

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	PowerPC G4
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	500MHz
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	·
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	360-BCBGA, FCCBGA
Supplier Device Package	360-CBGA (25x25)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc7410vu500le

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Decode
 - Register file access
 - Forwarding control
 - Partial instruction decode
- Completion
 - Eight-entry completion buffer
 - Instruction tracking and peak completion of two instructions per cycle
 - Completion of instructions in program order while supporting out-of-order instruction execution, completion serialization, and all instruction flow changes
- Fixed point units (FXUs) that share 32 GPRs for integer operands
 - Fixed point unit 1 (FXU1)—multiply, divide, shift, rotate, arithmetic, logical
 - Fixed point unit 2 (FXU2)—shift, rotate, arithmetic, logical
 - Single-cycle arithmetic, shifts, rotates, logical
 - Multiply and divide support (multi-cycle)
 - Early out multiply
- Three-stage floating-point unit and a 32-entry FPR file
 - Support for IEEE Std 754[™] single- and double-precision floating-point arithmetic
 - Three-cycle latency, one-cycle throughput (single- or double-precision)
 - Hardware support for divide
 - Hardware support for denormalized numbers
 - Time deterministic non-IEEE mode
- System unit
 - Executes CR logical instructions and miscellaneous system instructions
 - Special register transfer instructions
- AltiVec unit
 - Full 128-bit data paths
 - Two dispatchable units: vector permute unit and vector ALU unit.
 - Contains its own 32-entry, 128-bit vector register file (VRF) with 6 renames
 - The vector ALU unit is further subdivided into the vector simple integer unit (VSIU), the vector complex integer unit (VCIU), and the vector floating-point unit (VFPU).
 - Fully pipelined
- Load/store unit
 - One-cycle load or store cache access (byte, half word, word, double word)
 - Two-cycle load latency with 1-cycle throughput
 - Effective address generation
 - Hits under misses (multiple outstanding misses)
 - Single-cycle unaligned access within double-word boundary
 - Alignment, zero padding, sign extend for integer register file
 - Floating-point internal format conversion (alignment, normalization)
 - Sequencing for load/store multiples and string operations

MPC7410 RISC Microprocessor Hardware Specifications, Rev. 6.1

Features

- L2 is fully pipelined to provide 128 bits per L2 clock cycle to the L1s.
- Up to eight outstanding, out-of-order, cache misses between dL1 and L2/bus
- Up to seven outstanding, out-of-order transactions on the bus
- Load folding to fold new dL1 misses into older, outstanding load and store misses to the same line
- Store miss merging for multiple store misses to the same line. Only coherency action taken (that is, address only) for store misses merged to all 32 bytes of a cache line (no data tenure needed).
- Two-entry finished store queue and four-entry completed store queue between load/store unit and dL1
- Separate additional queues for efficient buffering of outbound data (castouts, write throughs, and so on) from dL1 and L2
- Bus interface
 - MPX bus extension to 60x processor interface
 - Mode-compatible with 60x processor interface
 - 32-bit address bus
 - 64-bit data bus
 - Bus-to-core frequency multipliers of 2x, 2.5x, 3x, 3.5x, 4x, 4.5x, 5x, 5.5x, 6x, 6.5x, 7x, 7.5x, 8x, 9x supported
 - Selectable interface voltages of 1.8, 2.5, and 3.3 V
- Power management
 - Low-power design with thermal requirements very similar to MPC740 and MPC750
 - Low-voltage processor core
 - Selectable interface voltages can reduce power in output buffers
 - Three static power saving modes: doze, nap, and sleep
 - Dynamic power management
- Testability
 - LSSD scan design
 - IEEE Std 1149.1[™] JTAG interface
 - Array built-in self test (ABIST)—factory test only
 - Redundancy on L1 data arrays and L2 tag arrays
- Reliability and serviceability
 - Parity checking on 60x and L2 cache buses

3 General Parameters

The following list provides a summary of the general parameters of the MPC7410:

