

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	96KB (48K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2685t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name Pin Number Pin Buffer Description								
rin name	PDIP	QFN	TQFP	Туре	Туре	Description		
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on a inputs.		
RB0/INT0/FLT0/AN10 RB0 INT0 FLT0 AN10	33	9	8	I/O I I	TTL ST ST Analog	Digital I/O. External interrupt 0. Enhanced PWM Fault input (ECCP1 module). Analog input 10.		
RB1/INT1/AN8 RB1 INT1 AN8	34	10	9	I/O I I	TTL ST Analog	Digital I/O. External interrupt 1. Analog input 8.		
RB2/INT2/CANTX RB2 INT2 CANTX	35	11	10	I/O I O	TTL ST TTL	Digital I/O. External interrupt 2. CAN bus TX.		
RB3/CANRX RB3 CANRX	36	12	11	I/O I	TTL TTL	Digital I/O. CAN bus RX.		
RB4/KBI0/AN9 RB4 KBI0 AN9	37	14	14	I/O I I	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. Analog input 9.		
RB5/KBI1/PGM RB5 KBI1 PGM	38	15	15	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.		
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.		
RB7/KBI3/PGD RB7 KBI3 PGD	40	17	17	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.		

TABLE 1-3: PIC18F4682/4685 PINOUT I/O DESCRIPTIONS (CONTINUED)

NOTES:

TABLE 5-2		JSTER F	ILE SUN	MARY (F	PIC18F268	82/2685/46	82/4685) (0	SONTINUE	:D)	
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
B4SIDL ⁽⁸⁾ Receive mode	SID2	SID1	SID0	SRR	EXID	_	EID17	EID16	XXXX X-XX	58, 300
B4SIDL ⁽⁸⁾ Transmit mode	SID2	SID1	SID0	-	EXIDE	—	EID17	EID16	xxx- x-xx	58, 300
B4SIDH ⁽⁸⁾	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	59, 299
B4CON ⁽⁸⁾ Receive mode	RXFUL	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	0000 0000	59, 298
B4CON ⁽⁸⁾ Transmit mode	TXBIF	TXABT	TXLARB	TXERR	TXREQ	RTREN	TXPRI1	TXPRI0	0000 0000	59, 298
B3D7 ⁽⁸⁾	B3D77	B3D76	B3D75	B3D74	B3D73	B3D72	B3D71	B3D70	XXXX XXXX	59, 302
B3D6 ⁽⁸⁾	B3D67	B3D66	B3D65	B3D64	B3D63	B3D62	B3D61	B3D60	XXXX XXXX	59, 302
B3D5 ⁽⁸⁾	B3D57	B3D56	B3D55	B3D54	B3D53	B3D52	B3D51	B3D50	XXXX XXXX	59, 302
B3D4 ⁽⁸⁾	B3D47	B3D46	B3D45	B3D44	B3D43	B3D42	B3D41	B3D40	XXXX XXXX	59, 302
B3D3 ⁽⁸⁾	B3D37	B3D36	B3D35	B3D34	B3D33	B3D32	B3D31	B3D30	XXXX XXXX	59, 302
B3D2 ⁽⁸⁾	B3D27	B3D26	B3D25	B3D24	B3D23	B3D22	B3D21	B3D20	XXXX XXXX	59, 302
B3D1 ⁽⁸⁾	B3D17	B3D16	B3D15	B3D14	B3D13	B3D12	B3D11	B3D10	XXXX XXXX	59, 302
B3D0 ⁽⁸⁾	B3D07	B3D06	B3D05	B3D04	B3D03	B3D02	B3D01	B3D00	XXXX XXXX	59, 302
B3DLC ⁽⁸⁾ Receive mode	-	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	58, 303
B3DLC ⁽⁸⁾ Transmit mode	_	TXRTR	_	-	DLC3	DLC2	DLC1	DLC0	-x xxxx	58, 304
B3EIDL ⁽⁸⁾	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	59, 301
B3EIDH ⁽⁸⁾	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	59, 301
B3SIDL ⁽⁸⁾ Receive mode	SID2	SID1	SID0	SRR	EXID	_	EID17	EID16	XXXX X-XX	58, 300
B3SIDL ⁽⁸⁾ Transmit mode	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxx- x-xx	58, 300
B3SIDH ⁽⁸⁾	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	59, 299
B3CON ⁽⁸⁾ Receive mode	RXFUL	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	0000 0000	59, 298
B3CON ⁽⁸⁾ Transmit mode	TXBIF	TXABT	TXLARB	TXERR	TXREQ	RTREN	TXPRI1	TXPRI0	0000 0000	59, 298
B2D7 ⁽⁸⁾	B2D77	B2D76	B2D75	B2D74	B2D73	B2D72	B2D71	B2D70	XXXX XXXX	59, 302
B2D6 ⁽⁸⁾	B2D67	B2D66	B2D65	B2D64	B2D63	B2D62	B2D61	B2D60	XXXX XXXX	59, 302
B2D5 ⁽⁸⁾	B2D57	B2D56	B2D55	B2D54	B2D53	B2D52	B2D51	B2D50	XXXX XXXX	59, 302
B2D4 ⁽⁸⁾	B2D47	B2D46	B2D45	B2D44	B2D43	B2D42	B2D41	B2D40	XXXX XXXX	59, 302
B2D3 ⁽⁸⁾	B2D37	B2D36	B2D35	B2D34	B2D33	B2D32	B2D31	B2D30	XXXX XXXX	59, 302
B2D2 ⁽⁸⁾	B2D27	B2D26	B2D25	B2D24	B2D23	B2D22	B2D21	B2D20	XXXX XXXX	59, 302
B2D1 ⁽⁸⁾	B2D17	B2D16	B2D15	B2D14	B2D13	B2D12	B2D11	B2D10	XXXX XXXX	60, 302
B2D0 ⁽⁸⁾	B2D07	B2D06	B2D05	B2D04	B2D03	B2D02	B2D01	B2D00	XXXX XXXX	60, 302
B2DLC ⁽⁸⁾ Receive mode	_	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	58, 303
B2DLC ⁽⁸⁾ Transmit mode		TXRTR	—	—	DLC3	DLC2	DLC1	DLC0	-x xxxx	58, 304

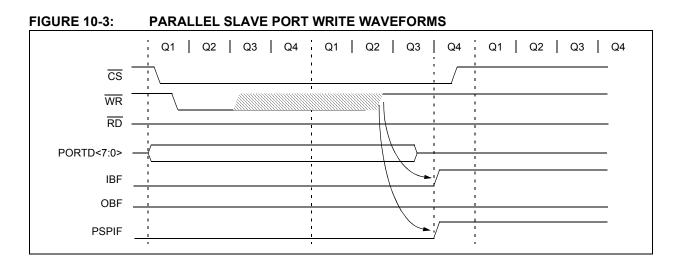
Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented, read as '0'.

