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Features

— Store gathering

— Executes the cache and TLB instructions

— Big- and little-endian byte addressing supported

— Misaligned little-endian supported

— Supports FXU, FPU, and AltiVec load/store traffic

— Complete support for all four architecture AltiVec DST streams

• Level 1 (L1) cache structure

— 32 Kbyte, 32-byte line, eight-way set-associative instruction cache (iL1)

— 32 Kbyte, 32-byte line, eight-way set-associative data cache (dL1)

— Single-cycle cache access

— Pseudo least-recently-used (LRU) replacement

— Data cache supports AltiVec LRU and transient instructions algorithm

— Copy-back or write-through data cache (on a page-per-page basis)

— Supports all PowerPC memory coherency modes

— Nonblocking instruction and data cache

— Separate copy of data cache tags for efficient snooping

— No snooping of instruction cache except for ICBI instruction

• Level 2 (L2) cache interface 

— Internal L2 cache controller and tags; external data SRAMs

— 512-Kbyte, 1-Mbyte, and 2-Mbyte two-way set-associative L2 cache support

— Copy-back or write-through data cache (on a page basis, or for all L2)

— 32-byte (512-Kbyte), 64-byte (1-Mbyte), or 128-byte (2-Mbyte) sectored line size

— Supports pipelined (register-register) synchronous BurstRAMs and pipelined (register-register) late 
write synchronous BurstRAMs

— Supports direct-mapped mode for 256 Kbytes, 512 Kbytes, 1 Mbyte, or 2 Mbytes of SRAM (either all, 
half, or none of L2 SRAM must be configured as direct-mapped)

— Core-to-L2 frequency divisors of ÷1, ÷1.5, ÷2, ÷2.5, ÷3, ÷3.5, and ÷4 supported

— 64-bit data bus which also supports 32-bit bus mode

— Selectable interface voltages of 1.8 and 2.5 V

• Memory management unit

— 128-entry, two-way set-associative instruction TLB

— 128-entry, two-way set-associative data TLB

— Hardware reload for TLBs

— Four instruction BATs and four data BATs

— Virtual memory support for up to 4 hexabytes (252) of virtual memory

— Real memory support for up to 4 gigabytes (232) of physical memory

— Snooped and invalidated for TLBI instructions

• Efficient data flow

— All data buses between VRF, load/store unit, dL1, iL1, L2, and the bus are 128 bits wide

— dL1 is fully pipelined to provide 128 bits/cycle to/from the VRF
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Figure 2 shows the allowable undershoot and overshoot voltage for the MPC7410.

Figure 2. Overshoot/Undershoot Voltage

The MPC7410 provides several I/O voltages to support both compatibility with existing systems and migration to 
future systems. The MPC7410 core voltage must always be provided at nominal voltage (see Table 3 for actual 
recommended core voltage). Voltage to the L2 I/Os and processor interface I/Os are provided through separate sets 
of supply pins and may be provided at the voltages shown in Table 2. Voltage must be provided to the L2OVDD 
power pins even if the interface is not used. The input voltage threshold for each bus is selected by sampling the 
state of the voltage select pins BVSEL and L2VSEL at the negation of the signal HRESET. These signals must 
remain stable during part operation and cannot change. The output voltage will swing from GND to the maximum 
voltage applied to the OVDD or L2OVDD power pins. 

Rework temperature Trwk 260 °C —

Notes: 

1. Functional and tested operating conditions are given in Table 3. Absolute maximum ratings are stress ratings only, 
and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device 
reliability or cause permanent damage to the device.

2. Caution: Vin must not exceed OVDD or L2OVDD by more than 0.2 V at any time including during power-on reset.
3. Caution: L2OVDD/OVDD must not exceed VDD/AVDD/L2AVDD by more than 2.0 V at any time including during 

power-on reset; this limit may be exceeded for a maximum of 20 ms during power-on reset and power-down 
sequences.

4. Caution: VDD/AVDD/L2AVDD must not exceed L2OVDD/OVDD by more than 0.4 V at any time including during 
power-on reset; this limit may be exceeded for a maximum of 20 ms during power-on reset and power-down 
sequences.