Technology	0.18 µm CMOS, six-layer metal
Die size	$6.32 \text{ mm} \times 8.26 \text{ mm} (52 \text{ mm}^2)$
Transistor count	10.5 million
Logic design	Fully static
Packages	Surface mount 360 ceramic ball grid array (CBGA) Surface mount 360 high coefficient of thermal expansion ceramic ball grid array (HCTE_CBGA)
	Surface mount 360 high coefficient of thermal expansion ceramic ball grid array with lead free C5 spheres (HCTE_CBGA Lead Free C5 Spheres) Surface mount 360 high coefficient of thermal expansion ceramic land grid array (HCTE_LGA)
Core power supply	$1.8 \text{ V} \pm 100 \text{ mV}$ DC (nominal; see Table 3 for recommended operating conditions)
I/O power supply	1.8 V \pm 100 mV DC or 2.5 V \pm 100 mV 3.3 V \pm 165 mV (system bus only) (input thresholds are configuration pin selectable)

4 Electrical and Thermal Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC7410.

4.1 DC Electrical Characteristics

The tables in this section describe the MPC7410 DC electrical characteristics. Table 1 provides the absolute maximum ratings.

Characteristic	Symbol	Maximum Value	Unit	Notes	
Core supply voltage		V _{DD}	-0.3 to 2.1	V	4
PLL supply voltage		AV _{DD}	-0.3 to 2.1	V	4
L2 DLL supply voltage		L2AV _{DD}	-0.3 to 2.1	V	4
Processor bus supply voltage		OV _{DD}	-0.3 to 3.6	V	3, 6
L2 bus supply voltage		L2OV _{DD}	-0.3 to 2.8	V	3
Input voltage	Processor bus	V _{in}	–0.3 to OV _{DD} + 0.2 V	V	2, 5
	L2 bus	V _{in}	-0.3 to L2OV _{DD} + 0.2 V	V	2, 5
JTAG signals		V _{in}	–0.3 to OV _{DD} + 0.2 V	V	—
Storage temperature range		T _{stg}	–55 to 150	°C	—

Table 1. Absolute Maximum Ratings ¹

4.2.2 Processor Bus AC Specifications

Table 8 provides the processor bus AC timing specifications for the MPC7410 as defined in Figure 4 and Figure 5. Timing specifications for the L2 bus are provided in Section 4.2.3, "L2 Clock AC Specifications."

Table 8. Processor Bus AC Timing Specifications ¹

At recommended operating conditions (see Table 3)

Parameter		400, 450, 500 MHz		Unit	Notoo
Farameter	Symbol	Min	Мах	Unit	Notes
Input setup	t _{IVKH}	1.0	_	ns	4
Input hold	t _{IXKH}	0	_	ns	4
Output valid times: TS ARTRY, SHD0, SHD1 All other outputs	^t KHTSV ^t KHARV ^t KHOV		3.0 2.3 3.0	ns	5, 6
Output hold times: ARTRY, SHD0, SHD1 All other outputs	^t кнтsx t _{KHARX} t _{KHOX}	0.5 0.5 0.5		ns	5
SYSCLK to output enable	t _{KHOE}	0.5	_	ns	9
SYSCLK to output high impedance (all except ABB/AMON(0), ARTRY/SHD, DBB/DMON(0), SHD0, SHD1)	t _{KHOZ}	—	3.5	ns	
SYSCLK to ABB/AMON(0), DBB/DMON(0) high impedance after precharge	t _{KHABPZ}	_	1	t _{SYSCLK}	3, 7, 9
Maximum delay to ARTRY, SHD0, SHD1 precharge	t _{KHARP}	—	1	t _{SYSCLK}	3, 8, 9

Electrical and Thermal Characteristics

4.2.4 L2 Bus AC Specifications

Table 10 provides the L2 bus interface AC timing specifications for the MPC7410 as defined in Figure 8 and Figure 9 for the loading conditions described in Figure 10.