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

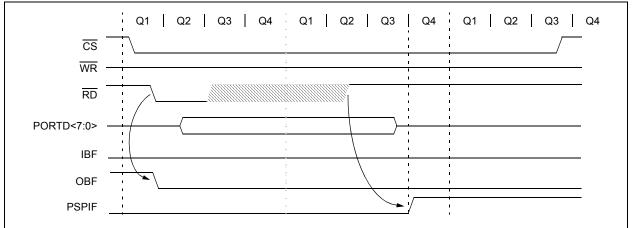
The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset 2: (BOR)"

These registers and/or bits are not implemented on PIC18F2682/2685 devices and are read as '0'. Reset values are shown for PIC18F4682/4685 3: devices; individual unimplemented bits should be interpreted as '---'.

The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC 4: Modes"


5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When 6: disabled, these bits read as '0'.


7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2.

9: These registers and/or bits are available on PIC18F4682/4685 devices only.

FIGURE 10-4: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 10-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Name	Bit 7	Bit 6	Bit 5	Bit 5 Bit 4		Bit 2	Bit 1	Bit 0	Reset Values on page
PORTD ⁽¹⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	54
LATD ⁽¹⁾	LATD Data	Output Regis	ter						54
TRISD ⁽¹⁾	PORTD Da	ta Direction R	egister						54
PORTE ⁽¹⁾	_	_	_	—	RE3	RE2	RE1	RE0	54
LATE ⁽¹⁾	_	_	_	—	_	LATE Data	LATE Data Output Register		
TRISE ⁽¹⁾	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	54
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	51
PIR1	PSPIF ⁽²⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	54
PIE1	PSPIE ⁽²⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	54
IPR1	PSPIP ⁽²⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	54
ADCON1	—	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	52
CMCON ⁽¹⁾	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	53

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.

Note 1: These registers are available on PIC18F4682/4685 devices only.

2: These bits are unimplemented on PIC18F2682/2685 devices and read as '0'.

EXAMPLE	12-1: I	MPLEMENTING	A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE
RTCinit			
	MOVLW	80h	; Preload TMR1 register pair
	MOVWF	TMR1H	; for 1 second overflow
	CLRF	TMR1L	
	MOVLW	b'00001111'	; Configure for external clock,
	MOVWF	T1OSC	; Asynchronous operation, external oscillator
	CLRF	secs	; Initialize timekeeping registers
	CLRF	mins	;
	MOVLW	.12	
	MOVWF	hours	
	BSF	PIE1, TMR1IE	; Enable Timer1 interrupt
	RETURN		
RTCisr			
	BSF	TMR1H, 7	; Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	; Clear interrupt flag
	INCF	secs, F	; Increment seconds
	MOVLW	.59	; 60 seconds elapsed?
	CPFSGT	secs	
	RETURN		; No, done
	CLRF	secs	; Clear seconds
	INCF	mins, F	; Increment minutes
	MOVLW	.59	; 60 minutes elapsed?
	CPFSGT	mins	
	RETURN		; No, done
	CLRF	mins	; clear minutes
	INCF		; Increment hours
	MOVLW	.23	; 24 hours elapsed?
	CPFSGT	hours	
	RETURN		; No, done
	MOVLW	.01	; Reset hours to 1
	MOVWF	hours	
	RETURN		; Done

TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	51		
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	54		
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	54		
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	54		
TMR1L	Timer1 Reg	gister Low By	/te						52		
TMR1H	1H TImer1 Register High Byte										
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	52		

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: These bits are unimplemented on PIC18F2682/2685 devices; always maintain these bits clear.

