

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	80KB (40K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4682-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal	Typical Capacitor Values Tested:				
	Fieq	C1	C2			
LP	32 kHz	33 pF	33 pF			
	200 kHz	15 pF	15 pF			
XT	1 MHz	33 pF	33 pF			
	4 MHz	27 pF	27 pF			
HS	4 MHz	27 pF	27 pF			
	8 MHz	22 pF	22 pF			
	20 MHz	15 pF	15 pF			

Capacitor values are for design guidance only.

These capacitors were tested with the crystals listed below for basic start-up and operation. **These values are not optimized.**

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following this table for additional information.

Crystals Used:						
32 kHz	4 MHz					
200 kHz	8 MHz					
1 MHz	20 MHz					

- **Note 1:** Higher capacitance increases the stability of the oscillator but also increases the start-up time.
 - When operating below 3V VDD, or when using certain ceramic resonators at any voltage, it may be necessary to use the HS mode or switch to a crystal oscillator.
 - Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - Rs may be required to avoid overdriving crystals with low drive level specifications.
 - Always verify oscillator performance over the VDD and temperature range that is expected for the application.

An external clock source may also be connected to the OSC1 pin in the HS mode, as shown in Figure 2-2.

2.3 External Clock Input

The EC and ECIO Oscillator modes require an external clock source to be connected to the OSC1 pin. There is no oscillator start-up time required after a Power-on Reset or after an exit from Sleep mode.

In the EC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 2-3 shows the pin connections for the EC Oscillator mode.

The ECIO Oscillator mode functions like the EC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6). Figure 2-4 shows the pin connections for the ECIO Oscillator mode.

If the IRCF bits were previously at a non-zero value or if INTSRC was set before setting SCS1 and the INTOSC source was already stable, the IOFS bit will remain set.

On transitions from RC_RUN mode to PRI_RUN mode, the device continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 3-4). When the clock switch is complete, the IOFS bit is cleared, the OSTS bit is set and the primary clock is providing the device clock. The IDLEN and SCS bits are not affected by the switch. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

FIGURE 3-3: TRANSITION TIMING TO RC_RUN MODE

5.5 Program Memory and the Extended Instruction Set

The operation of program memory is unaffected by the use of the extended instruction set.

Enabling the extended instruction set adds eight additional two-word commands to the existing PIC18 instruction set: ADDFSR, ADDULNK, CALLW, MOVSF, MOVSS, PUSHL, SUBFSR and SUBULNK. These instructions are executed as described in Section 5.2.4 "Two-Word Instructions".

5.6 Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many of the core PIC18 instructions is different. This is due to the introduction of a new addressing mode for the data memory space. This mode also alters the behavior of Indirect Addressing using FSR2 and its associated operands.

What does not change is just as important. The size of the data memory space is unchanged, as well as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all. Indirect Addressing with FSR0 and FSR1 also remains unchanged.

5.6.1 INDEXED ADDRESSING WITH LITERAL OFFSET

Enabling the PIC18 extended instruction set changes the behavior of Indirect Addressing using the FSR2 register pair and its associated file operands. Under the proper conditions, instructions that use the Access Bank – that is, most bit-oriented and byte-oriented – instructions – can invoke a form of Indexed Addressing using an offset specified in the instruction. This special addressing mode is known as Indexed Addressing with Literal Offset or Indexed Literal Offset mode. When using the extended instruction set, this addressing mode requires the following:

- The use of the Access Bank is forced ('a' = 0); and
- The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used with the BSR in Direct Addressing), or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an offset value to an Address Pointer, specified by FSR2. The offset and the contents of FSR2 are added to obtain the target address of the operation.

5.6.2 INSTRUCTIONS AFFECTED BY INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use Direct Addressing are potentially affected by the Indexed Literal Offset Addressing mode. This includes all byteoriented and bit-oriented instructions, or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions are not affected if they use the Access Bank (Access RAM bit is '1'), or include a file address of 60h or above. Instructions meeting these criteria will continue to execute as before. A comparison of the different possible addressing modes when the extended instruction set is enabled in shown in Figure 5-8.

Those who desire to use byte-oriented or bit-oriented instructions in the Indexed Literal Offset mode should note the changes to assembler syntax for this mode. This is described in more detail in **Section 25.2.1** "Extended Instruction Syntax".