Table 10. L2 Bus Interface AC Timing Specifications

At recommended operating conditions (see Table 3)

Baramatar	Symbol	400, 450,	500 MHz	Unit	Notos
Farameter	Symbol	Min	Мах	Onit	Notes
L2SYNC_IN rise and fall time	$t_{\rm L2CR}$ and $t_{\rm L2CF}$	_	1.0	ns	1
Setup times: Data and parity	t _{DVL2CH}	1.5	—	ns	2
Input hold times: Data and parity	t _{DXL2CH}		0.0	ns	2
Valid times: All outputs when L2CR[14–15] = 00 All outputs when L2CR[14–15] = 01 All outputs when L2CR[14–15] = 10 All outputs when L2CR[14–15] = 11	tl2CHOV		2.5 2.5 2.9 3.5	ns	3, 4
Output hold times All outputs when L2CR[14–15] = 00 All outputs when L2CR[14–15] = 01 All outputs when L2CR[14–15] = 10 All outputs when L2CR[14–15] = 11	t _{L2CHOX}	0.4 0.8 1.2 1.6	 	ns	3
L2SYNC_IN to high impedance: All outputs when L2CR[14–15] = 00 All outputs when L2CR[14–15] = 01 All outputs when L2CR[14–15] = 10 All outputs when L2CR[14–15] = 11	t _{L2CHOZ}		2.0 2.5 3.0 3.5	ns	_

Notes:

1. Rise and fall times for the L2SYNC_IN input are measured from 20% to 80% of L2OV_DD.

2. All input specifications are measured from the midpoint of the signal in question to the midpoint voltage of the rising edge of the input L2SYNC_IN (see Figure 8). Input timings are measured at the pins.

3. All output specifications are measured from the midpoint voltage of the rising edge of L2SYNC_IN to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive $50-\Omega$ load (see Figure 10).

4. The outputs are valid for both single-ended and differential L2CLK modes. For pipelined registered synchronous BurstRAMs, L2CR[14–15] = 00 is recommended. For pipelined late write synchronous BurstRAMs, L2CR[14–15] = 10 is recommended.

Figure 13 provides the $\overline{\text{TRST}}$ timing diagram.

Figure 13. TRST Timing Diagram

Figure 14 provides the boundary-scan timing diagram.

Figure 14. Boundary-Scan Timing Diagram

Figure 15 provides the test access port timing diagram.

MPC7410 RISC Microprocessor Hardware Specifications, Rev. 6.1

Figure 16. Pinout of the MPC7410, 360 CBGA and 360 HCTE Packages as Viewed from the Top Surface

6 Pinout Listings

Table 12 provides the pinout listing for the MPC7410 360 CBGA, 360 HCTE packages.

Table 12. Pinout Listing for the MPC7410, 360 CBGA and 360 HCTE Packages

Signal Name	Pin Number	Active	I/O	I/F Select ¹	Notes
A[0:31]	A13, D2, H11, C1, B13, F2, C13, E5, D13, G7, F12, G3, G6, H2, E2, L3, G5, L4, G4, J4, H7, E1, G2, F3, J7, M3, H3, J2, J6, K3, K2, L2	High	I/O	BVSEL	
AACK	N3	Low	Input	BVSEL	—
ABB	L7	Low	Output	BVSEL	12, 16
AP[0:3]	C4, C5, C6, C7	High	I/O	BVSEL	—
ARTRY	L6	Low	I/O	BVSEL	—
AV _{DD}	A8	—	Input	V _{DD}	—
BG	H1	Low	Input	BVSEL	—
BR	E7	Low	Output	BVSEL	—
BVSEL	W1	High	Input	N/A	1, 3, 8, 9, 14
СНК	K11	Low	Input	BVSEL	2, 8, 9
CI	C2	Low	I/O	BVSEL	—
CKSTP_IN	B8	Low	Input	BVSEL	_
CKSTP_OUT	D7	Low	Output	BVSEL	—
CLK_OUT	E3	High	Output	BVSEL	—
DBB	К5	Low	Output	BVSEL	12, 16
DBG	К1	Low	Input	BVSEL	—
DH[0:31]	W12, W11, V11, T9, W10, U9, U10, M11, M9, P8, W7, P9, W9, R10, W6, V7, V6, U8, V9, T7, U7, R7, U6, W5, U5, W4, P7, V5, V4, W3, U4, R5	High	I/O	BVSEL	