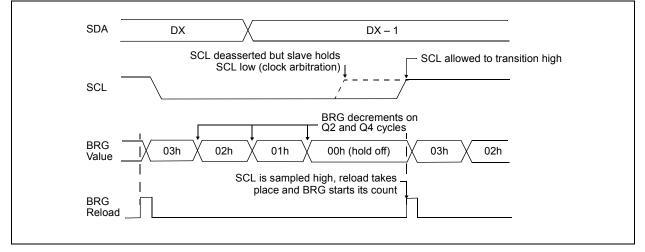
							•		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	51	
IPEN	SBOREN ⁽³⁾		RI	TO	PD	POR	BOR	52	
PSPIP ⁽²⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	54	
PSPIF ⁽²⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	54	
PSPIE ⁽²⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	54	
OSCFIP	CMIP ⁽²⁾	_	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP ⁽²⁾	53	
OSCFIF	CMIF ⁽²⁾	_	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽²⁾	54	
OSCFIE	CMIE ⁽²⁾	_	EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE ⁽²⁾	54	
PORTB Dat	ORTB Data Direction Register								
PORTC Dat	ORTC Data Direction Register								
PORTD Dat	a Direction R	egister						54	
Timer1 Reg	ister Low Byte	e						52	
Timer1 Reg	ister High Byt	e						52	
RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	52	
Timer2 Reg	ister							52	
_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	52	
Timer2 Peri	od Register							52	
Timer3 Reg	ister Low Byte	e						53	
Timer3 Reg	ister High Byt	e						53	
RD16	T3ECCP1 ⁽²⁾	T3CKPS1	T3CKPS0	T3CCP1 ⁽²⁾	T3SYNC	TMR3CS	TMR3ON	53	
Enhanced C	Capture/Comp	are/PWM R	egister 1 Lov	v Byte				53	
Enhanced C	Capture/Comp	are/PWM R	egister 1 Hig	h Byte				53	
EPWM1M1	EPWM1M0	EDC1B1	EDC1B0	ECCP1M3	ECCP1M2	ECCP1M1	ECCP1M0	53	
ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	53	
PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	53	
	GIE/GIEH IPEN PSPIP ⁽²⁾ PSPIF ⁽²⁾ PSPIE ⁽²⁾ OSCFIP OSCFIF OSCFIF OSCFIE PORTD Dat PORTD Dat PORTD Dat Timer1 Reg RD16 Timer2 Reg Imer3 Reg Timer3 Reg Timer3 Reg RD16 Enhanced C Enhanced C EPWM1M1 ECCPASE	GIE/GIEH PEIE/GIEL IPEN SBOREN ⁽³⁾ PSPIP ⁽²⁾ ADIP PSPIF ⁽²⁾ ADIF PSPIE ⁽²⁾ ADIF OSCFIP CMIP ⁽²⁾ OSCFIF CMIP ⁽²⁾ OSCFIF CMIP ⁽²⁾ OSCFIF CMIF ⁽²⁾ OSCFIE CMIE ⁽²⁾ PORTD Data Direction R PORTD Data Direction R Timer1 Register High Byte RD16 Timer2 Register Towe Byte Timer3 Register Low Byte Timer3 Register High Byte RD16 T3ECCP1 ⁽²⁾ Enhanced Capture/Comp Enhanced Capture/Comp Enhanced Capture/Comp Enhanced Capture/Comp Enhanced Capture/Comp Enhanc	GIE/GIEHPEIE/GIELTMR0IEIPENSBOREN(3)—PSPIP(2)ADIPRCIPPSPIF(2)ADIFRCIEOSCFIPCMIP(2)—OSCFIFCMIF(2)—OSCFIECMIE(2)—OSCFIECMIE(2)—OSCFIECMIE(2)—PORTB Data Direction RegisterPORTD Data Direction RegisterPORTD Data Direction RegisterTimer1 Register Low ByteTimer2 RegisterMD16T1RUNT1CKPS1Timer2 RegisterImer2 Period RegisterTimer3 Register Low ByteTimer3 Register High ByteRD16T3ECCP1(2)T3CKPS1Enhanced Capture/Compare/PWM REnhanced Capture/Compare/PWM REnhanced Capture/Compare/PWM RENAnced Capture/Compare/PWM R	GIE/GIEHPEIE/GIELTMROIEINTOIEIPENSBOREN(3)—RīPSPIP(2)ADIPRCIPTXIPPSPIF(2)ADIFRCIFTXIFPSPIE(2)ADIERCIETXIEOSCFIPCMIP(2)—EEIPOSCFIFCMIF(2)—EEIFOSCFIECMIE(2)—EEIEPORTB Data Direction Register—EEIEPORTC Data Direction Register—EEIEPORTD Data Direction Register—T1CKPS0Timer1 Register Low ByteT1CKPS1T1CKPS0Timer2 Register—T2OUTPS3T2OUTPS2Timer2 Register—T2OUTPS3T2OUTPS1Timer3 Register Low ByteTimer3 Register High ByteT3CKPS0Timer3 Register High ByteT3CKPS1T3CKPS0Enhanced Capture/Compare/PWM Register 1 LowEnhanced Capture/Compare/PWM Register 1 LowEnhanced Capture/Compare/PWM Register 1 HigEPWM1M1EPCPAS2ECCPASEECCPAS2ECCPAS1ECCPAS0	GIE/GIEHPEIE/GIELTMR0IEINT0IERBIEIPENSBOREN(3)—RITOPSPIP(2)ADIPRCIPTXIPSSPIPPSPIF(2)ADIFRCIFTXIFSSPIFPSPIE(2)ADIERCIETXIESSPIEOSCFIPCMIP(2)—EEIPBCLIPOSCFIFCMIF(2)—EEIFBCLIFOSCFIFCMIF(2)—EEIFBCLIFOSCFIECMIE(2)—EEIEBCLIFOSCFIECMIE(2)—EEIEBCLIFOSCFIECMIE(2)—EEIFBCLIFOSCFIECMIE(2)—EEIFBCLIFOSCFIECMIE(2)—EEIFBCLIFOSCFIECMIE(2)—EEIFBCLIFOSCFIECMIE(2)—EEIFBCLIFOSCFIECMIE(2)—EEIFBCLIFOSCFIECMIE(2)—EEIFBCLIFOSCFIETICKICTICKPSOTIOSCENPORTD DataDirection RegisterT1OSCENTimer1 Register High ByteT2OUTPS3T2OUTPS2RD16T3ECCP1(2)T3CKPS1T3CKPS0T3CCP1(2)Enhanced Capture/Compare/PWM Register 1 LowByteEnhanced Capture/Compare/PWM Register 1 High ByteEPWM1M1EPWM1M1EPWM1M0EDC1B1EDC1B0ECCPASEECCPAS2ECCPAS1ECCPAS0PSAC1	GIE/GIEHPEIE/GIELTMR0IEINT0IERBIETMR0IFIPENSBOREN(3)—RiTOPDPSPIP(2)ADIPRCIPTXIPSSPIPCCP1IPPSPIF(2)ADIFRCIFTXIFSSPIFCCP1IFPSPIE(2)ADIERCIETXIESSPIECCP1IEOSCFIPCMIP(2)—EEIPBCLIPHLVDIPOSCFIFCMIF(2)—EEIFBCLIFHLVDIFOSCFIFCMIF(2)—EEIEBCLIEHLVDIFOSCFIFCMIF(2)—EEIEBCLIEHLVDIFOSCFIFCMIF(2)—EEIFBCLIEHLVDIFOSCFIFCMIF(2)—EEIFBCLIEHLVDIFOSCFIFCMIF(2)—EEIEBCLIEHLVDIFOSCFIFCMIF(2)—EEIFBCLIFHLVDIFOSCFIFCMIF(2)—EEIFBCLIFHLVDIFOSCFIFCMIF(2)—EEIFBCLIFHLVDIFOSCFIFCMIF(2)—EEIFBCLIFHLVDIFOSCFIFCMIF(2)—EEIFBCLIFHLVDIFOSCFIFCMIF(2)—EEIFBCLIFHLVDIFOSCFIFDirection RegisterFFFPORTD DataDirection RegisterT10SCENT1SYNCTimer1 Register High ByteFTT20UTPS3T20UTPS2T20UTPS1Timer2 RegisterHigh ByteFFFTimer	GIE/GIEHPEIE/GIELTMR0IEINT0IERBIETMR0IFINT0IFIPENSBOREN ⁽³⁾ —RITOPDPORPSPIP ⁽²⁾ ADIPRCIPTXIPSSPIPCCP1IPTMR2IPPSPIF ⁽²⁾ ADIFRCIFTXIFSSPIFCCP1IFTMR2IPPSPIE ⁽²⁾ ADIERCIETXIFSSPIFCCP1IFTMR2IPOSCFIPCMIP ⁽²⁾ —EEIPBCLIPHLVDIPTMR3IPOSCFIFCMIF ⁽²⁾ —EEIFBCLIFHLVDIFTMR3IFOSCFIECMIE ⁽²⁾ —EEIFBCLIFHLVDIFTMR3IFOSCFIECMIE ⁽²⁾ —EEIEBCLIEHLVDIFTMR3IFOSCFIECMIE ⁽²⁾ —EEIEBCLIEHLVDIFTMR3IFOSCFIECMIE ⁽²⁾ —EEIFBCLIFHLVDIFTMR3IFOSCFIECMIE ⁽²⁾ —EEIFBCLIEHLVDIFTMR3IFOSCFIECMIE ⁽²⁾ —EEIFBCLIEHLVDIFTMR3IFOSCFIECMIE ⁽²⁾ —EEIFBCLIEHLVDIFTMR3IFPORTD Data Direction RegisterFFTIMC1TMR1CSTMR1CSTimer1 Register Low ByteT120UTPS3T20UTPS2T20UTPS1T20UTPS0TMR2ONT2CKPS1Timer2 RegisterFTT20UTPS3T3CKPS1T3CKPS0T3CCP1 ⁽²⁾ T3SYNCTMR3CSTimer3 Register Low ByteTT3CKPS1T3CKPS0T3CCP1 ⁽²⁾ T3	GIE/GIEHPEIE/GIELTMR0IEINTOIERBIETMR0IFINTOIFRBIFIPENSBOREN(3)—RITOPDPORBORPSPIP(2)ADIPRCIPTXIPSSPIPCCP1IPTMR2IPTMR1IPPSPIF(2)ADIFRCIFTXIFSSPIFCCP1IETMR2IFTMR1IFPSPIE(2)ADIERCIETXIESSPIECCP1IETMR2IFTMR1IFOSCFIPCMIP(2)—EEIPBCLIPHLVDIPTMR3IPECCP1IF(2)OSCFIFCMIF(2)—EEIFBCLIEHLVDIFTMR3IFECCP1IF(2)OSCFIECMIE(2)—EEIFBCLIEHLVDIFTMR3IFECCP1IF(2)OSCFIECMIE(2)—EEIFBCLIEHLVDIFTMR3IFECCP1IF(2)OSCFIECMIE(2)—EEIFBCLIEHLVDIFTMR3IFECCP1IF(2)OSCFIECMIE(2)—EEIFBCLIEHLVDIFTMR3IFECCP1IF(2)OSCFIECMIE(2)—EEIFBCLIEHLVDIFTMR3IFECCP1IF(2)PORTD DatDirection RegisterFFFFFFTimer1 Register Low ByteT1CKPS1T1CKPS0T1OSCENT1SYNCTMR1CSTMR1ONTimer2 RegisterT3CUTPS3T2OUTPS1T2OUTPS0TMR2ONT2CKPS1T2CKPS0Timer3 Register Low ByteFFFFFFFTimer3 Register Low ByteT3CKPS1 <t< td=""></t<>	