7.0 DATA EEPROM MEMORY

The data EEPROM is a nonvolatile memory array, separate from the data RAM and program memory, that is used for long-term storage of program data. It is not directly mapped in either the register file or program memory space but is indirectly addressed through the Special Function Registers (SFRs). The EEPROM is readable and writable during normal operation over the entire VDD range.

Five SFRs are used to read and write to the data EEPROM as well as the program memory. They are:

- EECON1
- EECON2
- EEDATA
- EEADR
- EEADRH

The data EEPROM allows byte read and write. When interfacing to the data memory block, EEDATA holds the 8-bit data for read/write and the EEADRH:EEADR register pair holds the address of the EEPROM location being accessed.

The EEPROM data memory is rated for high erase/write cycle endurance. A byte write automatically erases the location and writes the new data (erase-before-write). The write time is controlled by an on-chip timer; it will vary with voltage and temperature, as well as from chip to chip. Please refer to parameter D122 (Table 27-1 in **Section 27.0 "Electrical Characteristics**") for exact limits.

7.1 EEADR and EEADRH Registers

The EEADRH:EEADR register pair is used to address the data EEPROM for read and write operations. EEADRH holds the two Most Significant bits of the address; the upper 6 bits are ignored. The 10-bit range of the pair can address a memory range of 1024 bytes (00h to 3FFh).

7.2 EECON1 and EECON2 Registers

Access to the data EEPROM is controlled by two registers: EECON1 and EECON2. These are the same registers which control access to the program memory and are used in a similar manner for the data EEPROM.

The EECON1 register (Register 7-1) is the control register for data and program memory access. Control bit EEPGD determines if the access will be to program or data EEPROM memory. When clear, operations will access the data EEPROM memory. When set, program memory is accessed.

Control bit CFGS determines if the access will be to the Configuration registers or to program memory/data EEPROM memory. When set, subsequent operations access Configuration registers. When CFGS is clear, the EEPGD bit selects either program Flash or data EEPROM memory.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set in hardware when the WREN bit is set and cleared when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR is
	read as '1'. This can indicate that a write
	operation was prematurely terminated by
	a Reset, or a write operation was
	attempted improperly.

The WR control bit initiates write operations. The bit cannot be cleared, only set, in software; it is cleared in hardware at the completion of the write operation.

Note:	The EEIF interrupt flag bit (PIR2<4>) is set						
	when the write is complete. It must be						
	cleared in software.						

Control bits, RD and WR, start read and erase/write operations, respectively. These bits are set by firmware and cleared by hardware at the completion of the operation.

The RD bit cannot be set when accessing program memory (EEPGD = 1). Program memory is read using table read instructions. See **Section 6.1 "Table Reads and Table Writes"** regarding table reads.

The EECON2 register is not a physical register. It is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

9.5 RCON Register

The RCON register contains flag bits which are used to determine the cause of the last Reset or wake-up from Idle or Sleep modes. RCON also contains the IPEN bit which enables interrupt priorities.

REGISTER 9-13: RCON: RESET CONTROL REGISTER

R/W-0	R/W-1 ⁽¹⁾	U-0	R/W-1	R-1	R-1	R/W-0 ⁽²⁾	R/W-0
IPEN	SBOREN	_	RI	TO	PD	POR	BOR
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IPEN: Interrupt Priority Enable bit	
	1 = Enable priority levels on interrupts	
	0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)	
bit 6	SBOREN: BOR Software Enable bit ⁽¹⁾	
	For details of bit operation, see Register 4-1.	
bit 5	Unimplemented: Read as '0'	
bit 4	RI: RESET Instruction Flag bit	
	For details of bit operation, see Register 4-1.	
bit 3	TO: Watchdog Time-out Flag bit	
	For details of bit operation, see Register 4-1.	
bit 2	PD: Power-Down Detection Flag bit	
	For details of bit operation, see Register 4-1.	
bit 1	POR : Power-on Reset Status bit ⁽²⁾	
	For details of bit operation, see Register 4-1.	
bit 0	BOR: Brown-out Reset Status bit	
	For details of bit operation, see Register 4-1.	
N		

- **Note 1:** If SBOREN is enabled, its Reset state is '1'; otherwise, it is '0'. **2:** The actual Reset value of POR is determined by the type of device Reset. See Reset
 - 2: The actual Reset value of POR is determined by the type of device Reset. See Register 4-1 for additional information.