Pinout Listings

Signal Name	Pin Number	Active	I/O	I/F Select ¹	Notes
DL[0:31]	M6, P3, N4, N5, R3, M7, T2, N6, U2, N7, P11, V13, U12, P12, T13, W13, U13, V10, W8, T11, U11, V12, V8, T1, P1, V1, U1, N1, R2, V3, U3, W2	High	I/O	BVSEL	_
DP[0:7]	L1, P2, M2, V2, M1, N2, T3, R1	High	I/O	BVSEL	—
DRDY	К9	Low	Output	BVSEL	6, 8, 13
DBWO DTI[0]	D1	Low	Input	BVSEL	_
DTI[1:2]	H6, G1	High	Input	BVSEL	5, 10, 13
EMODE	A3	Low	Input	BVSEL	7, 10
GBL	B1	Low	I/O	BVSEL	—
GND	D10, D14, D16, D4, D6, E12, E8, F4, F6, F10, F14, F16, G9, G11, H5, H8, H10, H12, H15, J9, J11, K4, K6, K8, K10, K12, K14, K16, L9, L11, M5, M8, M10, M12, M15, N9, N11, P4, P6, P10, P14, P16, R8, R12, T4, T6, T10, T14, T16		_	N/A	
нт	B5	Low	Output	BVSEL	6, 8
HRESET	B6	Low	Input	BVSEL	—
INT	C11	Low	Input	BVSEL	—
L1_TSTCLK	F8	High	Input	BVSEL	2
L2ADDR[0:16]	L17, L18, L19, M19, K18, K17, K15, J19, J18, J17, J16, H18, H17, J14, J13, H19, G18		Output	L2VSEL	—
L2ADDR[17:18]	K19,W19	High	Output	L2VSEL	8
L2AV _{DD}	L13	—	Input	V _{DD}	—
L2CE	P17	Low	Output	L2VSEL	—
L2CLK_OUTA	N15	High	Output	L2VSEL	—
L2CLK_OUTB	L16	High	Output	L2VSEL	—
L2DATA[0:63]	U14, R13, W14, W15, V15, U15, W16, V16, W17, V17, U17, W18, V18, U18, V19, U19, T18, T17, R19, R18, R17, R15, P19, P18, P13, N14, N13, N19, N17, M17, M13, M18, H13, G19, G16, G15, G14, G13, F19, F18, F13, E19, E18, E17, E15, D19, D18, D17, C18, C17, B19, B18, B17, A18, A17, A16, B16, C16, A14, A15, C15, B14, C14, E13	High	I/O	L2VSEL	_
L2DP[0:7]	V14, U16, T19, N18, H14, F17, C19, B15	High	I/O	L2VSEL	—
L2OV _{DD}	D15, E14, E16, H16, J15, L15, M16, K13, P15, R14, R16, T15, F15	—	—	N/A	11
L2SYNC_IN	L14	High	Input	L2VSEL	_
L2SYNC_OUT	M14	High	Output	L2VSEL	—
L2_TSTCLK	F7	High	Input	BVSEL	2

Table 12. Pinout Listing for the MPC7410, 360 CBGA and 360 HCTE Packages (continued)

7 Package Description

The following sections provide the package parameters and mechanical dimensions for the MPC7410, 360 CBGA and 360 HCTE packages.

7.1 Package Parameters for the MPC7410, 360 CBGA and 360 HCTE_CBGA

The package parameters are as provided in the following list. The package types are the 25×25 mm, 360-lead ceramic ball grid array package (CBGA) or the 25×25 mm, 360-lead high coefficient of thermal expansion CBGA package (HCTE_CBGA).

Package outline	$25 \times 25 \text{ mm}$
Interconnects	360 (19 × 19 ball array – 1)
Pitch	1.27 mm (50 mil)
Minimum module height	2.72 mm
Maximum module height	3.20 mm
Ball diameter	0.89 mm (35 mil)
Coefficient of thermal expansion	6.8 ppm/°C (CBGA)
	12.3ppm/°C (HCTE_CBGA)

7.2 Package Parameters for the MPC7410, 360 HCTE_CBGA (Lead Free C5 Spheres)

The package parameters are as listed here. The package types are the 25×25 mm, 360-lead high coefficient of thermal expansion CBGA package with lead-free C5 spheres (HCTE_CBGA lead-free spheres).