5. Vin may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
6. Mxx7410xxnnnLE (Rev. 1.4) and later only. Previous revisions do not support 3.3 V OVDD and have a maximum 

value OVDD of –0.3 to 2.8 V.

Table 1. Absolute Maximum Ratings 1 (continued)

Characteristic Symbol Maximum Value Unit Notes

VIH

GND
GND – 0.3 V

GND – 0.7 V
Not to Exceed 10%

(L2)OVDD + 20%

VIL

(L2)OVDD

(L2)OVDD + 5%

of tSYSCLK (OVDD)
or tL2CLK (L2OVDD)
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Table 4 provides the package thermal characteristics for the MPC7410.

Table 3. Recommended Operating Conditions 1

Characteristic Symbol
Recommended 

Value Unit Notes

Core supply voltage VDD 1.8 V ± 100 mV V —

PLL supply voltage AVDD 1.8 V ± 100 mV V —

L2 DLL supply voltage L2AVDD 1.8 V ± 100 mV V —

Processor bus supply 
voltage

BVSEL = 0 OVDD 1.8 V ± 100 mV V —

BVSEL = HRESET OVDD 2.5 V ± 100 mV V —

BVSEL = ¬HRESET or 
BVSEL = 1

OVDD 3.3 V ± 165 mV V 2, 3

L2 bus supply voltage L2VSEL = 0 L2OVDD 1.8 V ± 100 mV V —

L2VSEL = HRESET or 
L2VSEL = 1

L2OVDD 2.5 V ± 100 mV V —

Input voltage Processor bus and 
JTAG signals

Vin GND to OVDD V —

L2 bus Vin GND to L2OVDD V —

Die-junction temperature Tj 0 to 105 °C —

Notes: 
1. These are the recommended and tested operating conditions. Proper device operation outside of these conditions 

is not guaranteed.
2. Mxx7410xxnnnLE (Rev. 1.4) and later only. Previous revisions do not support 3.3 V OVDD and have a 

recommended OVDD value of 2.5 V ± 100 mV for BVSEL = 1.
3. Mxx7410xxnnnLE (Rev. 1.4) and later only. Previous revisions do not support BVSEL = ¬HRESET.

Table 4. Package Thermal Characteristics

Characteristic Symbol

Value

Unit Notes
MPC7410 

CBGA
MPC7410 

HCTE

Junction-to-ambient thermal resistance, natural convection, 
four-layer (2s2p) board

RθJMA 18 20 °C/W 1, 2

Junction-to-ambient thermal resistance, 1m/sec airflow, 
four-layer (2s2p) board

RθJMA 14 16 °C/W 1, 2

Junction-to-ambient thermal resistance, 2m/sec airflow, 
four-layer (2s2p) board

RθJMA 13 15 °C/W 1, 2

Junction-to-board thermal resistance RθJB 9 11 °C/W 3
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4.2.2  Processor Bus AC Specifications
Table 8 provides the processor bus AC timing specifications for the MPC7410 as defined in Figure 4 and Figure 5. 
Timing specifications for the L2 bus are provided in Section 4.2.3, “L2 Clock AC Specifications.”

Table 8. Processor Bus AC Timing Specifications 1

At recommended operating conditions (see Table 3)

Parameter Symbol 2
400, 450, 500 MHz

Unit Notes
Min Max

Input setup tIVKH 1.0 — ns 4

Input hold tIXKH 0 — ns 4

Output valid times:

TS
ARTRY, SHD0, SHD1

All other outputs

tKHTSV
tKHARV
tKHOV

—
—
—

3.0
2.3
3.0

ns 5, 6

Output hold times:

TS
ARTRY, SHD0, SHD1

All other outputs

tKHTSX
tKHARX
tKHOX

0.5
0.5
0.5

—
—
—

ns 5

SYSCLK to output enable tKHOE 0.5 — ns 9

SYSCLK to output high impedance (all except ABB/AMON(0), 
ARTRY/SHD, DBB/DMON(0), SHD0, SHD1)

tKHOZ — 3.5 ns

SYSCLK to ABB/AMON(0), DBB/DMON(0) high impedance after 
precharge

tKHABPZ — 1 t
SYSCLK

3, 7, 9

Maximum delay to ARTRY, SHD0, SHD1 precharge tKHARP — 1 t
SYSCLK

3, 8, 9
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Figure 4 provides the AC test load for the MPC7410.