TABLE 16-3: REGISTERS ASSOCIATED WITH ECCP1 MODULE AND TIMER1 TO TIMER3

Legend: — = unimplemented, read as '0'. Shaded cells are not used during ECCP1 operation.

Note 1: These registers are available on PIC18F4682/4685 devices only.

2: These bits are available on PIC18F4682/4685 and reserved on PIC18F2682/2685 devices.


3: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'.

17.4.7.1 Clock Arbitration

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the

SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 17-18).

NOTES:

R/W-0	R-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
ABDOVF	RCIDL	—	SCKP	BRG16		WUE	ABDEN
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unk	nown
L:1 7		ute Devid Acces	iaitian Dallava	r Otatua hit			
bit 7		uto-Baud Acqu			n Dotoct modo	(must be cleare	d in coffword
		Follover has oc	•			(Indist be cleare	u in soltware
bit 6	RCIDL: Reco	eive Operation	Idle Status bit				
		operation is Id					
	0 = Receive	operation is ac	tive				
bit 5	Unimpleme	nted: Read as	'0'				
bit 4	SCKP: Sync	hronous Clock	Polarity Selec	t bit			
	Asynchronou						
	Unused in th						
	<u>Synchronous</u> 1 = Idle state	e for clock (CK)	is a high leve	I			
		e for clock (CK)					
bit 3	BRG16: 16-	Bit Baud Rate I	Register Enab	le bit			
				GH and SPBRG only (Compatit		BRGH value ign	ored
bit 2	Unimpleme	nted: Read as	'0'				
bit 1	WUE: Wake	-up Enable bit					
	<u>Asynchronou</u> 1 = EUSAR		to sample the	RX pin – interi	rupt generated	on falling edge	; bit cleared
	hardwar	e on following	rising edge				
	•	not monitored o	or rising edge of	detected			
	Synchronous Unused in th						
bit 0		o-Baud Detect	Enable bit				
	Asynchronou						
	1 = Enable	baud rate mea			ter. Requires re	eception of a Sy	nc field (55h/
		in hardware up					
	0 = Baud ra	te measureme	nt disabled or	completed			
		n mada:					

REGISTER 18-3: BAUDCON: BAUD RATE CONTROL REGISTER

	SYNC = 0, BRGH = 0, BRG16 = 0													
BAUD RATE	Fosc	= 40.000) MHz	Fosc = 20.000 MHz			Foso	: = 10.000	MHz	Fos	Fosc = 8.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	_			_			_		_	_		_		
1.2	—	—	—	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103		
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51		
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12		
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	_	_	_		
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_		
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	_	—	—		