Package outline	$25 \times 25 \text{ mm}$
Interconnects	360 (19 × 19 ball array – 1)
Pitch	1.27 mm (50 mil)
Minimum module height	2.32 mm
Maximum module height	2.80 mm
Ball diameter	0.76 mm (30 mil)
Coefficient of thermal expansion	12.3ppm/°C

Package Description

Mechanical Dimensions for the MPC7410, 360 CBGA and 7.3 360 HCTE CBGA

Figure 17 provides the mechanical dimensions and bottom surface nomenclature of the MPC7410, 360 CBGA and 360 HCTE_CBGA packages.

MPC7410 RISC Microprocessor Hardware Specifications, Rev. 6.1

MAX

3.20

1.00

1.30

0.60

0.90

0.93

12.50

9.00

14.30 11.00

9.75

8.60

9.50

_

3.30

_

1.27 BSC

7.6 Substrate Capacitors for the MPC7410

Figure 20 shows the connectivity of the substrate capacitor pads for the MPC7410, 360 CBGA and 360 HCTE packages.

Package Caps	Value µF	Voltage Reference
C1-1	0.04	L2OV _{DD}
C1-2	0.01	GND
C2-1	0.01	L2OV _{DD}
C2-2	0.01	GND
C3-1	0.01	V _{DD}
C3-2	0.01	GND
C4-1	0.01	OV _{DD}
C4-2	0.01	GND
C5-1	0.01	OV _{DD}
C5-2	0.01	GND
C6-1	0.01	V _{DD}
C6-2	0.01	GND

Figure 20. Substrate Bypass Capacitors for the MPC7410

8 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC7410.

8.1 PLL Configuration

The MPC7410 PLL is configured by the PLL_CFG[0:3] signals. For a given SYSCLK (bus) frequency, the PLL configuration signals set the internal CPU and VCO frequency of operation. The PLL configuration for the MPC7410 is shown in Table 13 for example frequencies. In this example, shaded cells represent settings that, for a given SYSCLK frequency, result in core and/or VCO frequencies that do not comply with the minimum and maximum core frequencies listed in Table 8.

	Example Bus-to-Core Frequency in MHz (VCO Frequency in MHz)								
PLL_CFG [0:3]	Bus-to- Core Multiplier	Core-to VCO Multiplier	Bus 33.3 MHz	Bus 50 MHz	Bus 66.6 MHz	Bus 75 MHz	Bus 83.3 MHz	Bus 100 MHz	Bus 133 MHz
0100	2x	2x	—	—	—	—	—	—	—
0110	2.5x	2x	—	—	—	—	—	—	—
1000	Зх	2x	—	—	—	—	—	—	400 (800)
1110	3.5x	2x	—	—	—	—	—	350 (700)	465 (930)
1010	4x	2x	—	_	—	—	—	400 (800)	—

Table 13. MPC7410 Microprocessor PLL Configuration

 R_P and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N)/2$. Figure 24 describes the alternate driver impedance measurement circuit.

Figure 24. Alternate Driver Impedance Measurement Circuit

Table 15 summarizes the signal impedance results. The driver impedance values were characterized at 0° , 65° , and 105° C. The impedance increases with junction temperature and is relatively unaffected by bus voltage.

 $V_{DD} = 1.8 \text{ V}, \text{ OV}_{DD} = 2.5 \text{ V}, \text{ T}_{i} = 0^{\circ} - 105^{\circ}\text{C}$

Impedance	Processor Bus	L2 Bus	Symbol	Unit
R _N	41.5–54.3	42.7–54.1	Z ₀	Ω
R _P	37.3–55.3	39.3–50.0	Z ₀	Ω

8.6 Pull-Up Resistor Requirements

The MPC7410 requires pull-up resistors $(1 \text{ k}\Omega-5 \text{ k}\Omega)$ on several control pins of the bus interface to maintain the control signals in the negated state after they have been actively negated and released by the MPC7410 or other bus masters. These pins are: TS, ARTRY, SHDO, SHD1.

