

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Details	
Product Status	Obsolete
Core Processor	PowerPC G4
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	360-BCBGA, FCCBGA
Supplier Device Package	360-CBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc7410vu400ne

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- The MPC7410 is implemented in a next generation process technology for core frequency improvement.
- The MPC7410 floating-point unit has been improved to make latency equal for double- and single-precision operations involving multiplication.
- The completion queue has been extended to eight slots.
- There are no other significant changes to scalar pipelines, decode/dispatch/completion mechanisms, or the branch unit. The MPC750 four-stage pipeline model is unchanged (fetch, decode/dispatch, execute, complete/writeback).

Some comments on the MPC7410 with respect to the MPC7400:

- The MPC7410 adds configurable direct-mapped SRAM capability to the L2 cache interface.
- The MPC7410 adds 32-bit interface support to the L2 cache interface. The MPC7410 implements a 19th L2 address pin (L2ASPARE on the MPC7400) in order to support additional address range.
- The MPC7410 removes support for 3.3-V I/O on the L2 cache interface.

Figure 1 shows a block diagram of the MPC7410.

2 Features

This section summarizes features of the MPC7410 implementation of the PowerPC architecture. Major features of the MPC7410 are as follows:

- Branch processing unit
 - Four instructions fetched per clock
 - One branch processed per cycle (plus resolving two speculations)
 - Up to one speculative stream in execution, one additional speculative stream in fetch
 - 512-entry branch history table (BHT) for dynamic prediction
 - 64-entry, four-way set-associative branch target instruction cache (BTIC) for eliminating branch delay slots
- Dispatch unit
 - Full hardware detection of dependencies (resolved in the execution units)
 - Dispatch two instructions to eight independent units (system, branch, load/store, fixed-point unit 1, fixed-point unit 2, floating-point, AltiVec permute, AltiVec ALU)
 - Serialization control (predispatch, postdispatch, execution serialization)

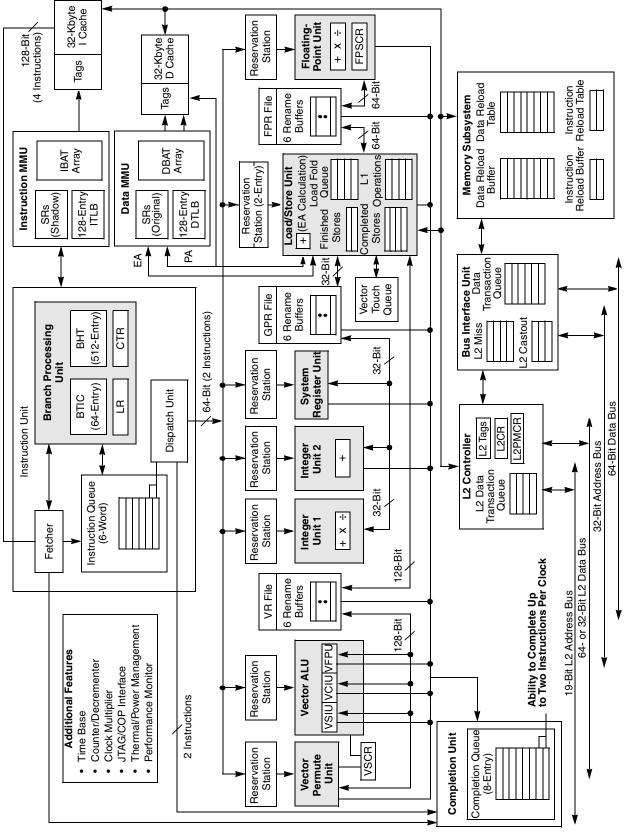
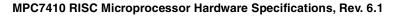



Figure 1. MPC7410 Block Diagram

Features

- Decode
 - Register file access
 - Forwarding control
 - Partial instruction decode
- Completion
 - Eight-entry completion buffer
 - Instruction tracking and peak completion of two instructions per cycle
 - Completion of instructions in program order while supporting out-of-order instruction execution, completion serialization, and all instruction flow changes
- Fixed point units (FXUs) that share 32 GPRs for integer operands
 - Fixed point unit 1 (FXU1)—multiply, divide, shift, rotate, arithmetic, logical
 - Fixed point unit 2 (FXU2)—shift, rotate, arithmetic, logical
 - Single-cycle arithmetic, shifts, rotates, logical
 - Multiply and divide support (multi-cycle)
 - Early out multiply
- Three-stage floating-point unit and a 32-entry FPR file
 - Support for IEEE Std 754[™] single- and double-precision floating-point arithmetic
 - Three-cycle latency, one-cycle throughput (single- or double-precision)
 - Hardware support for divide
 - Hardware support for denormalized numbers
 - Time deterministic non-IEEE mode
- System unit
 - Executes CR logical instructions and miscellaneous system instructions
 - Special register transfer instructions
- AltiVec unit
 - Full 128-bit data paths
 - Two dispatchable units: vector permute unit and vector ALU unit.
 - Contains its own 32-entry, 128-bit vector register file (VRF) with 6 renames
 - The vector ALU unit is further subdivided into the vector simple integer unit (VSIU), the vector complex integer unit (VCIU), and the vector floating-point unit (VFPU).
 - Fully pipelined
- Load/store unit
 - One-cycle load or store cache access (byte, half word, word, double word)
 - Two-cycle load latency with 1-cycle throughput
 - Effective address generation
 - Hits under misses (multiple outstanding misses)
 - Single-cycle unaligned access within double-word boundary
 - Alignment, zero padding, sign extend for integer register file
 - Floating-point internal format conversion (alignment, normalization)
 - Sequencing for load/store multiples and string operations

