				
	1 = Block 4 (0	10000-013FFF	h) not protec	ted from table i	reads executed	in other blocks	
	0 = Block 4 (0)	10000-013FFF	h) protected	from table read	is executed in o	ther blocks	
bit 3	EBTR3: Table	e Read Protecti	on bit				
	1 = Block 3(0)	0C000-00FFF	Fh) not protec	ted from table	reads executed	in other blocks	
h # 0			n) protected	ITOITI LADIE TEA	us executed in c	DITIEL DIOCKS	
DIL 2				to d from to blo		in other blocks	
	$\perp = Block 2 (0)$ 0 = Block 2 (0)	08000-00BFF1	-n) not protected	from table read	reads executed in c	ther blocks	
hit 1	FBTR1. Table	Read Protecti	on hit				
	1 = Block 1 (0	04000-007FFF	h) not protec	ted from table i	reads executed	in other blocks	
	0 = Block 1 (0)	04000-007FFF	h) protected	from table read	Is executed in o	ther blocks	
bit 0	EBTR0: Table	e Read Protecti	on bit				
	1 = Block 0 (0	00800-003FFF	h) not protec	ted from table i	reads executed	in other blocks	
	0 = Block 0 (0	00800-003FFF	h) protected	from table read	Is executed in o	ther blocks	

Note 1: Unimplemented in PIC18F2682/4682 devices; maintain this bit set.

REGISTER 24-11: CONFIG7H: CONFIGURATION REGISTER 7 HIGH (BYTE ADDRESS 30000Dh)

U-0	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
—	EBTRB	—	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
-n = Value when device is	unprogrammed	u = Unchanged from programmed state

bit 7	Unimplemented: Read as '0'
bit 6	EBTRB: Boot Block Table Read Protection bit
	 1 = Boot Block (000000-0007FFh) not protected from table reads executed in other blocks 0 = Boot Block (000000-0007FFh) protected from table reads executed in other blocks
bit 5-0	Unimplemented: Read as '0'

BRA MYFUNC

BC MYFUNC

FIGURE 25-1: **GENERAL FORMAT FOR INSTRUCTIONS** Byte-oriented file register operations **Example Instruction** 15 10 9 8 7 0 OPCODE d f (FILE #) ADDWF MYREG, W, B а d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address Byte to Byte move operations (2-word) 15 12 11 0 OPCODE f (Source FILE #) MOVFF MYREG1, MYREG2 15 12 11 0 f (Destination FILE #) 1111 f = 12-bit file register address Bit-oriented file register operations 987 15 12 11 0 f (FILE #) OPCODE b (BIT #) а BSF MYREG, bit, B b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address Literal operations 15 8 7 0 OPCODE k (literal) MOVLW 7Fh k = 8-bit immediate value **Control** operations CALL, GOTO and Branch operations 15 8 7 0 OPCODE n<7:0> (literal) GOTO Label 12 11 15 0 1111 n<19:8> (literal) n = 20-bit immediate value 15 8 7 0 CALL MYFUNC OPCODE S n<7:0> (literal) 15 12 11 0 n<19:8> (literal) 1111 S = Fast bit 15 11 10 0

n<10:0> (literal)

n<7:0> (literal)