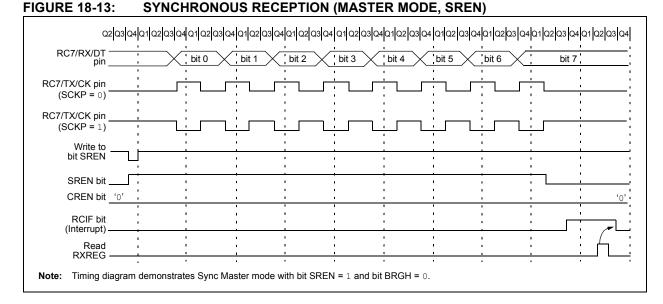
TABLE 18-3: BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD RATE	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fos	c = 1.000	MHz					
(K)	(K) Actual % Rate Error (K) Error		SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)					
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51					
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12					
2.4	2.404	0.16	25	2.403	-0.16	12	—	_	_					
9.6	8.929	-6.99	6	—	_	_	—	_	_					
19.2	20.833	8.51	2	_	_	_	_	_	_					
57.6	62.500	8.51	0	—	_	_	—	_	_					
115.2	62.500	-45.75	0	_	_	_	_		—					

		SYNC = 0, BRGH = 1, BRG16 = 0													
BAUD	Fosc = 40.000 MHz			Fosc	Fosc = 20.000 MHz			= 10.000) MHz	Fos	c = 8.000	MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)			
0.3	_						_			_					
1.2	—	_	_	—	_	_	—		_	—	_	_			
2.4	—	_	_	_	_	_	2.441	1.73	255	2.403	-0.16	207			
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51			
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25			
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8			
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_			

	SYNC = 0, BRGH = 1, BRG16 = 0										
BAUD RATE	Fosc = 4.000 MHz			Fosc = 2.000 MHz			Fos	c = 1.000	MHz		
(K)	Actual % Rate Error (K)		SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	_		_		_	_	0.300	-0.16	207		
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51		
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25		
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	—		
19.2	19.231	0.16	12	—	_	—	_	_	—		
57.6	62.500	8.51	3	—	_	—	_	_	—		
115.2	125.000	8.51	1	—	_	—	_	_	—		

18.3.2 EUSART SYNCHRONOUS MASTER RECEPTION


Once Synchronous mode is selected, reception is enabled by setting either the Single Receive Enable bit, SREN (RCSTA<5>), or the Continuous Receive Enable bit, CREN (RCSTA<4>). Data is sampled on the RX pin on the falling edge of the clock.

If enable bit SREN is set, only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.

- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, set enable bit RCIE.
- 5. If 9-bit reception is desired, set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- 7. Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if the enable bit RCIE was set.
- 8. Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	51
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	54
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	54
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	54
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	53
RCREG	EUSART Re	ceive Registe	r						53
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	53
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	53
SPBRGH	EUSART Baud Rate Generator Register High Byte							53	
SPBRG	EUSART Ba	EUSART Baud Rate Generator Register Low Byte							53
Lawawali		بامحجم المعاصم							•

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.

Note 1: Reserved in PIC18F2682/2685 devices; always maintain these bits clear.

19.7 Use of the ECCP1 Trigger

An A/D conversion can be started by the "Special Event Trigger" of the ECCP1 module. This requires that the ECCP1M3:ECCP1M0 bits (ECCP1CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D acquisition and conversion and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH/ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition period is either timed by the user, or an appropriate TACQ time selected before the "Special Event Trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the "Special Event Trigger" will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	51
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	54
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	54
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	54
IPR2	OSCFIP	CMIP ⁽¹⁾	_	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP ⁽¹⁾	53
PIR2	OSCFIF	CMIF ⁽¹⁾	_	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽¹⁾	54
PIE2	OSCFIE	CMIE ⁽¹⁾	_	EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE ⁽¹⁾	54
ADRESH	A/D Result	A/D Result Register High Byte							
ADRESL	A/D Result	Register Lo	ow Byte						52
ADCON0	—	—	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	52
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	52
ADCON2	ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	53
PORTA	RA7 ⁽²⁾	RA6 ⁽²⁾	RA5	RA4	RA3	RA2	RA1	RA0	54
TRISA	TRISA7 ⁽²⁾	TRISA6 ⁽²⁾	PORTA Da	ta Direction F	Register				54
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	54
TRISB	PORTB Da	ta Direction	Register						54
LATB	LATB Data	Output Reg	ister						54
PORTE ⁽⁴⁾	—	_	_		RE3 ⁽³⁾	RE2 ⁽¹⁾	RE1 ⁽¹⁾	RE0 ⁽¹⁾	54
TRISE ⁽⁴⁾	IBF	OBF	IBOV	PSPMODE		TRISE2	TRISE1	TRISE0	54
LATE ⁽⁴⁾	_	—	_	—		LATE Data	Output Reg	jister	54

 TABLE 19-2:
 REGISTERS ASSOCIATED WITH A/D OPERATION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These bits are unimplemented on PIC18F2682/2685 devices; always maintain these bits clear.

2: These pins may be configured as port pins depending on the oscillator mode selected.

3: RE3 port bit is available only as an input pin when the MCLRE Configuration bit is '0'.

4: These registers are not implemented on PIC18F2682/2685 devices.

23.2.6 CAN INTERRUPT REGISTERS

Register 23-56 through Register 23-58 in this section are the same as described in **Section 9.0 "Interrupts"**. They are duplicated here for convenience.