- Store gathering
- Executes the cache and TLB instructions
- Big- and little-endian byte addressing supported
- Misaligned little-endian supported
- Supports FXU, FPU, and AltiVec load/store traffic
- Complete support for all four architecture AltiVec DST streams
- Level 1 (L1) cache structure
 - 32 Kbyte, 32-byte line, eight-way set-associative instruction cache (iL1)
 - 32 Kbyte, 32-byte line, eight-way set-associative data cache (dL1)
 - Single-cycle cache access
 - Pseudo least-recently-used (LRU) replacement
 - Data cache supports AltiVec LRU and transient instructions algorithm
 - Copy-back or write-through data cache (on a page-per-page basis)
 - Supports all PowerPC memory coherency modes
 - Nonblocking instruction and data cache
 - Separate copy of data cache tags for efficient snooping
 - No snooping of instruction cache except for ICBI instruction
- Level 2 (L2) cache interface
 - Internal L2 cache controller and tags; external data SRAMs
 - 512-Kbyte, 1-Mbyte, and 2-Mbyte two-way set-associative L2 cache support
 - Copy-back or write-through data cache (on a page basis, or for all L2)
 - 32-byte (512-Kbyte), 64-byte (1-Mbyte), or 128-byte (2-Mbyte) sectored line size
 - Supports pipelined (register-register) synchronous BurstRAMs and pipelined (register-register) late write synchronous BurstRAMs
 - Supports direct-mapped mode for 256 Kbytes, 512 Kbytes, 1 Mbyte, or 2 Mbytes of SRAM (either all, half, or none of L2 SRAM must be configured as direct-mapped)
 - Core-to-L2 frequency divisors of $\div 1$, $\div 1.5$, $\div 2$, $\div 2.5$, $\div 3$, $\div 3.5$, and $\div 4$ supported
 - 64-bit data bus which also supports 32-bit bus mode
 - Selectable interface voltages of 1.8 and 2.5 V
- Memory management unit
 - 128-entry, two-way set-associative instruction TLB
 - 128-entry, two-way set-associative data TLB
 - Hardware reload for TLBs
 - Four instruction BATs and four data BATs
 - Virtual memory support for up to 4 hexabytes (2^{52}) of virtual memory
 - Real memory support for up to 4 gigabytes (2^{32}) of physical memory
 - Snooped and invalidated for TLBI instructions
- Efficient data flow
 - All data buses between VRF, load/store unit, dL1, iL1, L2, and the bus are 128 bits wide
 - dL1 is fully pipelined to provide 128 bits/cycle to/from the VRF

3 General Parameters

The following list provides a summary of the general parameters of the MPC7410:

Technology Die size	0.18 μ m CMOS, six-layer metal 6.32 mm × 8.26 mm (52 mm ²)
Transistor count	10.5 million
Logic design	Fully static
Packages	Surface mount 360 ceramic ball grid array (CBGA) Surface mount 360 high coefficient of thermal expansion ceramic ball grid array (HCTE_CBGA)
	Surface mount 360 high coefficient of thermal expansion ceramic ball grid array with lead free C5 spheres (HCTE_CBGA Lead Free C5 Spheres) Surface mount 360 high coefficient of thermal expansion ceramic land grid array (HCTE_LGA)
Core power supply	$1.8 \text{ V} \pm 100 \text{ mV}$ DC (nominal; see Table 3 for recommended operating conditions)
I/O power supply	$\begin{array}{l} 1.8 \ V \pm 100 \ mV \ DC \ or \\ 2.5 \ V \pm 100 \ mV \\ 3.3 \ V \pm 165 \ mV \ (system \ bus \ only) \\ (input \ thresholds \ are \ configuration \ pin \ selectable) \end{array}$

4 Electrical and Thermal Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC7410.

4.1 DC Electrical Characteristics

The tables in this section describe the MPC7410 DC electrical characteristics. Table 1 provides the absolute maximum ratings.

Characteristic		Symbol	Maximum Value	Unit	Notes
Core supply voltage		V _{DD}	-0.3 to 2.1	V	4
PLL supply voltage		AV _{DD}	-0.3 to 2.1	V	4
L2 DLL supply voltage		L2AV _{DD} -0.3 to 2.1		V	4
Processor bus supply voltage		OV _{DD}	-0.3 to 3.6	V	3, 6
L2 bus supply voltage		L2OV _{DD}	-0.3 to 2.8	V	3
Input voltage	Processor bus	V _{in}	-0.3 to OV _{DD} + 0.2 V	V	2, 5
L2 bus JTAG signals		V _{in}	-0.3 to L2OV _{DD} + 0.2 V	V	2, 5
		V _{in}	-0.3 to OV _{DD} + 0.2 V	V	—
Storage temperature range		T _{stg}	-55 to 150	°C	—