Figure 4. AC Test Load

SYSCLK to ARTRY, SHD0, SHD1 high impedance after precharge tKHARPZ — 2 t
SYSCLK

3, 8, 9

Notes: 
1. All input specifications are measured from the midpoint of the signal in question to the midpoint of the rising edge of the input 

SYSCLK. All output specifications are measured from the midpoint of the rising edge of SYSCLK to the midpoint of the signal 
in question. All output timings assume a purely resistive 50-Ω load (see Figure 4). Input and output timings are measured at 
the pin; time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. The symbology used for timing specifications herein follows the pattern of t(signal)(state)(reference)(state) for inputs and 
t(reference)(state)(signal)(state) for outputs. For example, tIVKH symbolizes the time input signals (I) reach the valid state (V) 
relative to the SYSCLK reference (K) going to the high (H) state or input setup time. And tKHOV symbolizes the time from 
SYSCLK(K) going high (H) until outputs (O) are valid (V) or output valid time. Input hold time can be read as the time that 
the input signal (I) went invalid (X) with respect to the rising clock edge (KH)— note the position of the reference and its state 
for inputs—and output hold time can be read as the time from the rising edge (KH) until the output went invalid (OX). 

3. tSYSCLK is the period of the external clock (SYSCLK) in ns. The numbers given in the table must be multiplied by the period 
of SYSCLK to compute the actual time duration (in ns) of the parameter in question.

4. Includes mode select signals: BVSEL, EMODE, L2VSEL. See Figure 5 for mode select timing with respect to HRESET.
5. All other output signals are composed of the following— A[0:31], AP[0:3], TT[0:4], TS, TBST, TSIZ[0:2], GBL, WT, CI, 

DH[0:31], DL[0:31], DP[0:7], BR, CKSTP_OUT, DRDY, HIT, QREQ, RSRV.
6. Output valid time is measured from 2.4 to 0.8 V which may be longer than the time required to discharge from VDD to 0.8 V.
7. According to the 60x bus protocol, ABB and DBB are driven only by the currently active bus master. They are asserted low 

then precharged high before returning to high-Z as shown in Figure 6. The nominal precharge width for ABB or DBB is 0.5 
× tSYSCLK, that is, less than the minimum tSYSCLK period, to ensure that another master asserting ABB, or DBB on the 
following clock will not contend with the precharge. Output valid and output hold timing is tested for the signal asserted. 
Output valid time is tested for precharge. The high-Z behavior is guaranteed by design.

8. According to the 60x bus protocol, ARTRY can be driven by multiple bus masters through the clock period immediately 
following AACK. Bus contention is not an issue since any master asserting ARTRY will be driving it low. Any master asserting 
it low in the first clock following AACK will then go to high-Z for one clock before precharging it high during the second cycle 
after the assertion of AACK. The nominal precharge width for ARTRY is 1.0 tSYSCLK; that is, it should be high-Z as shown in 
Figure 6 before the first opportunity for another master to assert ARTRY. Output valid and output hold timing are tested for 
the signal asserted. Output valid time is tested for precharge. The high-Z behavior is guaranteed by design.

9. Guaranteed by design and not tested.

Table 8. Processor Bus AC Timing Specifications 1 (continued)
At recommended operating conditions (see Table 3)

Parameter Symbol 2
400, 450, 500 MHz

Unit Notes
Min Max

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω
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Figure 11 provides the AC test load for TDO and the boundary-scan outputs of the MPC7410.

Figure 11. Alternate AC Test Load for the JTAG Interface

Figure 12 provides the JTAG clock input timing diagram.