REGISTER 23-56: PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3

Mode 0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Mode o	IRXIF	WAKIF	ERRIF	TXB2IF	TXB1IF ⁽¹⁾	TXB0IF ⁽¹⁾	RXB1IF	RXB0IF
Mode 1,2	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	IRXIF	WAKIF	ERRIF	TXBnIF	TXB1IF ⁽¹⁾	TXB0IF ⁽¹⁾	RXBnlF	FIFOWMIF
	bit 7							bit C
Legend:								
R = Readab			W = Writable		•	emented bit, r	ead as '0'	
-n = Value a	It POR		'1' = Bit is se	et	'0' = Bit is c	leared	x = Bit is un	known
bit 7	1 = An invali	Invalid Recei id message h id message c	as occurred					
bit 6	WAKIF: CAL	N bus Activity on CAN bus h ity on CAN bu	Wake-up Int	errupt Flag I	bit			
bit 5	ERRIF: CAN 1 = An error	l bus Error In	terrupt Flag b d in the CAN		Itiple sources)		
bit 4	When CAN is in Mode 0: TXB2IF: CAN Transmit Buffer 2 Interrupt Flag bit 1 = Transmit Buffer 2 has completed transmission of a message and may be reloaded 0 = Transmit Buffer 2 has not completed transmission of a message When CAN is in Mode 1 or 2: TXBNIF: Any Transmit Buffer Interrupt Flag bit 1 = One or more transmit buffers have completed transmission of a message and may be reloaded 0 = No transmit buffer is ready for reload							
bit 3	1 = Transmit		completed tr	ansmission		e and may be sage	reloaded	
bit 2	TXB0IF: CA 1 = Transmit	N Transmit B t Buffer 0 has	uffer 0 Interru completed tr	upt Flag bit ⁽¹ ansmission) of a message	e and may be	reloaded	
bit 1	 o = Transmit Buffer 0 has not completed transmission of a message When CAN is in Mode 0: RXB1IF: CAN Receive Buffer 1 Interrupt Flag bit 1 = Receive Buffer 1 has received a new message o = Receive Buffer 1 has not received a new message When CAN is in Mode 1 or 2: RXBnIF: Any Receive Buffer Interrupt Flag bit 1 = One or more receive buffers has received a new message 							
bit 0	 0 = No receive buffer has received a new message When CAN is in Mode 0: RXB0IF: CAN Receive Buffer 0 Interrupt Flag bit 1 = Receive Buffer 0 has received a new message 0 = Receive Buffer 0 has not received a new message When CAN is in Mode 1: Unimplemented: Read as '0' When CAN is in Mode 2: FIFOWMIF: FIFO Watermark Interrupt Flag bit 1 = FIFO high watermark is reached 0 = FIFO high watermark is not reached 							

Note 1: In CAN Mode 1 and 2, these bits are forced to '0'.

TABLE 23-1: CAN CONTROLLER REGISTER MAP (CONTINUED)

Address ⁽¹⁾	Name	Address	Name	Address	Name	Address	Name
E7Fh	CANCON_RO4 ⁽²⁾	E5Fh	CANCON_RO6(2)	E3Fh	CANCON_RO8 ⁽²⁾	E1Fh	(4)
E7Eh	CANSTAT_RO4 ⁽²⁾	E5Eh	CANSTAT_RO6 ⁽²⁾	E3Eh	CANSTAT_RO8 ⁽²⁾	E1Eh	(4)
E7Dh	B5D7	E5Dh	B3D7	E3Dh	B1D7	E1Dh	(4)
E7Ch	B5D6	E5Ch	B3D6	E3Ch	B1D6	E1Ch	(4)
E7Bh	B5D5	E5Bh	B3D5	E3Bh	B1D5	E1Bh	(4)
E7Ah	B5D4	E5Ah	B3D4	E3Ah	B1D4	E1Ah	(4)
E79h	B5D3	E59h	B3D3	E39h	B1D3	E19h	(4)
E78h	B5D2	E58h	B3D2	E38h	B1D2	E18h	(4)
E77h	B5D1	E57h	B3D1	E37h	B1D1	E17h	(4)
E76h	B5D0	E56h	B3D0	E36h	B1D0	E16h	(4)
E75h	B5DLC	E55h	B3DLC	E35h	B1DLC	E15h	(4)
E74h	B5EIDL	E54h	B3EIDL	E34h	B1EIDL	E14h	(4)
E73h	B5EIDH	E53h	B3EIDH	E33h	B1EIDH	E13h	(4)
E72h	B5SIDL	E52h	B3SIDL	E32h	B1SIDL	E12h	(4)
E71h	B5SIDH	E51h	B3SIDH	E31h	B1SIDH	E11h	(4)
E70h	B5CON	E50h	B3CON	E30h	B1CON	E10h	(4)
E6Fh	CANCON_RO5	E4Fh	CANCON_RO7	E2Fh	CANCON_RO9	E0Fh	(4)
E6Eh	CANSTAT_RO5	E4Eh	CANSTAT_RO7	E2Eh	CANSTAT_RO9	E0Eh	(4)
E6Dh	B4D7	E4Dh	B2D7	E2Dh	B0D7	E0Dh	(4)
E6Ch	B4D6	E4Ch	B2D6	E2Ch	B0D6	E0Ch	(4)
E6Bh	B4D5	E4Bh	B2D5	E2Bh	B0D5	E0Bh	(4)
E6Ah	B4D4	E4Ah	B2D4	E2Ah	B0D4	E0Ah	(4)
E69h	B4D3	E49h	B2D3	E29h	B0D3	E09h	(4)
E68h	B4D2	E48h	B2D2	E28h	B0D2	E08h	(4)
E67h	B4D1	E47h	B2D1	E27h	B0D1	E07h	(4)
E66h	B4D0	E46h	B2D0	E26h	B0D0	E06h	(4)
E65h	B4DLC	E45h	B2DLC	E25h	B0DLC	E05h	(4)
E64h	B4EIDL	E44h	B2EIDL	E24h	B0EIDL	E04h	(4)
E63h	B4EIDH	E43h	B2EIDH	E23h	B0EIDH	E03h	(4)
E62h	B4SIDL	E42h	B2SIDL	E22h	B0SIDL	E02h	(4)
E61h	B4SIDH	E41h	B2SIDH	E21h	B0SIDH	E01h	(4)
E60h	B4CON	E40h	B2CON	E20h	B0CON	E00h	(4)

Note 1: Shaded registers are available in Access Bank low area, while the rest are available in Bank 15.

2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the controller register due to the Microchip header file requirement.

3: These registers are not CAN registers.

4: Unimplemented registers are read as '0'.