Four test pins also require pull-up resistors (100 Ω -1 k Ω). These pins are CHK, L1_TSTCLK, L2_TSTCLK, and LSSD_MODE. These signals are for factory use only and must be pulled up to OV_{DD} for normal machine operation.

If pull-down resistors are used to configure BVSEL or L2VSEL, the resistors should be less than 250 Ω (see Table 12). Because PLL_CFG[0:3] must remain stable during normal operation, strong pull-up and pull-down resistors (1 k Ω or less) are recommended to configure these signals in order to protect against erroneous switching due to ground bounce, power supply noise or noise coupling.

In addition, $\overline{\text{CKSTP}_\text{OUT}}$ is an open-drain style output that requires a pull-up resistor $(1 \text{ k}\Omega - 5 \text{ k}\Omega)$ if it is used by the system. The $\overline{\text{CKSTP}_\text{IN}}$ signal should likewise be pulled up through a pull-up resistor $(1 \text{ k}\Omega - 5 \text{ k}\Omega)$ to prevent erroneous assertions of this signal.

During inactive periods on the bus, the address and transfer attributes may not be driven by any master and may, therefore, float in the high-impedance state for relatively long periods of time. Since the MPC7410 must continually monitor these signals for snooping, this float condition may cause excessive power draw by the input receivers on

MPC7410 RISC Microprocessor Hardware Specifications, Rev. 6.1

the MPC7410 or by other receivers in the system. These signals can be pulled up through weak (10-k Ω) pull-up resistors by the system, address bus driven mode can be enabled (see the *MPC7410 RISC Microprocessor Family Users' Manual* for more information on this mode), or these signals may be otherwise driven by the system during inactive periods of the bus to avoid this additional power draw. The snooped address and transfer attribute inputs are: A[0:31], AP[0:3], TT[0:4], \overline{CI} , \overline{WT} , and \overline{GBL} .

In systems where $\overline{\text{GBL}}$ is not connected and other devices may be asserting $\overline{\text{TS}}$ for a snoopable transaction while not driving $\overline{\text{GBL}}$ to the processor, we recommend that a strong (1 k Ω) pull-up resistor be used on $\overline{\text{GBL}}$. Note that the MPC7410 will only snoop transactions when $\overline{\text{GBL}}$ is asserted.

The data bus input receivers are normally turned off when no read operation is in progress and, therefore, do not require pull-up resistors on the bus. Other data bus receivers in the system, however, may require pull-ups, or that those signals be otherwise driven by the system during inactive periods by the system. The data bus signals are: DH[0:31], DL[0:31], and DP[0:7].

If address or data parity is not used by the system, and the respective parity checking is disabled through HID0, the input receivers for those pins are disabled, and those pins do not require pull-up resistors and should be left unconnected by the system. If parity checking is disabled through HID0, and parity generation is not required by the MPC7410 (note that the MPC7410 always generates parity), then all parity pins may be left unconnected by the system.

The L2 interface does not normally require pull-up resistors.

8.7 JTAG Configuration Signals

Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE 1149.1 specification, but is provided on all processors that implement the PowerPC architecture. While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, more reliable power-on reset performance will be obtained if the TRST signal is asserted during power-on reset. Because the JTAG interface is also used for accessing the common on-chip processor (COP) function, simply tying TRST to HRESET is not practical.

The COP function of these processors allows a remote computer system (typically, a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The COP interface connects primarily through the JTAG port of the processor, with some additional status monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order to fully control the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be merged into these signals with logic.

The arrangement shown in Figure 25 allows the COP port to independently assert $\overline{\text{HRESET}}$ or $\overline{\text{TRST}}$, while ensuring that the target can drive $\overline{\text{HRESET}}$ as well. If the JTAG interface and COP header will not be used, $\overline{\text{TRST}}$ should be tied to $\overline{\text{HRESET}}$ through a 0- Ω isolation resistor so that it is asserted when the system reset signal ($\overline{\text{HRESET}}$) is asserted, ensuring that the JTAG scan chain is initialized during power-on. While Freescale recommends that the COP header be designed into the system as shown in Figure 25, if this is not possible, the isolation resistor will allow future access to $\overline{\text{TRST}}$ in the case where a JTAG interface may need to be wired onto the system in debug situations.