0

8 7

OPCODE

OPCODE

15

DAW	Decimal /	Adjust W Re	gister	DEC	CF	Decreme	nt f		
Syntax:	DAW			Synt	ax:	DECF f{,	d {,a}}		
Operands:	None			Ope	rands:	$0 \le f \le 255$			
Operation:	lf [W<3:0> (W<3:0>) +	>9] or [DC = 1 · 6 → W<3:0>:] then			d ∈ [0,1] a ∈ [0,1]			
	else	,		Ope	ration:	$(f) - 1 \rightarrow d$	est		
	(W<3:0>) -	→ W<3:0>		Statu	us Affected:	C, DC, N, (OV, Z		
	lf [W<7:4>	>91 or [C = 1]	then	Enco	oding:	0000	01da f	fff	ffff
	(W<7:4>) +	$\cdot 6 \rightarrow W < 7:4 >;$		Dese	cription:	Decrement	register 'f'. If	ʻ'd' is	'0 ', the
	C = 1;					result is sto	ored in W. If '	d' is '1	', the
	else (W<7:4>) -	→ W<7:4>				result is sto (default).	ored back in r	egiste	r 'f'
Status Affected:	С					If 'a' is '0', t	the Access B	ank is	selected.
Encoding:	0000	0000 00	00 0111			lf 'a' is '1', ' GPR bank	he BSR is us (default).	ed to	select the
Description:	DAW adjusts resulting fro variables (e and produc result.	s the eight-bit om the earlier a each in packed ses a correct p	value in W, addition of two I BCD format) acked BCD			If 'a' is '0' a set is enab in Indexed mode when Section 26	and the exten led, this instr Literal Offset never $f \le 95$ (ded in uction Addre 5Fh). :	struction operates essing See
Words:	1					Bit-Orient	ed Instructio	ns in	Indexed
Cycles:	1					Literal Off	set Mode" fo	r deta	ils.
Q Cycle Activity:				Wor	ds:	1			
Q1	Q2	Q3	Q4	Cycl	es:	1			
Decode	Read	Process	Write	QC	cycle Activity:				
	register W	Data	W		Q1	Q2	Q3		Q4
Example 1:					Decode	Read	Process	V	Vrite to
	DAW					register 'f'	Data	des	stination
Before Instruc	ction			F					
C	= 0			Exar	<u>npie:</u>	DECF	CNT, 1,	0	
DC After Instructi	= 0				Before Instruc	ction			
After Instruction	on = 05b				Z	= 0			
Ċ	= 1				After Instructi	on			
DC	= 0				CNT	= 00h = 1			
Example 2:	ation				Z	- 1			
Belore Instruc	= CEb								
C DC	= 0 = 0								
After Instruction	on								
W	= 34h = 1								
ĎC	= 0								

27.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 27-5 apply to all timing specifications unless otherwise noted. Figure 27-4 specifies the load conditions for the timing specifications.

Note: Because of space limitations, the generic terms "PIC18FXXXX" and "PIC18LFXXXX" are used throughout this section to refer to the PIC18F2682/2685/4682/4685 and PIC18LF2682/2685/4682/4685 families of devices specifically and only those devices.

TABLE 27-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)				
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
	Operating voltage VDD range as described in DC spec Section 27.1 and				
	Section 27.3. LF parts operate for industrial temperatures only.				

FIGURE 27-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 27-25: A/D CONVERSION REQUIREMENTS

Param No.	Symbol	Characteristic		Min	Мах	Units	Conditions
130	Tad	A/D Clock Period	PIC18FXXXX	0.7	25.0 ⁽¹⁾	μS	Tosc based, VREF \geq 3.0V
			PIC18LFXXXX	1.4	25.0 ⁽¹⁾	μS	VDD = 2.0V; TOSC based, VREF full range
			PIC18 F XXXX		1	μS	A/D RC mode
			PIC18 LF XXXX		3	μS	VDD = 2.0V; A/D RC mode
131	TCNV	Conversion Time (not including acquisi	11	12	Tad		
132	TACQ	Acquisition Time (Note 3)		1.4	_	μS	-40°C to +85°C
135	Tswc	Switching Time from Convert \rightarrow Sample		_	(Note 4)		
136	Тамр	Amplifier Settling Tir	ne (Note 5)	1	_	μS	This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).

Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

- 2: ADRES register may be read on the following TCY cycle.
- **3:** The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (AVDD to AVSS or AVSS to AVDD). The source impedance (*Rs*) on the input channels is 50Ω.
- 4: On the following cycle of the device clock.
- 5: See Section 19.0 "10-Bit Analog-to-Digital Converter (A/D) Module" for minimum conditions when input voltage has changed more than 1 LSb.

29.0 PACKAGING INFORMATION

29.1 Package Marking Information

28-Lead PDIP (Skinny DIP)

Example

Example

40-Lead PDIP

28-Lead SOIC

	PIC18F2685-E/SO@ 0710017	
0		

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available for customer-specific information.