Address ⁽¹⁾	Name	Address	Name	Address	Name	Address	Name
DFFh	(4)	DDFh	(4)	DBFh	(4)	D9Fh	(4)
DFEh	(4)	DDEh	(4)	DBEh	(4)	D9Eh	(4)
DFDh	(4)	DDDh	(4)	DBDh	(4)	D9Dh	(4)
DFCh	TXBIE	DDCh	(4)	DBCh	(4)	D9Ch	(4)
DFBh	(4)	DDBh	(4)	DBBh	(4)	D9Bh	(4)
DFAh	BIE0	DDAh	(4)	DBAh	(4)	D9Ah	(4)
DF9h	(4)	DD9h	(4)	DB9h	(4)	D99h	(4)
DF8h	BSEL0	DD8h	SDFLC	DB8h	(4)	D98h	(4)
DF7h	(4)	DD7h	(4)	DB7h	(4)	D97h	(4)
DF6h	(4)	DD6h	(4)	DB6h	(4)	D96h	(4)
DF5h	(4)	DD5h	RXFCON1	DB5h	(4)	D95h	(4)
DF4h	(4)	DD4h	RXFCON0	DB4h	(4)	D94h	(4)
DF3h	MSEL3	DD3h	(4)	DB3h	(4)	D93h	RXF15EIDL
DF2h	MSEL2	DD2h	(4)	DB2h	(4)	D92h	RXF15EIDH
DF1h	MSEL1	DD1h	(4)	DB1h	(4)	D91h	RXF15SIDL
DF0h	MSEL0	DD0h	(4)	DB0h	(4)	D90h	RXF15SIDH
DEFh	(4)	DCFh	(4)	DAFh	(4)	D8Fh	(4)
DEEh	(4)	DCEh	(4)	DAEh	(4)	D8Eh	(4)
DEDh	(4)	DCDh	(4)	DADh	(4)	D8Dh	(4)
DECh	(4)	DCCh	(4)	DACh	(4)	D8Ch	(4)
DEBh	(4)	DCBh	(4)	DABh	(4)	D8Bh	RXF14EIDL
DEAh	(4)	DCAh	(4)	DAAh	(4)	D8Ah	RXF14EIDH
DE9h	(4)	DC9h	(4)	DA9h	(4)	D89h	RXF14SIDL
DE8h	(4)	DC8h	(4)	DA8h	(4)	D88h	RXF14SIDH
DE7h	RXFBCON7	DC7h	(4)	DA7h	(4)	D87h	RXF13EIDL
DE6h	RXFBCON6	DC6h	(4)	DA6h	(4)	D86h	RXF13EIDH
DE5h	RXFBCON5	DC5h	(4)	DA5h	(4)	D85h	RXF13SIDL
DE4h	RXFBCON4	DC4h	(4)	DA4h	(4)	D84h	RXF13SIDH
DE3h	RXFBCON3	DC3h	(4)	DA3h	(4)	D83h	RXF12EIDL
DE2h	RXFBCON2	DC2h	(4)	DA2h	(4)	D82h	RXF12EIDH
DE1h	RXFBCON1	DC1h	(4)	DA1h	(4)	D81h	RXF12SIDL
DE0h	RXFBCON0	DC0h	(4)	DA0h	(4)	D80h	RXF12SIDH

TABLE 23-1: CAN CONTROLLER REGISTER MAP (CONTINUED)

Note 1: Shaded registers are available in Access Bank low area, while the rest are available in Bank 15.

2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the controller register due to the Microchip header file requirement.

3: These registers are not CAN registers.

4: Unimplemented registers are read as '0'.

BTG	ì	Bit Toggle	ə f		BOV	1	Branch if	Overflow			
Synta	ax:	BTG f, b {,a	1}		Synta	ax:	BOV n	BOV n			
Oper	ands:	$0 \leq f \leq 255$			Oper	ands:	-128 ≤ n ≤ 1	27			
		0 ≤ b < 7 a ∈ [0,1]			Oper	Operation:		if Overflow bit is '1' $(PC) + 2 + 2n \rightarrow PC$			
Oper	ation:	$(f \le b >) \rightarrow f \le b >$		Statu	Status Affected:						
Statu	s Affected:	None			Enco	ding:	1110	0100 nn	nn nnnn		
Enco	ding:	0111	0111 bbba ffff ffff		Desc	ription:	If the Overf	ow bit is '1', t	hen the		
Desc	ription:	Bit 'b' in data memory location 'f' is inverted.					program wi				
		If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).					added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be				
				ed instruction			PC + 2 + 2n. This instruction is then a two-cycle instruction.				
			ed, this instru Literal Offset a	ction operates	Word	le:	1				
			ever f \leq 95 (5	•			-				
			.2.3 "Byte-Or		Cycle		1(2)				
			ed Instruction set Mode" for	is in Indexed		ycle Activity:					
Word		1			lf Ju	Q1	Q2	Q3	Q4		
		-				Decode	Read literal	Process	Write to PC		
Cycle		1				Decode	'n'	Data	White to F O		
QC	ycle Activity:			• <i>i</i>		No	No	No	No		
	Q1	Q2	Q3	Q4		operation	operation	operation	operation		
	Decode	Read register 'f'	Process Data	Write register 'f'	lf No	o Jump:					
		regioter i	Dulu	register i		Q1	Q2	Q3	Q4		
<u>Exan</u>	nple:	BTG P	ORTC, 4,	D		Decode	Read literal 'n'	Process Data	No operation		
	Before Instruc PORTC	= 0111 (0101 [75h]		Exan	<u>ıple:</u>	HERE	BOV Jump	0		
	After Instruction PORTC		0101 [65h]			Before Instruc	ction				
	TORTO	- 0110 (PC After Instruction	= ad	dress (HERE)		
						If Overflo PC If Overflo	ow = 1; = ad	dress (Jump)		
						PC		dress (HERE	+ 2)		