Table 1. Absolute Maximum Ratings ¹

Electrical and Thermal Characteristics

Characteristic		Symbol	Recommended Value	Unit	Notes
Core supply voltage		V _{DD}	1.8 V ± 100 mV	V	—
PLL supply voltage		AV _{DD}	1.8 V ± 100 mV	V	—
L2 DLL supply voltage		L2AV _{DD}	1.8 V ± 100 mV	V	—
Processor bus supply	BVSEL = 0	OV _{DD}	1.8 V ± 100 mV	V	—
voltage	BVSEL = HRESET	OV _{DD}	2.5 V ± 100 mV	V	—
	BVSEL = ¬ HRESET or BVSEL = 1	OV _{DD}	3.3 V ± 165 mV	V	2, 3
L2 bus supply voltage	L2VSEL = 0	L2OV _{DD}	1.8 V ± 100 mV	V	—
	L2VSEL = HRESET or L2VSEL = 1	L2OV _{DD}	2.5 V ± 100 mV	V	
Input voltage	Processor bus and JTAG signals	V _{in}	GND to OV _{DD}	V	—
	L2 bus	V _{in}	GND to L2OV _{DD}	V	—
Die-junction temperature		Тј	0 to 105	°C	—

Table 3. Recommended Operating Conditions ¹

Notes:

1. These are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.

2. Mxx7410xxnnnLE (Rev. 1.4) and later only. Previous revisions do not support 3.3 V OV_{DD} and have a recommended OV_{DD} value of 2.5 V ± 100 mV for BVSEL = 1.

3. Mxx7410xxnnnLE (Rev. 1.4) and later only. Previous revisions do not support BVSEL = \neg HRESET.

Table 4 provides the package thermal characteristics for the MPC7410.

Table 4. Package Thermal Characteristics

		Va	lue		
Characteristic		MPC7410 CBGA	MPC7410 HCTE	Unit	Notes
Junction-to-ambient thermal resistance, natural convection, four-layer (2s2p) board	R _{θJMA}	18	20	°C/W	1, 2
Junction-to-ambient thermal resistance, 1m/sec airflow, four-layer (2s2p) board	R _{θJMA}	14	16	°C/W	1, 2
Junction-to-ambient thermal resistance, 2m/sec airflow, four-layer (2s2p) board	R _{θJMA}	13	15	°C/W	1, 2
Junction-to-board thermal resistance	$R_{ hetaJB}$	9	11	°C/W	3

Electrical and Thermal Characteristics

Table 5. DC Electrical Specifications (continued)

At recommended operating conditions (see Table 3)

Characteristic	Nominal Bus Voltage ¹	Symbol	Min	Мах	Unit	Notes
High-Z (off-state) leakage current,	1.8	I _{TSI}	—	20	μA	2, 3,
$V_{in} = L2OV_{DD}/OV_{DD}$	2.5	I _{TSI}	—	35		5, 7
	3.3	I _{TSI}	—	70		
Output high voltage, I _{OH} = -5 mA	1.8	V _{OH}	(L2)OV _{DD} - 0.45	_	V	8
	2.5	V _{OH}	1.7	_		
	3.3	V _{OH}	2.4	_		
Output low voltage, I _{OL} = 5 mA	1.8	V _{OL}	—	0.45	V	8
	2.5	V _{OL}	_	0.4		
	3.3	V _{OL}	—	0.4		
Capacitance, V _{in} = 0 V, f = 1 MHz		C _{in}	—	6.0	pF	3, 4, 7

Notes:

- 1. Nominal voltages; see Table 3 for recommended operating conditions.
- 2. For processor bus signals, the reference is OV_{DD} while L2OV_{DD} is the reference for the L2 bus signals.
- 3. Excludes factory test signals.
- 4. Capacitance is periodically sampled rather than 100% tested.
- 5. The leakage is measured for nominal OV_{DD} and L2OV_{DD}, or both OV_{DD} and L2OV_{DD} must vary in the same direction (for example, both OV_{DD} and L2OV_{DD} vary by either +5% or -5%).
- 6. Measured at max OV_{DD}/L2OV_{DD}.
- 7. Excludes IEEE 1149.1 boundary scan (JTAG) signals.
- 8. For JTAG support: all signals controlled by BVSEL and L2VSEL will see V_{IL}/V_{IH}/V_{OL}/V_{OH}/CV_{IH}/CV_{IL} DC limits of 1.8 V mode while either the EXTEST or CLAMP instruction is loaded into the IEEE 1149.1 instruction register by the UpdateIR TAP state until a different instruction is loaded into the instruction register by either another UpdateIR or a Test-Logic-Reset TAP state. If only TSRT is asserted to the part, and then a SAMPLE instruction is executed, there is no way to control or predict what the DC voltage limits are. If HRESET is asserted before executing a SAMPLE instruction, the DC voltage limits will be controlled by the BVSEL/L2VSEL settings during HRESET. Anytime HRESET is not asserted (that is, just asserting TRST), the voltage mode is not known until either EXTEST or CLAMP is executed, at which time the voltage level will be at the DC limits of 1.8 V.

Table 6 provides the power consumption for the MPC7410.