The COP header shown in Figure 25 adds many benefits—breakpoints, watchpoints, register and memory examination/modification, and other standard debugger features are possible through this interface—and can be as inexpensive as an unpopulated footprint for a header to be added when needed.

NP

System Design Information

Notes:

- 1. RUN/STOP, normally found on pin 5 of the COP header, is not implemented on the MPC7410. Connect pin 5 of the COP header to OV_{DD} with a 10-kΩ pull-up resistor.
- 2. Key location; pin 14 is not physically present on the COP header.
- 3. Component not populated. Populate only if debug tool does not drive QACK.
- 4. Populate only if debug tool uses an open-drain type output and does not actively negate \overline{QACK} .
- 5. If the JTAG interface is implemented, connect HRESET from the target source to TRST from the COP header though an AND gate to TRST of the part. If the JTAG interface is not implemented, connect HRESET from the target source to TRST of the part through a 0-Ω isolation resistor.
- 6. The COP port and target board should be able to independently assert HRESET and TRST to the processor in order to fully control the processor as shown above.

Figure 25. COP Connector Diagram

MPC7410 RISC Microprocessor Hardware Specifications, Rev. 6.1

The COP interface has a standard header for connection to the target system, based on the 0.025" square-post 0.100" centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a connector key.

There is no standardized way to number the COP header shown in Figure 25; consequently, many different pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in Figure 25 is common to all known emulators.

The \overline{QACK} signal shown in Figure 25 is usually connected to the PCI bridge chip in a system and is an input to the MPC7410 informing it that it can go into the quiescent state. Under normal operation this occurs during a low-power mode selection. In order for COP to work, the MPC7410 must see this signal asserted (pulled down). While shown on the COP header, not all emulator products drive this signal. If the product does not, a pull-down resistor can be populated to assert this signal. Additionally, some emulator products implement open-drain type outputs and can only drive \overline{QACK} asserted; for these tools, a pull-up resistor can be implemented to ensure this signal is negated when it is not being driven by the tool. Note that the pull-up and pull-down resistors on the \overline{QACK} signal are mutually exclusive and it is never necessary to populate both in a system. To preserve correct power-down operation, \overline{QACK} should be merged via logic so that it also can be driven by the PCI bridge.

8.8 Thermal Management Information

This section provides thermal management information for the MPC7410 for air-cooled applications. Proper thermal control design is primarily dependent on the system-level design—the heat sink, airflow, and thermal interface material. To reduce the die-junction temperature, heat sinks may be attached to the package by several methods such as spring clip to holes in the printed circuit board or with screws and springs to the printed circuit board; see Figure 26 for the BGA package and Figure 27 for the LGA package. This spring force should not exceed 5.5 pounds of force. Note that care should be taken to avoid focused forces being applied to die corners and/or edges when mounting heat sinks.

Figure 26. BGA Package Exploded Cross-Sectional View with Heat Sink Clip to PCB Option

Figure 29 describes the thermal performance of selected thermal interface materials.

The board designer can choose between several types of thermal interface. Heat sink adhesive materials should be selected based on high conductivity, yet adequate mechanical strength to meet equipment shock/vibration requirements. There are several commercially-available thermal interfaces and adhesive materials provided by the following vendors:

Chomerics, Inc.	781-935-4850
77 Dragon Court	
Woburn, MA 01888-4014	
Internet: www.chomerics.com	
Dow-Corning Corporation	800-248-2481
Dow-Corning Electronic Materials	
2200 W. Salzburg Rd.	
Midland, MI 48686-0997	
Internet: www.dow.com	
Shin-Etsu MicroSi, Inc.	888-642-7674
10028 S. 51st St.	
Phoenix, AZ 85044	
Internet: www.microsi.com	