10.2 PORTB, TRISB and LATB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATB) is also memory mapped. Read-modify-write operations on the LATB register read and write the latched output value for PORTB.

Pins RB2 through RB3 are multiplexed with the ECAN peripheral. Refer to **Section 23.0** "**ECAN™ Technol-ogy**" for proper settings of TRISB when CAN is enabled.

CLRF PORT	B ; Initialize PORTB by ; clearing output
	; data latches
CLRF LATB	; Alternate method
	; to clear output
	; data latches
MOVLW 0Eh	; Set RB<4:0> as
MOVWF ADCO	N1 ; digital I/O pins
	; (required if config bit
	; PBADEN is set)
MOVLW OCFh	; Value used to
	; initialize data
	; direction
MOVWF TRIS	B ; Set RB<3:0> as inputs
	; RB<5:4> as outputs
	; RB<7:6> as inputs

EXAMPLE 10-2: INITIALIZING PORTB

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn <u>on all</u> the pull-ups. This is performed by clearing bit RBPU (INTCON2<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on all device Resets.

Note: On a Power-on Reset, RB4:RB0 are configured as analog inputs by default and read as '0'; RB7:RB5 are configured as digital inputs.

> By programming the Configuration bit, PBADEN (CONFIG3H<1>), RB4:RB0 will alternatively be configured as digital inputs on POR.

Four of the PORTB pins (RB7:RB4) have an interrupt-on-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt-on-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are ORed together to generate the RB Port Change Interrupt with Flag bit, RBIF (INTCON<0>).

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB (except with the MOVFF (ANY), PORTB instruction). This will end the mismatch condition.
- b) Clear flag bit, RBIF.

A mismatch condition will continue to set flag bit, RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

NOTES:

U-0	U-0		R/W	-0	R/V	V-0	R/V	V-0 ⁽¹⁾	F	R/W-q ⁽	1)	R/W	′-q ⁽¹⁾	R/W-q ⁽¹⁾
	—		VCF	G1	VCF	-G0	PC	FG3	F	PCFG	2	PCI	-G1	PCFG0
bit 7														bit 0
Legend:														
R = Readab	ole bit	V	V = Wri	table t	bit		U = L	Inimple	emente	ed bit,	read	as '0'		
-n = Value a	at POR	'1	' = Bit	is set			'0' = I	Bit is cl	eared			x = Bit	is unkr	nown
bit 7-6	Unimpler	nenteo	d: Rea	d as '0	,									
bit 5	VCFG1: \	/oltage	Refer	ence (Configu	iration	bit (VR	EF- SO	urce)					
	1 = VREF- 0 = AVSS	· (AN2)												
bit 4	VCFG0: \	/oltage	Refer	ence (Configu	iration	bit (VR	EF+ SC	urce)					
	1 = VREF	+ (AN3)											
	0 = AV DD													
bit 3-0	PCFG3:P	CFG0	: A/D F	Port Co	onfigura	ation C	control	bits:		T				
	PCFG3:	10	6	8	7 ⁽²⁾	6 ⁽²⁾	5 ⁽²⁾	4	e	2	.	0		
	PCFG0	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN		
	0000 (1)	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α		
	0001	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α		
	0010	Α	Α	Α	Α	Α	А	Α	Α	Α	Α	Α		
	0011	А	Α	Α	А	А	А	Α	А	Α	А	Α		
	0100	А	Α	Α	А	А	А	Α	А	А	А	Α		
	0101	D	Α	А	А	А	А	Α	А	А	А	А		
	0110	D	D	Α	Α	Α	Α	Α	А	А	Α	Α		
	0111(1)	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α		
	1000	D	D	D	D	Α	Α	Α	Α	А	Α	Α		
	1001	D	D	D	D	D	Α	Α	Α	А	Α	Α		
	1010	D	D	D	D	D	D	Α	Α	Α	Α	Α		
	1011	D	D	D	D	D	D	D	Α	Α	Α	А		
	1100	D	D	D	D	D	D	D	D	Α	Α	Α		
	1101	D	D	D	D	D	D	D	D	D	Α	Α		
	1110	D	D	D	D	D	D	D	D	D	D	А		

REGISTER 19-2: ADCON1: A/D CONTROL REGISTER 1

Note 1: The POR value of the PCFG bits depends on the value of the PBADEN bit in Configuration Register 3H. When PBADEN = 1, PCFG<3:0> = 0000; when PBADEN = 0, PCFG<3:0> = 0111.