TSTFSZ		Test f, Ski	Test f, Skip if 0							
Syntax:		TSTFSZ f {,	,a}							
Operands:		0 ≤ f ≤ 255 a ∈ [0,1]								
Operation:		skip if f = 0								
Status Affe	cted:	None	None							
Encoding:		0110	0110 011a ffff ffff							
Description	1:	during the c is discarded making this If 'a' is '0', tt If 'a' is '1', tt GPR bank (If 'a' is '0' al set is enable in Indexed I mode when Section 25. Bit-Oriente	If 'f' = 0, the next instruction fetched during the current instruction execution is discarded and a NOP is executed, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed							
		Literal Offs	et Mode" for	details.						
Words:		1	1							
Cycles:		,	rcles if skip and a 2-word instru							
Q Cycle A	ctivity:									
	Q1	Q2	Q3	Q4						
De	code	Read	Process	No						
		register 'f'	Data	operation						
lf skip:	04	00	00	01						
	Q1 No	Q2	Q3 No	Q4 No						
	no ration	No operation	operation	operation						
		d by 2-word ins								
-	Q1	Q2	Q3	Q4						
1	٧o	No	No	No						
оре	ration	operation	operation	operation						
	No	No	No	No						
ope	ration	operation	operation	operation						
<u>Example:</u>		HERE 1 NZERO : ZERO :		, 1						
F	e Instruc PC Instructio	= Ad	= Address (HERE)							
 F 	f CNT PC f CNT PC	= 001 = Ad ≠ 001	dress (ZERO)							

XORLW	Exclusiv	Exclusive OR Literal with W							
Syntax:	XORLW	k							
Operands:	$0 \le k \le 25$	5							
Operation:	(W) .XOR	$k \rightarrow W$							
Status Affected:	N, Z								
Encoding:	0000	1010	kkk	k	kkkk				
Description:	The conte the 8-bit li in W.								
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3			Q4				
Decode	Read literal 'k'	Proce Data		Wr	ite to W				
Example:	XORLW	0AFh							
Before Instruc W	= B5h								
After Instructio W	on = 1Ah								

27.2 DC Characteristics:

Power-Down and Supply Current PIC18F2682/2685/4682/4685 (Industrial) PIC18LF2682/2685/4682/4685 (Industrial) (Continued)

	2682/2685/4682/4685 strial)		i rd Oper ing temp	•	•	as otherwise stated $A \leq +85^{\circ}C$ for indust	,	
	682/2685/4682/4685 strial, Extended)		i rd Oper ing temp	•	-40°C ≤ T	as otherwise states $A \le +85^{\circ}C$ for indust $A \le +125^{\circ}C$ for extended of the extended of	rial	
Param No.	Device	Тур	Max Units Conditions				ions	
	Supply Current (IDD) ^(2,3)							
	PIC18LF268X/468X	2.9	8	μA	-40°C			
		3.1	8	μA	+25°C	VDD = 2.0V		
		3.6	12	μA	+85°C			
	PIC18LF268X/468X	4.5	12	μA	-40°C			
		4.8	12	μA	+25°C	VDD = 3.0V	Fosc = 31 kHz	
		5.8	17	μA	+85°C		(RC_IDLE mode, Internal oscillator source)	
	All devices	9.2	25	μA	-40°C			
		9.8	25	μA	+25°C			
		11.4	36	μA	+85°C	VDD = 5.0V		
	Extended devices only	21	180	μA	+125°C			
	PIC18LF268X/468X	165	400	μA	-40°C			
		175	400	μA	+25°C	VDD = 2.0V		
		190	400	μA	+85°C			
	PIC18LF268X/468X	250	600	μA	-40°C			
		270	600	μA	+25°C	VDD = 3.0V	Fosc = 1 MHz	
		290	600	μA	+85°C		(RC_IDLE mode, Internal oscillator source)	
	All devices	0.5	1	mA	-40°C			
		0.5	1	mA	+25°C	VDD = 5.0V		
		0.5	1	mA	+85°C	VDD = 5.0V		
	Extended devices only	0.6	1.4	mA	+125°C			
	PIC18LF268X/468X	0.34	1.1	mA	-40°C			
		0.35	1.1	mA	+25°C	VDD = 2.0V		
		0.36	1.1	mA	+85°C			
	PIC18LF268X/468X	0.52	1.5	mA	-40°C			
		0.54	1.5	mA	+25°C	VDD = 3.0V	Fosc = 4 MHz (RC_IDLE mode,	
		0.58	1.5	mA	+85°C		Internal oscillator source)	
	All devices	1	2.7	mA	-40°C			
		1.1	2.7	mA	+25°C	VDD = 5.0V		
		1.1	2.7	mA	+85°C	VDD = 3.0V		
	Extended devices only	1.1	3.6	mA	+125°C			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through RExT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

APPENDIX A: REVISION HISTORY

Revision A (February 2006)

Original data sheet for PIC18F2682/2685/4682/4685 devices.

Revision B (January 2007)

Major edits to **Section 27.0 "Electrical Characteristics"**. Packaging diagrams have been updated and minor edits to text have been made throughout document.

Revision C (October 2009)

Updated to remove Preliminary status.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

Features	PIC18F2682	PIC18F2685	PIC18F4682	PIC18F4685
Program Memory (Bytes)	80K	96K	80K	96K
Program Memory (Instructions)	40960	49152	40960	49152
Interrupt Sources	27	27	28	28
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Capture/Compare/PWM Modules	1	1	1	1
Enhanced Capture/Compare/ PWM Modules	0	0	1	1
Parallel Slave Port Communications (PSP)	No	No	Yes	Yes
10-Bit Analog-to-Digital Module	8 input channels	8 input channels	11 input channels	11 input channels
Packages	28-pin PDIP 28-pin SOIC	28-pin PDIP 28-pin SOIC	40-pin PDIP 44-pin TQFP 44-pin QFN	40-pin PDIP 44-pin TQFP 44-pin QFN

TABLE B-1: DEVICE DIFFERENCES

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	Name	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appli	cation (optional):	
Woul	d you like a reply?YN	
Devic	ce: PIC18F2682/2685/4682/4685	Literature Number: DS39761C
Ques	tions:	
1. V	Vhat are the best features of this docu	ument?
_		
_		
2. ⊦	low does this document meet your ha	ardware and software development needs?
_		
_		
3. C	o you find the organization of this do	cument easy to follow? If not, why?
—		
	What additions to the document do vo	u think would enhance the structure and subject?
ч . v		
5. V	Vhat deletions from the document cou	uld be made without affecting the overall usefulness?
		Ū
_		
6. Is	s there any incorrect or misleading inf	formation (what and where)?
_		
_		
7. ⊦	low would you improve this documen	t?
_		
_		