Document Revision History

Revision	Date	Substantive Change(s)	
1.0	_	Section 1.3 and Table 3—revised OV_{DD} from 3.3 V ± 100 mV to 3.3 V ± 165 mV.	
		Table 13—removed unsupported PLL configurations.	
		Table 12—added note 15 for minimum $\overline{\text{MCP}}$ pulse width, correct note 3 for 3.3-V processor bus support.	
		Table 13—revised note 3 to include emulator tool development.	
		Table 14—removed unsupported Core-to-L2 example frequencies.	
		Section 1.8.8—updated heat sink vendors list.	
		Section 1.8.8.2—updated interface vendors list.	
	Table 1—updated voltage sequencing requirements notes 3 and 4.		
		Table 4—Updated/added thermal characteristics.	
		Table 5—removed table and TAU related information, TAU is no longer supported.	
		Table 6—updated I _{in} and I _{TSI} leakage current specs.	
		Section 1.8.3—removed section.	
		Section 1.10—reformatted section.	
		Section 1.8.6—changed recommended pull-up resistor value to 1 kW–5 kW. Added \overline{AACK} , \overline{TEA} , and \overline{TS} to control signals needing pull-ups. Added pull-up resistor value recommendation for L1_TSTCLK, L2_TSTCLK, and \overline{LSSD} _MODE factory test signals.	
		Section 1.8.7—revised text regarding connection of $\overline{\text{TRST}}$. Combined Figure 22, Figure 23, and Table 17, into Figure 21.	
		Table 7—corrected min VCO frequencies from 450 to 700 MHz to match min processor frequency of 350 MHz.	
		Table 2—added note 3 to clarify BVSEL for revisions prior to Rev. E which do not support 3.3 V OV_{DD} .	
		Table 3—added notes 5 and 6 to clarify BVSEL for revisions prior to Rev. E which do not support 3.3 V ${\rm OV}_{\rm DD}$	
		Table 5—added note 8 regarding DC voltage limits for JTAG signals.	

Table 16. Document Revision	History (continued)
-----------------------------	---------------------

10 Ordering Information

7440

Ordering information for the parts fully covered by this specification document is provided in Section 10.1, "Part Numbers Addressed by This Specification." Section 10.2, "Part Numbers Not Fully Addressed by This Document," lists the part numbers which do not fully conform to the specifications of this document. These special part numbers require an additional document called a part number specification.

10.1 Part Numbers Addressed by This Specification

Table 17 provides the Freescale part numbering nomenclature for the MPC7410 Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. In addition to the processor frequency, the part numbering scheme also includes an application modifier which may specify special application conditions. Each part number also contains a revision code which refers to the die mask revision number.

IVIXX	7410	XX	nnn	X	X
Product Code	Part Identifier	Package ¹	Processor Frequency ²	Application Modifier	Revision Level
MPC	7410	RX = CBGA HX = HCTE_CBGA	400 450 500	L: 1.8 V ± 100 mV 0° to 105°C	C: 1.2; PVR = 800C 1102 D: 1.3; PVR = 800C 1103 E: 1.4; PVR = 800C 1104 E: 1.4; PVR = 800C 1104
		VS = HCTE_LGA			
MC		VU = HCTE_CBGA (Lead Free C5 Solder Spheres)	400 500		

Table 17. Part Numbering Nomenclature

Notes:

1. See Section 7, "Package Description," for more information on available package types and Table 4 for more information on thermal characteristics.

Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by part number specifications may support other maximum core frequencies.

10.3 Part Marking

Parts are marked as the example shown in Figure 31.

Notes:

MMMMMM is the 6-digit mask number.

AWLYYWWA is the traceability code.

CCCCC is the country of assembly. This space is left blank if parts are assembled in the United States.

Figure 31. Part Marking for HCTE_CBGA Device

How to Reach Us:

Home Page: www.freescale.com

email: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Technical Information Center 3-20-1, Minami-Azabu, Minato-ku Tokyo 106-0047 Japan 0120 191014 +81 3 3440 3569 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 (800) 441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@ hibbertgroup.com

MPC7410EC Rev. 6.1 11/2007 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application. Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. The described product is a PowerPC microprocessor. The PowerPC name is a trademark of IBM Corp. and is used under license. IEEE 754 and 1149.1 are registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2007. Printed in the United States of America. All rights reserved.