	Proce	Processor (CPU) Frequency				
	400 MHz	450 MHz	500 MHz	– Unit	Notes	
	Full-C	On Mode	I		1	
Typical	4.2	4.7	5.3	W	1, 3	
Maximum	9.5	10.7	11.9	W	1, 2	
	Doz	e Mode	·		· · · · · · · · · · · · · · · · · · ·	
Maximum	4.3	4.8	5.3	W	1	
	Nap	Mode				
Maximum	1.35	1.5	1.65	W	1	
	Slee	p Mode				
Maximum	1.3	1.45	1.6	W	1	
	Sleep Mode—PL	L and DLL Disable	ed	•	•	
Typical	600	600	600	mW	1	
Maximum	1.1	1.1	1.1	W	1	

Table 6. Power Consumption for MPC7410

Notes:

1. These values apply for all valid processor bus and L2 bus ratios. The values do not include I/O supply power (OV_{DD} and $L2OV_{DD}$) or PLL/DLL supply power (AV_{DD} and $L2AV_{DD}$). OV_{DD} and $L2OV_{DD}$ power is system dependent, but is typically <5% of V_{DD} power. Worst case power consumption for AV_{DD} = 15 mW and $L2AV_{DD}$ = 15 mW.

2. Maximum power is measured at 105°C and V_{DD} = 1.8 V while running an entirely cache-resident, contrived sequence of instructions which keep the execution units, including AltiVec, maximally busy.

3. Typical power is an average value measured at 65°C and V_{DD} = 1.8 V in a system while running typical benchmarks.

4.2 AC Electrical Characteristics

This section provides the AC electrical characteristics for the MPC7410. After fabrication, functional parts are sorted by maximum processor core frequency, see Section 4.2.1, "Clock AC Specifications," and tested for conformance to the AC specifications for that frequency. The processor core frequency is determined by the bus (SYSCLK) frequency and the settings of the PLL_CFG[0:3] signals. Parts are sold by maximum processor core frequency; see Section 10, "Ordering Information."

4.2.2 Processor Bus AC Specifications

Table 8 provides the processor bus AC timing specifications for the MPC7410 as defined in Figure 4 and Figure 5. Timing specifications for the L2 bus are provided in Section 4.2.3, "L2 Clock AC Specifications."

Table 8. Processor Bus AC Timing Specifications ¹

At recommended operating conditions (see Table 3)

Parameter	Symbol ²	400, 450, 500 MHz		Unit	Notes
Farameter	Cymbol	Min	Мах	Onic	NOICES
Input setup	t _{IVKH}	1.0	—	ns	4
Input hold	t _{IXKH}	0	—	ns	4
Output valid times: ARTRY, SHD0, SHD1 All other outputs	^t кнтsv ^t кнаrv ^t кноv		3.0 2.3 3.0	ns	5, 6
Output hold times: ARTRY, SHD0, SHD1 All other outputs	^t кнтsx ^t кнаrx ^t кнох	0.5 0.5 0.5	 	ns	5
SYSCLK to output enable	t _{KHOE}	0.5	—	ns	9
SYSCLK to output high impedance (all except ABB/AMON(0), ARTRY/SHD, DBB/DMON(0), SHD0, SHD1)	t _{KHOZ}	—	3.5	ns	
SYSCLK to ABB/AMON(0), DBB/DMON(0) high impedance after precharge	t _{KHABPZ}	_	1	t _{SYSCLK}	3, 7, 9
Maximum delay to ARTRY, SHD0, SHD1 precharge	t _{KHARP}		1	t _{SYSCLK}	3, 8, 9

Electrical and Thermal Characteristics

Table 8. Processor Bus AC Timing Specifications ¹ (continued)

At recommended operating conditions (see Table 3)

Parameter	Symbol ²	400, 450,	500 MHz	Unit	Notes
i arameter	Symbol	Min	Мах	Unit	Notes
SYSCLK to ARTRY, SHD0, SHD1 high impedance after precharge	t _{KHARPZ}	—	2	t _{SYSCLK}	3, 8, 9

Notes:

- All input specifications are measured from the midpoint of the signal in question to the midpoint of the rising edge of the input SYSCLK. All output specifications are measured from the midpoint of the rising edge of SYSCLK to the midpoint of the signal in question. All output timings assume a purely resistive 50-Ω load (see Figure 4). Input and output timings are measured at the pin; time-of-flight delays must be added for trace lengths, vias, and connectors in the system.
- 2. The symbology used for timing specifications herein follows the pattern of t_{(signal)(state)(reference)(state)} for inputs and t_{(reference)(state)(signal)(state)} for outputs. For example, t_{IVKH} symbolizes the time input signals (I) reach the valid state (V) relative to the SYSCLK reference (K) going to the high (H) state or input setup time. And t_{KHOV} symbolizes the time from SYSCLK(K) going high (H) until outputs (O) are valid (V) or output valid time. Input hold time can be read as the time that the input signal (I) went invalid (X) with respect to the rising clock edge (KH)— note the position of the reference and its state for inputs—and output hold time can be read as the time from the rising edge (KH) until the output went invalid (OX).
- 3. t_{SYSCLK} is the period of the external clock (SYSCLK) in ns. The numbers given in the table must be multiplied by the period of SYSCLK to compute the actual time duration (in ns) of the parameter in question.
- 4. Includes mode select signals: BVSEL, EMODE, L2VSEL. See Figure 5 for mode select timing with respect to HRESET.
- 5. All other output signals are composed of the following— A[0:31], AP[0:3], TT[0:4], TS, TBST, TSIZ[0:2], GBL, WT, CI, DH[0:31], DL[0:31], DP[0:7], BR, CKSTP_OUT, DRDY, HIT, QREQ, RSRV.
- 6. Output valid time is measured from 2.4 to 0.8 V which may be longer than the time required to discharge from V_{DD} to 0.8 V.
- 7. According to the 60x bus protocol, ABB and DBB are driven only by the currently active bus master. They are asserted low then precharged high before returning to high-Z as shown in Figure 6. The nominal precharge width for ABB or DBB is 0.5 × t_{SYSCLK}, that is, less than the minimum t_{SYSCLK} period, to ensure that another master asserting ABB, or DBB on the following clock will not contend with the precharge. Output valid and output hold timing is tested for the signal asserted. Output valid time is tested for precharge. The high-Z behavior is guaranteed by design.
- 8. According to the 60x bus protocol, ARTRY can be driven by multiple bus masters through the clock period immediately following AACK. Bus contention is not an issue since any master asserting ARTRY will be driving it low. Any master asserting it low in the first clock following AACK will then go to high-Z for one clock before precharging it high during the second cycle after the assertion of AACK. The nominal precharge width for ARTRY is 1.0 t_{SYSCLK}; that is, it should be high-Z as shown in Figure 6 before the first opportunity for another master to assert ARTRY. Output valid and output hold timing are tested for the signal asserted. Output valid time is tested for precharge. The high-Z behavior is guaranteed by design.
- 9. Guaranteed by design and not tested.