Figure 12. JTAG Clock Input Timing Diagram

TRST assert time tTRST 25 — ns 2

Input setup times:

Boundary-scan data
TMS, TDI

tDVJH
tIVJH

4
0

—
—

ns
3

Input hold times:

Boundary-scan data
TMS, TDI

tDXJH
tIXJH

20
25

—
—

ns
3

Valid times:

Boundary-scan data
TDO

tJLDV
tJLOV

4
4

20
25

ns
4

TCK to output high impedance:

Boundary-scan data
TDO

tJLDZ
tJLOZ

3
3

19
9

ns
4, 5

5

Notes: 

1.  All outputs are measured from the midpoint voltage of the falling/rising edge of TCLK to the midpoint of the signal 
in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load 
(see Figure 11). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
3. Non-JTAG signal input timing with respect to TCK.
4. Non-JTAG signal output timing with respect to TCK.
5. Guaranteed by design and characterization.

Table 11. JTAG AC Timing Specifications (Independent of SYSCLK) 1 (continued)
At recommended operating conditions (see Table 3)

Parameter Symbol Min Max Unit Notes

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

TCLK VMVMVM

VM = Midpoint Voltage (OVDD/2)

tTCLK

tJR tJF
tJHJL
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Figure 16. Pinout of the MPC7410, 360 CBGA and 360 HCTE Packages
as Viewed from the Top Surface

6 Pinout Listings
Table 12 provides the pinout listing for the MPC7410 360 CBGA, 360 HCTE packages.

Table 12. Pinout Listing for the MPC7410, 360 CBGA and 360 HCTE Packages

Signal Name Pin Number Active I/O I/F Select 1 Notes

A[0:31] A13, D2, H11, C1, B13, F2, C13, E5, D13, G7, F12, G3, 
G6, H2, E2, L3, G5, L4, G4, J4, H7, E1, G2, F3, J7, M3, H3, 
J2, J6, K3, K2, L2

High I/O BVSEL

AACK N3 Low Input BVSEL —

ABB L7 Low Output BVSEL 12, 16

AP[0:3] C4, C5, C6, C7 High I/O BVSEL —

ARTRY L6 Low I/O BVSEL —

AVDD A8 — Input VDD —

BG H1 Low Input BVSEL —

BR E7 Low Output BVSEL —

BVSEL W1 High Input N/A 1, 3, 8,
9, 14

CHK K11 Low Input BVSEL 2, 8, 9

CI C2 Low I/O BVSEL —

CKSTP_IN B8 Low Input BVSEL —

CKSTP_OUT D7 Low Output BVSEL —

CLK_OUT E3 High Output BVSEL —

DBB K5 Low Output BVSEL 12, 16

DBG K1 Low Input BVSEL —

DH[0:31] W12, W11, V11, T9, W10, U9, U10, M11, M9, P8, W7, P9, 
W9, R10, W6, V7, V6, U8, V9, T7, U7, R7, U6, W5, U5, W4, 
P7, V5, V4, W3, U4, R5

High I/O BVSEL —

 ViewPart C

 Die

Substrate Assembly

Encapsulant

LGA Package
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The MPC7410 generates the clock for the external L2 synchronous data SRAMs by dividing the core clock 
frequency of the MPC7410. The divided-down clock is then phase-adjusted by an on-chip delay-lock-loop (DLL) 
circuit and should be routed from the MPC7410 to the external RAMs. A separate clock output, L2SYNC_OUT is 
sent out half the distance to the SRAMs and then returned as an input to the DLL on pin L2SYNC_IN so that the 
rising-edge of the clock as seen at the external RAMs can be aligned to the clocking of the internal latches in the L2 
bus interface.

The core-to-L2 frequency divisor for the L2 PLL is selected through the L2CLK bits of the L2CR register. Generally, 
the divisor must be chosen according to the frequency supported by the external RAMs, the frequency of the 

0111 4.5x 2x — — — — 375
(750)

450
(900)

—

1011 5x 2x — — — 375
(750)

416
(833)

500
(1000)

—

1001 5.5x 2x — — 366
(733)

412
(825)

458
(916)

— —

1101 6x 2x — — 400
(800)

450
(900)

500
(1000)

— —

0101 6.5x 2x — — 433
(866)

488
(967)

— — —

0010 7x 2x — 350
(700)

466
(933)