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

Not Applicable

APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a Baseline device (i.e., PIC16C5X) to an Enhanced MCU device (i.e., PIC18FXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available

Capture (CCP1 Module)1	67
CAN Message Time Stemp	67
CCD1 Din Configuration	67
COPRIFICOPRIL Registers	07
Prescaler1	67
Software Interrupt1	67
Timer1/Timer3 Mode Selection1	67
Capture (ECCP1 Module)1	76
Capture/Compare/PWM (CCP1)1	65
Capture Mode. See Capture.	
CCP1 Mode and Timer Resources1	66
CCPR1H or ECCPR1H Register1	66
CCPR1L or ECCPR1L Register1	66
Compare Mode. See Compare.	
Interaction Between CCP1 and ECCP1	
for Timer Resources	66
Module Configuration	166
	20
Clock Sources	20
Effects of Power-Managed Modes	33
Selecting the 31 kHz Source	31
Selection Using OSCCON Register	31
CLRF	381
CLRWDT	381
Code Examples	
16 x 16 Signed Multiply Routine1	14
16 x 16 Unsigned Multiply Routine1	14
8 x 8 Signed Multiply Routine1	13
8 x 8 Unsigned Multiply Routine1	13
Changing Between Capture Prescalers	67
Changing to Configuration Mode 2	280
Computed GOTO Using an Offset Value	66
Data EEPROM Read	100
Data EEROM Refresh Poutino	110
Data EERROM Write	10
Dala EEPROM Wille	109
Erasing a Flash Program Memory Row	02
Fast Register Stack	60
How to Clear RAM (Bank 1) Using	
Indirect Addressing	90
Implementing a Real-Time Clock Using	
a Timer1 Interrupt Service1	57
Initializing PORTA1	31
Initializing PORTB1	34
Initializing PORTC1	37
Initializing PORTD1	40
Initializing PORTE1	43
Loading the SSPBUF (SSPSR) Register	92
Reading a CAN Message	296
Reading a Flash Program Memory Word	101
Saving STATUS WREG and BSR	0.
Pogietors in PAM	130
Transmitting a CAN Message Using	50
Danked Method	000
	100 100
I ransmitting a CAN Message Using WIN Bits	:89
WIN and ICODE Bits Usage in Interrupt Service	
Routine to Access TX/RX Buffers2	280
Writing to Flash Program Memory	05
Code Protection	345
COMF	382

Comparator			259
Analog Input Connection Considerations .			263
Associated Registers			263
Configuration			260
Effects of a Reset			262
Interrupts			262
Operation			261
Operation During Sleep			262
Outputs			261
Reference			261
External Signal			261
Internal Signal			261
Response Time			261
Comparator Specifications			433
Comparator Voltage Reference			265
Accuracy and Error			266
Associated Registers			267
Configuring			265
Connection Considerations			266
Effects of a Reset			266
Operation During Sleep			266
Compare (CCP1 Module)			169
Associated Registers			170
CCP1 Pin Configuration			169
CCPR1 Register			169
Software Interrupt			169
Special Event Trigger			169
Timer1/Timer3 Mode Selection			169
Compare (ECCP1 Module)			176
Special Event Trigger	163	176	258
Configuration Bits	,	,	345
Configuration Mode			327
Configuration Register			
Protection			364
Context Saving During Interrupts			130
Conversion Considerations			466
CPFSEQ			382
CPESGT			383
CPESLT			383
Crystal Oscillator/Ceramic Resonators			25
Customer Change Notification Service			
Customer Notification Service			481
Customer Support			481
Data Addressing Modes			00
Comparing Addressing Options with the	Evto		90 I In

Data Addressing Modes	90
Comparing Addressing Options with the Extended	In-
struction Set Enabled	94
Direct	90
Indexed Literal Offset	93
Affected Instructions	93
BSR	95
Mapping the Access Bank	95
Indirect	90
Inherent and Literal	90
Data EEPROM	
Code Protection	364