D

D

D

D

D

D

D

2: AN5 through AN7 are available only on PIC18F4682/4685 devices.

D

D

D = Digital I/O

1111

D

A = Analog input

D

20.2 Comparator Operation

A single comparator is shown in Figure 20-2, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 20-2 represent the uncertainty, due to input offsets and response time.

20.3 Comparator Reference

Depending on the comparator operating mode, either an external or internal voltage reference may be used. The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is adjusted accordingly (Figure 20-2).

FIGURE 20-2: SINGLE COMPARATOR

20.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between VSS and VDD and can be applied to either pin of the comparator(s).

20.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference from the comparator voltage reference module. This module is described in more detail in **Section 21.0 "Comparator Voltage Reference Module"**.

The internal reference is only available in the mode where four inputs are multiplexed to two comparators (CM2:CM0 = 110). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

20.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (see Section 27.0 "Electrical Characteristics").

20.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read-only. The comparator outputs may also be directly output to the RE1 and RE2 I/O pins. When enabled, multiplexors in the output path of the RE1 and RE2 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 20-3 shows the comparator output block diagram.

The TRISE bits will still function as an output enable/ disable for the RE1 and RE2 pins while in this mode.

The polarity of the comparator outputs can be changed using the C2INV and C1INV bits (CMCON<5:4>).

- Note 1: When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - 2: Analog levels on any pin defined as a digital input may cause the input buffer to consume more current than is specified.

$\label{eq:register23-28: BnEIDH: TX/RX BUFFER n EXTENDED IDENTIFIER REGISTERS, \\ HIGH BYTE IN RECEIVE MODE [0 \le n \le 5, TXnEN (BSEL0<n>) = 0]^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 7							bit 0
l egend:							

=ogonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **EID15:EID8:** Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9 | EID8 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **EID15:EID8:** Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

$\label{eq:register23-30:BnEIDL: TX/RX BUFFER n EXTENDED IDENTIFIER REGISTERS, \\ LOW BYTE IN RECEIVE MODE [0 \le n \le 5, TXnEN (BSEL<n>) = 0]^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID7:EID0: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

TABLE 23-1: CAN CONTROLLER REGISTER MAP (CONTINUED)

Address ⁽¹⁾	Name	Address	Name	Address	Name	Address	Name
E7Fh	CANCON_RO4 ⁽²⁾	E5Fh	CANCON_RO6 ⁽²⁾	E3Fh	CANCON_RO8 ⁽²⁾	E1Fh	(4)
E7Eh	CANSTAT_RO4 ⁽²⁾	E5Eh	CANSTAT_RO6 ⁽²⁾	E3Eh	CANSTAT_RO8 ⁽²⁾	E1Eh	(4)
E7Dh	B5D7	E5Dh	B3D7	E3Dh	B1D7	E1Dh	(4)
E7Ch	B5D6	E5Ch	B3D6	E3Ch	B1D6	E1Ch	(4)
E7Bh	B5D5	E5Bh	B3D5	E3Bh	B1D5	E1Bh	(4)
E7Ah	B5D4	E5Ah	B3D4	E3Ah	B1D4	E1Ah	(4)
E79h	B5D3	E59h	B3D3	E39h	B1D3	E19h	(4)
E78h	B5D2	E58h	B3D2	E38h	B1D2	E18h	(4)
E77h	B5D1	E57h	B3D1	E37h	B1D1	E17h	(4)
E76h	B5D0	E56h	B3D0	E36h	B1D0	E16h	(4)
E75h	B5DLC	E55h	B3DLC	E35h	B1DLC	E15h	(4)
E74h	B5EIDL	E54h	B3EIDL	E34h	B1EIDL	E14h	(4)
E73h	B5EIDH	E53h	B3EIDH	E33h	B1EIDH	E13h	(4)
E72h	B5SIDL	E52h	B3SIDL	E32h	B1SIDL	E12h	(4)
E71h	B5SIDH	E51h	B3SIDH	E31h	B1SIDH	E11h	(4)
E70h	B5CON	E50h	B3CON	E30h	B1CON	E10h	(4)
E6Fh	CANCON_RO5	E4Fh	CANCON_RO7	E2Fh	CANCON_RO9	E0Fh	(4)
E6Eh	CANSTAT_RO5	E4Eh	CANSTAT_RO7	E2Eh	CANSTAT_RO9	E0Eh	(4)
E6Dh	B4D7	E4Dh	B2D7	E2Dh	B0D7	E0Dh	(4)
E6Ch	B4D6	E4Ch	B2D6	E2Ch	B0D6	E0Ch	(4)
E6Bh	B4D5	E4Bh	B2D5	E2Bh	B0D5	E0Bh	(4)
E6Ah	B4D4	E4Ah	B2D4	E2Ah	B0D4	E0Ah	(4)
E69h	B4D3	E49h	B2D3	E29h	B0D3	E09h	(4)
E68h	B4D2	E48h	B2D2	E28h	B0D2	E08h	(4)
E67h	B4D1	E47h	B2D1	E27h	B0D1	E07h	(4)
E66h	B4D0	E46h	B2D0	E26h	B0D0	E06h	(4)
E65h	B4DLC	E45h	B2DLC	E25h	B0DLC	E05h	(4)
E64h	B4EIDL	E44h	B2EIDL	E24h	B0EIDL	E04h	(4)
E63h	B4EIDH	E43h	B2EIDH	E23h	B0EIDH	E03h	(4)
E62h	B4SIDL	E42h	B2SIDL	E22h	B0SIDL	E02h	(4)
E61h	B4SIDH	E41h	B2SIDH	E21h	BOSIDH	E01h	(4)
E60h	B4CON	E40h	B2CON	E20h	B0CON	E00h	(4)