Figure 4 provides the AC test load for the MPC7410.

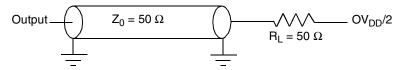


Figure 4. AC Test Load

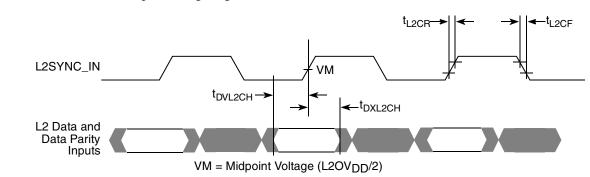


Figure 8 shows the L2 bus input timing diagrams for the MPC7410.

Figure 9 shows the L2 bus output timing diagrams for the MPC7410.

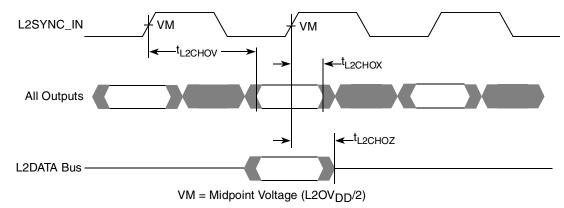


Figure 9. L2 Bus Output Timing Diagrams

Figure 10 provides the AC test load for L2 interface of the MPC7410.

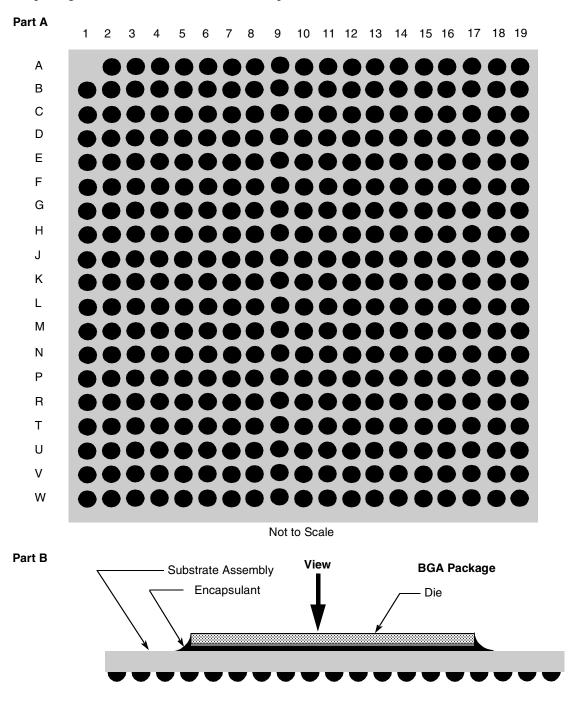
Figure 10. AC Test Load for the L2 Interface

4.2.5 IEEE 1149.1 AC Timing Specifications

Table 11 provides the IEEE 1149.1 (JTAG) AC timing specifications as defined in Figure 12 through Figure 15.

Table 11. JTAG AC Timing Specifications (Independent of SYSCLK)¹

At recommended operating conditions (see Table 3)


Parameter	Symbol	Min	Мах	Unit	Notes
TCK frequency of operation	f _{TCLK}	0	33.3	MHz	—
TCK cycle time	t _{TCLK}	30	-	ns	—
TCK clock pulse width measured at $OV_{DD}/2$	t _{JHJL}	15	-	ns	—
TCK rise and fall times	$t_{\mbox{\scriptsize JR}}$ and $t_{\mbox{\scriptsize JF}}$	0	2	ns	—

Pin Assignments

5 Pin Assignments

Figure 16, part A shows the pinout for the MPC7410, 360 CBGA, 360 HCTE, and 360 HCTE Lead Free C5 Spheres packages as viewed from the top surface. Figure 16, part B shows the side profile of the CBGA and HCTE_CBGA packages to indicate the direction of the top surface view. Figure 16, part C shows the side profile of the HCTE_LGA package to indicate the direction of the top surface view.