— — — —

0001 7.5x 2x — 375
(750)

500
(1000)

— — — —

1100 8x 2x — 400
(800)

— — — — —

0000 9x 2x — 450
(900)

— — — — —

0011 PLL off/bypass PLL off, SYSCLK clocks core circuitry directly, 1x bus-to-core implied

1111 PLL off PLL off, no core clocking occurs

Notes: 
1. PLL_CFG[0:3] settings not listed are reserved.
2. The sample bus-to-core frequencies shown are for reference only. Some PLL configurations may select bus, core, 

or VCO frequencies which are not useful, not supported, or not tested for by the MPC7410; see Section 4.2.1, 
“Clock AC Specifications,” for valid SYSCLK, core, and VCO frequencies.

3. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly, the PLL is disabled, and the 
bus mode is set for 1:1 mode operation. This mode is intended for factory use and third-party emulator tool 
development only. 
Note: The AC timing specifications given in this document do not apply in PLL-bypass mode.

4. In PLL-off mode, no clocking occurs inside the MPC7410 regardless of the SYSCLK input.
5. PLL-off mode should not be used during chip power-up sequencing.

Table 13. MPC7410 Microprocessor PLL Configuration (continued)

PLL_CFG
[0:3]

Example Bus-to-Core Frequency in MHz (VCO Frequency in MHz)

Bus-to-
Core 

Multiplier

Core-to
VCO 

Multiplier

Bus
33.3 MHz

Bus
50 MHz

Bus
66.6 MHz

Bus
75 MHz

Bus
83.3 MHz

Bus
100 MHz

Bus
133 MHz
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existing designs should qualify both AVDD filter solutions, and the filter providing the most robust margin should 
be implemented.

Figure 21. PLL Power Supply Filter Circuit No.1

Figure 22. PLL Power Supply Filter Circuit No. 2

The filter circuit should be placed as close as possible to the AVDD pin to minimize noise coupled from nearby 
circuits. A separate circuit should be placed as close as possible to the L2AVDD pin. It is often possible to route 
directly from the capacitors to the AVDD pin, which is on the periphery of the 360 BGA footprint, without the 
inductance of vias. The L2AVDD pin may be more difficult to route, but is proportionately less critical.

It is the recommendation of Freescale, that systems that implement the AVDD filter shown in Figure 22 design in the 
pads for the removed capacitors (shown in Figure 21), to provide for the possible reintroduction of the filter in 
Figure 21. This would be necessary in case there is a planned transition from the CBGA package to the HCTE 
package of the MPC7410.

8.3 Decoupling Recommendations
Due to the MPC7410 dynamic power management feature, large address and data buses, and high operating 
frequencies, the MPC7410 can generate transient power surges and high frequency noise in its power supply, 
especially while driving large capacitive loads. This noise must be prevented from reaching other components in the 
MPC7410 system, and the MPC7410 itself requires a clean, tightly regulated source of power. Therefore, it is 
recommended that the system designer place at least one decoupling capacitor at each VDD, OVDD, and L2OVDD 
pin of the MPC7410. It is also recommended that these decoupling capacitors receive their power from separate 
VDD, (L2)OVDD, and GND power planes in the PCB, utilizing short traces to minimize inductance.

These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology) capacitors 
should be used to minimize lead inductance, preferably 0508 or 0603 orientations, where connections are made 
along the length of the part. 

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the 
VDD, L2OVDD, and OVDD planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors 
should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should 
also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk 
capacitors—100–330 µF (AVX TPS tantalum or Sanyo OSCON).

 VDD
AVDD (or L2AVDD)

   10 Ω

 2.2 µF  2.2 µF

 GND
Low ESL Surface Mount Capacitors

 VDD AVDD
   51 Ω

 GND

 Capacitor
Pad Sites
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8.4 Connection Recommendations
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level 
through a resistor. Unused active low inputs should be tied to OVDD. Unused active high inputs should be connected 
to GND. All NC (no connect) signals must remain unconnected.

Power and ground connections must be made to all external VDD, OVDD, L2OVDD, and GND pins of the MPC7410. 
Note that power must be supplied to L2OVDD even if the L2 interface of the MPC7410 will not be used; the 
remainder of the L2 interface may be left unterminated.