Note 1: Shaded registers are available in Access Bank low area, while the rest are available in Bank 15.

2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the controller register due to the Microchip header file requirement.

3: These registers are not CAN registers.

4: Unimplemented registers are read as '0'.

REGISTER 24-8: CONFIG6L: CONFIGURATION REGISTER 6 LOW (BYTE ADDRESS 30000Ah)

U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1
—	_	WRT5 ⁽¹⁾	WRT4	WRT3	WRT2	WRT1	WRT0
bit 7							bit 0

t C = Clearable bit	U = Unimplemented bit, read as '0'
device is unprogrammed	u = Unchanged from programmed state
Jnimplemented: Read as '0'	
WRT5: Write Protection bit ⁽¹⁾	
 Block 5 (014000-017FFFh) not write-p Block 5 (014000-017FFFh) write-prote 	rotected cted
WRT4: Write Protection bit	
 Block 4 (010000-013FFFh) not write-p Block 4 (010000-013FFFh) write-prote 	rotected cted
WRT3: Write Protection bit	
 Block 3 (00C000-00FFFFh) not write-p Block 3 (00C000-00FFFFh) write-prote 	protected
WRT2: Write Protection bit	
 Block 2 (008000-00BFFFh) not write-p Block 2 (008000-00BFFFh) write-prote 	rotected ccted
WRT1: Write Protection bit	
 Block 1 (004000-007FFFh) not write-p Block 1 (004000-007FFFh) write-prote 	rotected cted
WRT0: Write Protection bit	
 Block 0 (000800-003FFFh) not write-p Block 0 (000800-003FFFh) write-prote 	rotected cted
	t C = Clearable bit device is unprogrammed Jnimplemented: Read as '0' NRT5: Write Protection bit ⁽¹⁾ = Block 5 (014000-017FFFh) not write-p = Block 5 (014000-017FFFh) write-prote NRT4: Write Protection bit = Block 4 (010000-013FFFh) not write-p = Block 4 (010000-013FFFh) not write-p = Block 4 (010000-013FFFh) write-prote NRT3: Write Protection bit = Block 3 (00C000-00FFFFh) write-prote NRT2: Write Protection bit = Block 3 (00C000-00FFFFh) write-prote NRT2: Write Protection bit = Block 2 (008000-00BFFFh) write-prote NRT1: Write Protection bit = Block 1 (004000-007FFFh) not write-p = Block 1 (004000-007FFFh) not write-p = Block 1 (004000-007FFFh) not write-prote NRT0: Write Protection bit = Block 0 (000800-003FFFh) not write-prote

Note 1: Unimplemented in PIC18F2682/4682 devices; maintain this bit set.