Pinout Listings

Table 12. Pinout Listing for the MPC7410, 360 CBGA and 360 HCTE Packages (continued)

Signal Name	Pin Number	Active	I/O	I/F Select ¹	Notes
V _{DD}	G8, G10, G12, J8, J10, J12, L8, L10, L12, N8, N10, N12			N/A	

Notes:

- 1. OV_{DD} supplies power to the processor bus, JTAG, and all control signals except the L2 cache controls (L2CE, L2WE, and L2ZZ); L2OV_{DD} supplies power to the L2 cache interface (L2ADDR[0:18], L2DATA[0:63], L2DP[0:7], and L2SYNC_OUT) and the L2 control signals; and V_{DD} supplies power to the processor core and the PLL and DLL (after filtering to become AV_{DD} and L2AV_{DD}, respectively). These columns serve as a reference for the nominal voltage supported on a given signal as selected by the BVSEL/L2VSEL pin configurations of Table 2 and the voltage supplied. For actual recommended value of V_{in} or supply voltages, see Table 3.
- 2. These are test signals for factory use only and must be pulled up to OV_{DD} for normal machine operation.
- 3. To allow for future I/O voltage changes, provide the option to connect BVSEL and L2VSEL independently to either OV_{DD}, GND, HRESET, or ¬HRESET. For the MPC7410 the L2 bus only supports 2.5- and 1.8-V options. The default selection, if L2VSEL is left unconnected, is 2.5-V operation. For the MPC7410 the processor bus supports 3.3-, 2.5-, and 1.8-V options. The default selection, if BVSEL is left unconnected, is 3.3-V operation. Refer to Table 2 for supported BVSEL and L2VSEL settings.
- 4. PLL_CFG[0:3] must remain stable during operation; should only be changed during the assertion of HRESET or during sleep mode and must adhere to the internal PLL-relock time requirement.
- 5. Ignored input in 60x bus mode.
- 6. Unused output in 60x bus mode. Signal is three-stated in 60x mode.
- 7. Deasserted (pulled high) at HRESET negation for 60x bus mode. Asserted (pulled low) at HRESET negation for MPX bus mode.
- 8. Uses one of nine existing no connects in the MPC750 360 BGA package.
- 9. Internal pull up on die. Pulled-up signals are V_{DD} based.
- 10.Reuses MPC750 DRTRY, DBDIS, and TLBISYNC pins (DTI1, DTI2, and EMODE, respectively).
- 11. The VOLTDET pin position on the MPC750 360 BGA package is now an L2OV_{DD} pin on the MPC7410 360 package.
- 12.Output only for MPC7410, was I/O for MPC750.
- 13.MPX bus mode only.
- 14. If necessary, to overcome the internal pull-up resistance and ensure this input will recognize a low signal, a pull-down resistance less than 250 Ω should be used.
- 15.MCP minimum pulse width: asynchronous, falling-edge input needs to be held asserted for a minimum of 2 cycles to guarantee that it is latched by the processor.
- 16.In MPX bus mode the ABB signal is called AMON and the DBB signal is called DMON. These signals are not a requirement of the MPX bus protocol and may not be available on future products.

Millimeters

MAX

2.80

0.60

1.30

0.60

0.90

0.90

12.50

9.00

14.30 11.00

9.75

8.60

_

9.50

_

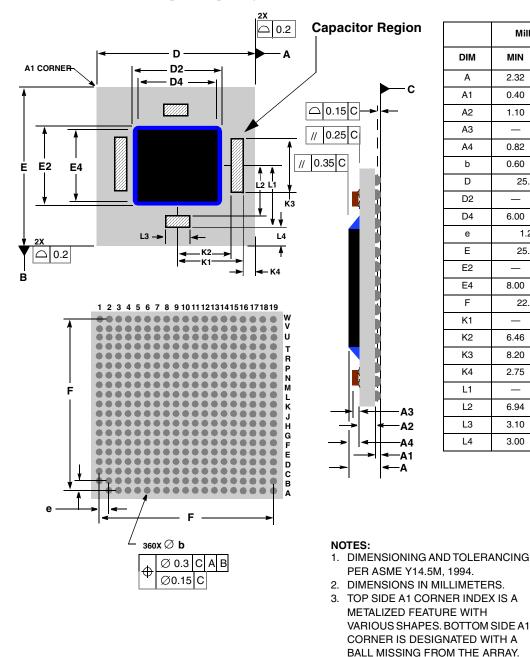
3.30

_

25.00 BSC

1.27 BSC

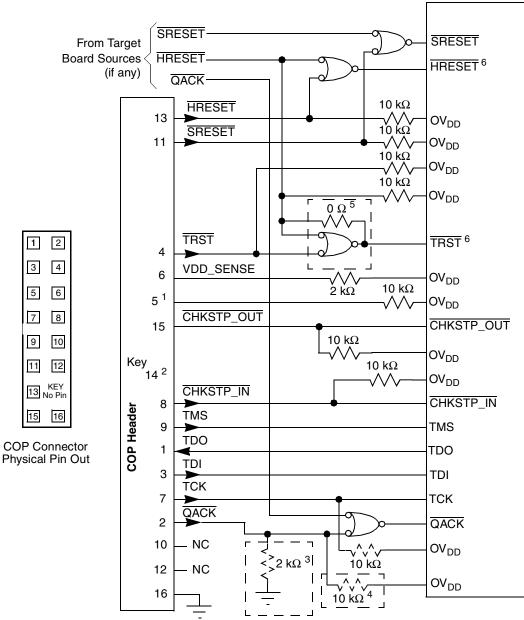
25.00 BSC


22.86 BSC

_

_

Mechanical Dimensions for the MPC7410, 360 HCTE_CBGA 7.4 (Lead Free C5 Spheres)


Figure 18 provides the mechanical dimensions and bottom surface nomenclature of the MPC7410, 360 HCTE_CBGA (lead-free C5 spheres) package.