8.5 Output Buffer DC Impedance
The MPC7410 60x and L2 I/O drivers are characterized over process, voltage, and temperature. To measure Z0, an 
external resistor is connected from the chip pad to OVDD or GND. Then, the value of each resistor is varied until 
the pad voltage is OVDD/2 (see Figure 23).

The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When 
data is held low, SW2 is closed (SW1 is open), and RN is trimmed until the voltage at the pad equals (L2)OVDD/2. 
RN then becomes the resistance of the pull-down devices. When data is held high, SW1 is closed (SW2 is open), and 
RP is trimmed until the voltage at the pad equals (L2)OVDD/2. RP then becomes the resistance of the pull-up devices. 
RP and RN are designed to be close to each other in value. Then, Z0 = (RP + RN)/2.

Figure 23 describes the driver impedance measurement circuit described above.

Figure 23. Driver Impedance Measurement Circuit

Alternately, the following is another method to determine the output impedance of the MPC7410. A voltage source, 
Vforce, is connected to the output of the MPC7410, as in Figure 24. Data is held low, the voltage source is set to a 
value that is equal to (L2)OVDD/2, and the current sourced by Vforce is measured. The voltage drop across the 
pull-down device, which is equal to (L2)OVDD/2, is divided by the measured current to determine the output 
impedance of the pull-down device, RN. Similarly, the impedance of the pull-up device is determined by dividing 
the voltage drop of the pull-up, (L2)OVDD/2, by the current sank by the pull-up when the data is high and Vforce is 
equal to (L2)OVDD/2. This method can be employed with either empirical data from a test setup or with data from 
simulation models, such as IBIS.

OVDD

OGND

RP

RN

Pad
Data

SW1

SW2
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RP and RN are designed to be close to each other in value. Then, Z0 = (RP + RN)/2. Figure 24 describes the alternate 
driver impedance measurement circuit.

Figure 24. Alternate Driver Impedance Measurement Circuit

Table 15 summarizes the signal impedance results. The driver impedance values were characterized at 0°, 65°, and 
105°C. The impedance increases with junction temperature and is relatively unaffected by bus voltage.

8.6 Pull-Up Resistor Requirements
The MPC7410 requires pull-up resistors (1 kΩ–5 kΩ) on several control pins of the bus interface to maintain the 
control signals in the negated state after they have been actively negated and released by the MPC7410 or other bus 
masters. These pins are: TS, ARTRY, SHDO, SHD1.

Four test pins also require pull-up resistors (100 Ω−1 kΩ). These pins are CHK, L1_TSTCLK, L2_TSTCLK, and 
LSSD_MODE. These signals are for factory use only and must be pulled up to OVDD for normal machine 
operation. 

If pull-down resistors are used to configure BVSEL or L2VSEL, the resistors should be less than 250 Ω (see Table 
12). Because PLL_CFG[0:3] must remain stable during normal operation, strong pull-up and pull-down resistors 
(1 kΩ or less) are recommended to configure these signals in order to protect against erroneous switching due to 
ground bounce, power supply noise or noise coupling.

In addition, CKSTP_OUT is an open-drain style output that requires a pull-up resistor (1 kΩ–5 kΩ) if it is used by 
the system. The CKSTP_IN signal should likewise be pulled up through a pull-up resistor (1 kΩ–5 kΩ) to prevent 
erroneous assertions of this signal.

During inactive periods on the bus, the address and transfer attributes may not be driven by any master and may, 
therefore, float in the high-impedance state for relatively long periods of time. Since the MPC7410 must continually 
monitor these signals for snooping, this float condition may cause excessive power draw by the input receivers on 