REGISTER 24-10: CONFIG7L: CONFIGURATION REGISTER 7 LOW (BYTE ADDRESS 30000Ch)

U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1			
_	_	EBTR5 ⁽¹⁾	EBTR4	EBTR3	EBTR2	EBTR1	EBTR0			
bit 7		•		•			bit 0			
Legend:										
R = Readable	bit	C = Clearable	bit	U = Unimpler	nented bit, read	as '0'				
-n = Value whe	en device is unp	programmed		u = Unchange	ed from progran	nmed state				
		-		-	-					
bit 7-6	Unimplemen	ted: Read as ')'							
bit 5	EBTR5: Table	e Read Protecti	on bit ⁽¹⁾							
	1 = Block 5 (0	14000-017FFF	h) not protec	ted from table i	reads executed	in other blocks				
	0 = Block 5 (0	14000-017FFF	h) protected	from table read	Is executed in o	ther blocks				
bit 4	EBTR4: Table	e Read Protecti	on bit							
	1 = Block 4 (010000-013FFFh) not protected from table reads executed in other blocks									
	0 = Block 4 (0)	10000-013FFF	h) protected	from table read	is executed in o	ther blocks				
bit 3	EBTR3: Table	e Read Protecti	on bit							
	1 = Block 3 (00C000-00FFFFh) not protected from table reads executed in other blocks									
h # 0			n) protected	ITOITI LADIE TEA	us executed in c	DITIEL DIOCKS				
DIL 2				to d from to blo		in other blocks				
	1 = Block 2 (008000-00BFFFh) not protected from table reads executed in other blocks									
hit 1	FBTR1. Table	Read Protecti	on hit							
	EDIRI . JUDIE REAU FIDIECIUM DIL 1 = Block 1 (004000-007EEE) not protected from table reads executed in other blocks									
	0 = Block 1 (0)	04000-007FFF	h) protected	from table read	Is executed in o	ther blocks				
bit 0	EBTR0: Table	e Read Protecti	on bit							
	1 = Block 0 (0	00800-003FFF	h) not protec	ted from table i	reads executed	in other blocks				
	0 = Block 0 (0	00800-003FFF	h) protected	from table read	Is executed in o	ther blocks				

Note 1: Unimplemented in PIC18F2682/4682 devices; maintain this bit set.

REGISTER 24-11: CONFIG7H: CONFIGURATION REGISTER 7 HIGH (BYTE ADDRESS 30000Dh)

U-0	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
—	EBTRB	—	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
-n = Value when device is	unprogrammed	u = Unchanged from programmed state

bit 7	Unimplemented: Read as '0'
bit 6	EBTRB: Boot Block Table Read Protection bit
	 1 = Boot Block (000000-0007FFh) not protected from table reads executed in other blocks 0 = Boot Block (000000-0007FFh) protected from table reads executed in other blocks
bit 5-0	Unimplemented: Read as '0'

24.2 Watchdog Timer (WDT)

For PIC18F2682/2685/4682/4685 devices, the WDT is driven by the INTRC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: a SLEEP or CLRWDT instruction is executed, the IRCF bits (OSCCON<6:4>) are changed or a clock failure has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: Changing the setting of the IRCF bits (OSCCON<6:4>) clears the WDT and postscaler counts.
 - **3:** When a CLRWDT instruction is executed, the postscaler count will be cleared.

24.2.1 CONTROL REGISTER

Register 24-14 shows the WDTCON register. This is a readable and writable register which contains a control bit that allows software to override the WDT enable Configuration bit, but only if the Configuration bit has disabled the WDT.