NP

System Design Information

Notes:

- 1. RUN/STOP, normally found on pin 5 of the COP header, is not implemented on the MPC7410. Connect pin 5 of the COP header to OV_{DD} with a 10-kΩ pull-up resistor.
- 2. Key location; pin 14 is not physically present on the COP header.
- 3. Component not populated. Populate only if debug tool does not drive QACK.
- 4. Populate only if debug tool uses an open-drain type output and does not actively negate \overline{QACK} .
- 5. If the JTAG interface is implemented, connect HRESET from the target source to TRST from the COP header though an AND gate to TRST of the part. If the JTAG interface is not implemented, connect HRESET from the target source to TRST of the part through a 0-Ω isolation resistor.
- 6. The COP port and target board should be able to independently assert HRESET and TRST to the processor in order to fully control the processor as shown above.

Figure 25. COP Connector Diagram

System Design Information

The COP interface has a standard header for connection to the target system, based on the 0.025" square-post 0.100" centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a connector key.

There is no standardized way to number the COP header shown in Figure 25; consequently, many different pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in Figure 25 is common to all known emulators.

The \overline{QACK} signal shown in Figure 25 is usually connected to the PCI bridge chip in a system and is an input to the MPC7410 informing it that it can go into the quiescent state. Under normal operation this occurs during a low-power mode selection. In order for COP to work, the MPC7410 must see this signal asserted (pulled down). While shown on the COP header, not all emulator products drive this signal. If the product does not, a pull-down resistor can be populated to assert this signal. Additionally, some emulator products implement open-drain type outputs and can only drive \overline{QACK} asserted; for these tools, a pull-up resistor can be implemented to ensure this signal is negated when it is not being driven by the tool. Note that the pull-up and pull-down resistors on the \overline{QACK} signal are mutually exclusive and it is never necessary to populate both in a system. To preserve correct power-down operation, \overline{QACK} should be merged via logic so that it also can be driven by the PCI bridge.

8.8 Thermal Management Information

This section provides thermal management information for the MPC7410 for air-cooled applications. Proper thermal control design is primarily dependent on the system-level design—the heat sink, airflow, and thermal interface material. To reduce the die-junction temperature, heat sinks may be attached to the package by several methods such as spring clip to holes in the printed circuit board or with screws and springs to the printed circuit board; see Figure 26 for the BGA package and Figure 27 for the LGA package. This spring force should not exceed 5.5 pounds of force. Note that care should be taken to avoid focused forces being applied to die corners and/or edges when mounting heat sinks.

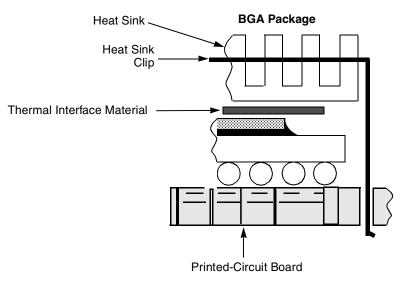
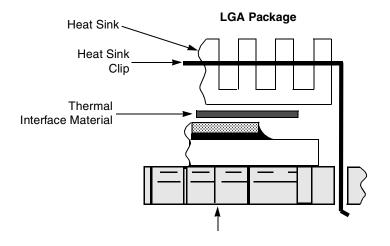



Figure 26. BGA Package Exploded Cross-Sectional View with Heat Sink Clip to PCB Option

Printed-Circuit Board

Figure 27. LGA Package Exploded Cross-Sectional View with Heat Sink Clip to PCB Option

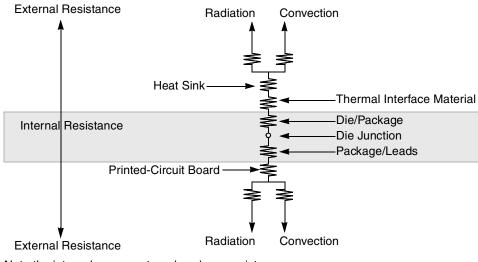
The board designer can choose between several types of heat sinks to place on the MPC7410. There are several commercially-available heat sinks for the MPC7410 from the following vendors:

Aavid Thermalloy 70 Commercial Street, Suite 200 Concord, NH 03301 Internet: www.aavidthermalloy.com	603-224-9988
Alpha Novatech 473 Sapena Ct. #12 Santa Clara, CA 95054 Internet: www.alphanovatech.com	408-567-8082
The Bergquist Company 18930 West 78th St. Chanhassen, MN 55317 Internet: www.bergquistcompany.com	800-347-4572
International Electronic Research Corporation (IERC) 413 North Moss St. Burbank, CA 91502 Internet: www.ctscorp.com	818-842-7277
Wakefield Engineering 33 Bridge St. Pelham, NH 03076 Internet: www.wakefield.com	603-635-2800

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost.