Table 15. Impedance Characteristics
VDD = 1.8 V, OVDD = 2.5 V, Tj = 0° – 105°C

Impedance Processor Bus L2 Bus Symbol Unit

RN 41.5–54.3 42.7–54.1 Z0 Ω

RP 37.3–55.3 39.3–50.0 Z0 Ω

(L2)OVDD

BGA

Data
Pin

Vforce

OGND
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Figure 25. COP Connector Diagram
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Notes:
1. RUN/STOP, normally found on pin 5 of the COP header, is not implemented on the MPC7410. Connect

pin 5 of the COP header to OVDD with a 10-kΩ pull-up resistor.
2. Key location; pin 14 is not physically present on the COP header.
3. Component not populated. Populate only if debug tool does not drive QACK.
4. Populate only if debug tool uses an open-drain type output and does not actively negate QACK.
5. If the JTAG interface is implemented, connect HRESET from the target source to TRST from the COP

header though an AND gate to TRST of the part. If the JTAG interface is not implemented, connect
HRESET from the target source to TRST of the part through a 0-Ω isolation resistor.

6. The COP port and target board should be able to independently assert HRESET and TRST to the pro-
cessor in order to fully control the processor as shown above.

TRST 6

10 kΩ
OVDD



MPC7410 RISC Microprocessor Hardware Specifications, Rev. 6.1

42 Freescale Semiconductor

System Design Information

The COP interface has a standard header for connection to the target system, based on the 0.025" square-post 0.100" 
centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a connector 
key.

There is no standardized way to number the COP header shown in Figure 25; consequently, many different pin 
numbers have been observed from emulator vendors. Some are numbered top-to-bottom then left-to-right, while 
others use left-to-right then top-to-bottom, while still others number the pins counter clockwise from pin 1 (as with 
an IC). Regardless of the numbering, the signal placement recommended in Figure 25 is common to all known 
emulators.

The QACK signal shown in Figure 25 is usually connected to the PCI bridge chip in a system and is an input to the 
MPC7410 informing it that it can go into the quiescent state. Under normal operation this occurs during a low-power 
mode selection. In order for COP to work, the MPC7410 must see this signal asserted (pulled down). While shown 
on the COP header, not all emulator products drive this signal. If the product does not, a pull-down resistor can be 
populated to assert this signal. Additionally, some emulator products implement open-drain type outputs and can 
only drive QACK asserted; for these tools, a pull-up resistor can be implemented to ensure this signal is negated 
when it is not being driven by the tool. Note that the pull-up and pull-down resistors on the QACK signal are 
mutually exclusive and it is never necessary to populate both in a system. To preserve correct power-down operation, 
QACK should be merged via logic so that it also can be driven by the PCI bridge.

8.8 Thermal Management Information
This section provides thermal management information for the MPC7410 for air-cooled applications. Proper
thermal control design is primarily dependent on the system-level design—the heat sink, airflow, and thermal
interface material. To reduce the die-junction temperature, heat sinks may be attached to the package by several
methods such as spring clip to holes in the printed circuit board or with screws and springs to the printed circuit
board; see Figure 26 for the BGA package and Figure 27 for the LGA package. This spring force should not exceed
5.5 pounds of force. Note that care should be taken to avoid focused forces being applied to die corners and/or edges
when mounting heat sinks.

Figure 26. BGA Package Exploded Cross-Sectional View with Heat Sink Clip to PCB Option

Thermal Interface Material

Heat Sink BGA Package

Heat Sink
Clip

Printed-Circuit Board
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Figure 27. LGA Package Exploded Cross-Sectional View with Heat Sink Clip to PCB Option

The board designer can choose between several types of heat sinks to place on the MPC7410. There are several 
commercially-available heat sinks for the MPC7410 from the following vendors:

Aavid Thermalloy 603-224-9988
70 Commercial Street, Suite 200
Concord, NH 03301
Internet: www.aavidthermalloy.com

Alpha Novatech 408-567-8082
473 Sapena Ct. #12
Santa Clara, CA 95054
Internet: www.alphanovatech.com

The Bergquist Company 800-347-4572
18930 West 78th St.
Chanhassen, MN 55317
Internet: www.bergquistcompany.com

International Electronic Research Corporation (IERC) 818-842-7277
413 North Moss St.
Burbank, CA 91502
Internet: www.ctscorp.com

Wakefield Engineering 603-635-2800
33 Bridge St.
Pelham, NH 03076
Internet: www.wakefield.com

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal performance at 
a given air velocity, spatial volume, mass, attachment method, assembly, and cost. 