FIGURE 24-1: WDT BLOCK DIAGRAM

RET	URN	Return fro	om Subrouti	ine	RLCF	Rotate Le	eft f through	Carry
Synta	IX:	RETURN	{s}		Syntax:	RLCF f	{,d {,a}}	
Opera	ands:	$s \in [0,1]$			Operands:	$0 \leq f \leq 255$		
Opera	ation:	$(TOS) \rightarrow PO$	С;			d ∈ [0,1] a ∈ [0,1]		
		if s = 1, (WS) → W, (STATUSS) (BSRS) → I PCLATU, P	ightarrow STATUS, BSR, CLATH are ur	nchanged	Operation:	$(f < n >) \rightarrow d$ $(f < 7 >) \rightarrow C$ $(C) \rightarrow dest$	est <n +="" 1="">, ;, <0></n>	
Statu	s Affected:	None		Ū	Status Allected.	C, N, Z	01.1- 55.	
Enco	ding:	0000	0000 000	01 001s	Encouing.			f or rotated
Desc	ription:	Return from popped and is loaded in 's'= 1, the c registers, W are loaded registers, W 's' = 0, no u occurs (def	n subroutine. T I the top of the to the program contents of the /S, STATUSS into their corre /, STATUS and pdate of these ault).	he stack is a stack (TOS) n counter. If shadow and BSRS, asponding d BSR. If a registers		one bit to the flag. If 'd' is W. If 'd' is ' in register ' If 'a' is '0', ' selected. If select the C If 'a' is '0' a set is enab	he left through a '0', the result 1', the result f' (default). the Access Ba 'a' is '1', the E GPR bank (de and the extend led, this instru	the Carry is placed in s stored back ank is USR is used to fault). ed instruction iction
Word	s:	1				operates in	Indexed Liter	al Offset
Cycle	S:	2				Addressing f < 95 (5Fh)	mode whene	ver 2523
QC	cle Activity:					"Byte-Orie	nted and Bit-	Oriented
г	Q1	Q2	Q3	Q4	1	Instruction	ns in Indexed	Literal Offset
	Decode	No	Process Data	POP PC from stack				or f
	No	No	No	No		Ľ	- Teylste	
	operation	operation	operation	operation	Words:	1		
					Cycles:	1		
-					Q Cycle Activity:			
Exam	<u>ipie.</u> After Interrunt	RETURN			Q1	Q2	Q3	Q4
	PC = T	OS			Decode	Read register 'f'	Process Data	Write to destination
					Example: Before Instru REG C After Instruc REG W C	RLCF = 1110 C = 0 tion = 1110 C = 1100 1 = 1	REG, 0,	0

27.2 DC Characteristics: Power-Down and Supply Current PIC18F2682/2685/4682/4685 (Industrial) PIC18LF2682/2685/4682/4685 (Industrial) (Continued)

PIC18LF2682/2685/4682/4685 (Industrial)		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
PIC18F2682/2685/4682/4685 (Industrial, Extended)		$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array} $						
Param No.	Device	Тур	Max	Units	Conditions			
	Supply Current (IDD) ^(2,3)							
	PIC18LF268X/468X	250	600	μA	-40°C			
		250	600	μA	+25°C	VDD = 2.0V		
		250	600	μA	+85°C			
	PIC18LF268X/468X	550	1.2	mA	-40°C			
		480	1.2	mA	+25°C	VDD = 3.0V	Fosc = 1 MHz	
		460	1.2	mA	+85°C		EC oscillator)	
	All devices	1.2	3	mA	-40°C		,	
		1.1	3	mA	+25°C	$V_{DD} = 5.0V$		
		1	3	mA	+85°C	VDD - 0.0V		
	Extended devices only	1	3	mA	+125°C			
	PIC18LF268X/468X	0.72	2.2	mA	-40°C	_		
		0.74	2.2	mA	+25°C	VDD = 2.0V		
		0.74	2.2	mA	+85°C			
	PIC18LF268X/468X	1.3	3.3	mA	-40°C			
		1.3	3.3	mA	+25°C	VDD = 3.0V	FOSC = 4 MHZ	
		1.3	3.3	mA	+85°C		EC oscillator)	
	All devices	2.7	6.6	mA	-40°C			
		2.6	6.6	mA	+25°C	VDD = 5.0V		
		2.5	6.6	mA	+85°C			
	Extended devices only	2.6	6.6	mA	+125°C			
	Extended devices only	8.4	21	mA	+125°C	VDD = 4.2V	Fosc = 25 MHz	
		11	28	mA	+125°C	VDD = 5.0V	(PRI_RUN, EC oscillator)	
	All devices	15	38	mA	-40°C			
		16	38	mA	+25°C	VDD = 4.2V		
		16	38	mA	+85°C		Fosc = 40 MHz	
All devic	All devices	21	44	mA	-40°C		EC oscillator)	
		21	44	mA	+25°C	VDD = 5.0V		
		21	44	mA	+85°C]		

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through RExT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