System Design Information

8.8.1 Internal Package Conduction Resistance


For the exposed-die packaging technology, shown in Table 3, the intrinsic conduction thermal resistance paths are as follows:

- The die junction-to-case (or top-of-die for exposed silicon) thermal resistance
- The die junction-to-ball thermal resistance

Figure 28 depicts the primary heat transfer path for a package with an attached heat sink mounted to a printed-circuit board.

Heat generated on the active side of the chip is conducted through the silicon, then through the heat sink attach material (or thermal interface material), and finally to the heat sink where it is removed by forced-air convection.

Since the silicon thermal resistance is quite small, for a first-order analysis, the temperature drop in the silicon may be neglected. Thus, the heat sink attach material and the heat sink conduction/convective thermal resistances are the dominant terms.

Note the internal versus external package resistance.

Figure 28. C4 Package with Heat Sink Mounted to a Printed-Circuit Board

8.8.2 Adhesives and Thermal Interface Materials

A thermal interface material is recommended at the package lid-to-heat sink interface to minimize the thermal contact resistance. For those applications where the heat sink is attached by spring clip mechanism, Figure 29 shows the thermal performance of three thin-sheet thermal-interface materials (silicone, graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure. As shown, the performance of these thermal interface materials improves with increasing contact pressure. The use of thermal grease significantly reduces the interface thermal resistance. That is, the bare joint results in a thermal resistance approximately seven times greater than the thermal grease joint.

Heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board (see Figure 26). This spring force should not exceed 5.5 pounds of force. Therefore, the synthetic grease offers the best thermal performance, considering the low interface pressure. Of course, the selection of any thermal interface material depends on many factors—thermal performance requirements, manufacturability, service temperature, dielectric properties, cost, and so on.

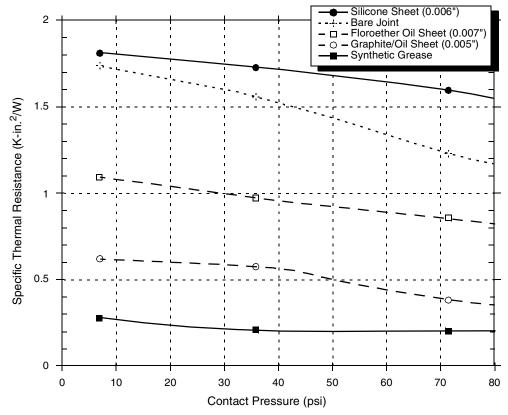
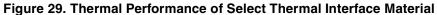



Figure 29 describes the thermal performance of selected thermal interface materials.

The board designer can choose between several types of thermal interface. Heat sink adhesive materials should be selected based on high conductivity, yet adequate mechanical strength to meet equipment shock/vibration requirements. There are several commercially-available thermal interfaces and adhesive materials provided by the following vendors:

Chomerics, Inc.	781-935-4850
77 Dragon Court	
Woburn, MA 01888-4014	
Internet: www.chomerics.com	
Dow-Corning Corporation	800-248-2481
Dow-Corning Electronic Materials	
2200 W. Salzburg Rd.	
Midland, MI 48686-0997	
Internet: www.dow.com	
Shin-Etsu MicroSi, Inc.	888-642-7674
10028 S. 51st St.	
Phoenix, AZ 85044	
Internet: www.microsi.com	

Document Revision History

Revision	Date	Substantive Change(s)
0.3 —	Added 3.3 V support on the processor bus (BVSEL).	
		Table 7—update typical and maximum power numbers for full-on mode in. Removed note 4. Reworded notes 2 and 3.
		Table 9, Note 2—removed reference to application note.
		Figure 17—corrected side view datum A to be datum C.
		Section 1.8.7—added \overline{CI} and \overline{WT} to transfer attribute signals requiring pull-ups.
	Section 1.8.7—added 1-k Ω pull-up recommendation to \overline{GBL} when \overline{GBL} is not connected.	
	Table 2— added pull-down resistance necessary for internally pulled-up voltage select pins. Added 3.3-V support for BVSEL.	
	Table 13—added note 14 for BVSEL, L2VSEL, and TRST pins to address pull-down resistance necessary for these internally pulled-up pins to recognize a low signal.	
		Table 6—lowered 2.5 V CV _{IH} from 2.2 to 2.0 V to be compatible with V_{OH} of the MPC107. Added support for 3.3-V processor bus.
	Table 15—modified note 1, use L2CR[L2SL] for L2CLK frequency less than 150 MHz.	
	Table 8—revised note 2 discussing for 3.3-V bus voltage support.	
	Table 14—added note 5, do not use PL off during power-up sequence.	
		Table 1—update output hold times (t _{L2CHOX}).
0.2 —		Corrected Section 1.3-technology from 0.13 µm to 0.18 µm.
		Updated Table 7—adds power consumption numbers; adds note on estimated decrease w/o AltiVec.
		Updated Table 8—adds minimum values for processor frequency and VCO frequency.
		Updated Table 9—input setup, output valid times, output hold times, SYSCLK to output high impedance.
		Updated Table 11—L2SYNC_IN to high impedance.
		Updated Figure 17—mechanical dimensions, adds capacitor pad dimensions.
0.1		Minor updates.
0	_	Initial release.

Table 16. Document Revision History (continued)