TABLE 27-25: A/D CONVERSION REQUIREMENTS

Param No.	Symbol	Charact	eristic	Min	Мах	Units	Conditions
130	Tad	A/D Clock Period	PIC18FXXXX	0.7	25.0 ⁽¹⁾	μS	Tosc based, VREF \geq 3.0V
			PIC18LFXXXX	1.4	25.0 ⁽¹⁾	μS	VDD = 2.0V; TOSC based, VREF full range
			PIC18 F XXXX		1	μS	A/D RC mode
			PIC18 LF XXXX		3	μS	VDD = 2.0V; A/D RC mode
131	TCNV	Conversion Time (not including acquisi	tion time) (Note 2)	11	12	Tad	
132	TACQ	Acquisition Time (No	ote 3)	1.4	_	μS	-40°C to +85°C
135	Tswc	Switching Time from	Convert \rightarrow Sample	_	(Note 4)		
136	Тамр	Amplifier Settling Tir	ne (Note 5)	1	_	μS	This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).

Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

- 2: ADRES register may be read on the following TCY cycle.
- **3:** The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (AVDD to AVSS or AVSS to AVDD). The source impedance (*Rs*) on the input channels is 50Ω.
- 4: On the following cycle of the device clock.
- 5: See Section 19.0 "10-Bit Analog-to-Digital Converter (A/D) Module" for minimum conditions when input voltage has changed more than 1 LSb.

29.0 PACKAGING INFORMATION

29.1 Package Marking Information

28-Lead PDIP (Skinny DIP)

Example

Example

40-Lead PDIP

28-Lead SOIC

	PIC18F2685-E/SO@ 0710017	
0		

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available for customer-specific information.

RD0/PSP0/C1IN+22
RD1/PSP1/C1IN22
RD2/PSP2/C2IN+22
RD3/PSP3/C2IN22
RD4/PSP4/ECCP1/P1A22
RD5/PSP5/P1B22
RD6/PSP6/P1C22
RD7/ <u>PS</u> P7/P1D22
RE0/ <u>RD/</u> AN523
RE1/ <u>WR</u> /AN6/C1OUT23
RE2/CS/AN7/C2OUT23
VDD17, 23
Vss
Pinout I/O Descriptions
PIC18F2682/268514
PIC18F4682/468518
PIR Registers120
PLL Frequency Multiplier27
HSPLL Oscillator Mode27
INTOSC Modes 28
Use with INTOSC27
PLL Lock Time-out47
POP
POR. See Power-on Reset.
PORTA
Associated Registers 133
I/O Summary 132
LATA Register 131
PORTA Register 131
TRISA Register 131
FORIB
Associated Registers

Power-Managed Modes	35
Clock Sources	35
Clock Transitions and Status Indicators	
Entering	35
Exiting Idle and Sleep Modes	41
By Interrupt	41
By Reset	41
By WDT Time-out	41
Without an Oscillator Start-up Delay	
Idle Modes	39
PRI_IDLE	40
RC_IDLE	41
SEC_IDLE	40
Multiple Sleep Commands	36
Run Modes	36
PRI_RUN	36
RC_RUN	37
SEC_RUN	36
Selecting	35
Sleep Mode	39
Summary (table)	35
Power-on Reset (POR)	45
Power-up Timer (PWRT)	47
Time-out Sequence	47
Power-up Delays	33
Power-up Timer (PWRT)	33, 47
Prescaler	
Timer2	178
Prescaler, Timer0	151
Assignment (PSA Bit)	151
Rate Select (T0PS2:T0PS0 Bits)	151
Switching Between Timer0 and WDT	151
Prescaler, Timer2	172
PRI_IDLE Mode	40
PRI_RUN Mode	36
Program Counter	64
PCL, PCH and PCU Registers	64
PCLATH and PCLATU Registers	64
Program Memory	
Code Protection	
Extended Instruction Set	93
Instructions	
Two-Word	68
Interrupt Vector	63
Look-up Tables	66
Map and Stack (diagram)	63
Reset Vector	63
Program Verification and Code Protection	
Associated Registers	
Programming. Device Instructions	
PSP See Parallel Slave Port	
Pulse-Width Modulation, See PWM (CCP1/ECCP1	Modules).
PUSH	
PUSH and POP Instructions	65
PUSHI	410
PWM (CCP1 Module)	
Associated Registers	173
CCPR1H·CCPR1L Registers	171
Duty Cycle	171
Example Erequencies/Resolutions	172
Period	171
Setup for PWM Operation	172
TMR2 to PR2 Match	171