Thermal

Heat Sink
LGA Package

Heat Sink
Clip

Printed-Circuit Board

Interface Material
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Figure 30. Thermalloy #2328B Heat Sink-to-Ambient Thermal Resistance Versus Airflow Velocity

Though the die junction-to-ambient and the heat sink-to-ambient thermal resistances are a common figure-of-merit 
used for comparing the thermal performance of various microelectronic packaging technologies, one should 
exercise caution when only using this metric in determining thermal management because no single parameter can 
adequately describe three-dimensional heat flow. The final die-junction operating temperature, is not only a function 
of the component-level thermal resistance, but the system-level design and its operating conditions. In addition to 
the component's power consumption, a number of factors affect the final operating die-junction 
temperature—airflow, board population (local heat flux of adjacent components), heat sink efficiency, heat sink 
attach, heat sink placement, next-level interconnect technology, system air temperature rise, altitude, and so on. 

Due to the complexity and the many variations of system-level boundary conditions for today's microelectronic 
equipment, the combined effects of the heat transfer mechanisms (radiation, convection, and conduction) may vary 
widely. For these reasons, we recommend using conjugate heat transfer models for the board, as well as, 
system-level designs.
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9 Document Revision History
Table 16 provides a revision history for this hardware specification.

Table 16. Document Revision History

Revision Date Substantive Change(s)

6.1 11/16/2007 Updated Table 17 and Table 19 to show the VU package is available as an MC prefix device compared 
to an MPC prefix for the other package types; this was done to match the specification documents 
with the device ordering and part marking information.

Updated title of Table 19 to reflect correct name of referenced document and updated respective 
document order information below table.

Updated notes in Table 1–Table 3 replacing references to MPC7410RXnnnLE with Mxx7410xxnnnLE 
since notes to apply to all the available packages types.

6 8/14/2007 Updated Table 4 thermal information:

 • Deleted rows on single-layer (1s) boards.
 • CBGA package RθJMA for natural convection for four layer boards changed from 17 to 18 °C/W.
 • HCTE package RθJMA for natural convection for four layer boards changed from 22 to 20 °C/W.
 • HCTE package RθJMA for 200 ft./min airflow for four layer boards changed from 19 to 16 °C/W with 

airflow rate specification changed from 200 ft./min to 1 m/sec.
 • HCTE package RθJMA for 400 ft./min airflow for four layer boards changed from 18 to 15 °C/W with 

airflow rate specification changed from 400 ft./min to 2 m/sec.
 • CBGA package RθJB changed from 8 to 9°C/W.
 • HCTE package RθJB changed from 14 to 11°C/W.
 • Table 4 Notes 2 - 4 have been revised and updated; Note 5 is no longer used. Notes on table rows 

have been renumbered.
Updated Figure 26 removing optional heat sink clip to package.

Removed references in document to adhesive attached thermal solutions.

Updated thermal solution vendor information in Section 8.8.

Added HCTE_CBGA Lead Free C5 Spheres (VU) packaging information to document:

 • Added Section 7.2, “Package Parameters for the MPC7410, 360 HCTE_CBGA (Lead Free C5 
Spheres).

 • Added Figure 18 for HCTE_CBGA Lead Free C5 Spheres package, similar to Figure 17 but with 
differences in dimensions A, A1, and b in the figure’s dimension table.

 • Added HCTE_CBGA Lead Free C5 Spheres (VU) packaging information in Table 17 and Table 19.
 • Changed part marking example in Figure 31 to an HCTE_CBGA device.
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5 4/13/2005 Section numbering revised. In all previous versions, section numbering began with ‘1.’ These extra 
‘1’s’ were deleted. For example, previously numbered section 1.8.2 changed to 8.2.

Section 7.1—added CTE value for HCTE package. Corrected minimum module height from 2.65 mm 
to 2.72 mm per Figure 17.

Section 3—added HCTE_LGA (VS package descriptor) package description which is the 
HCTE_CBGA (HX package descriptor) with the spheres removed.

Table 4—generalized ‘HCTE CBGA’ column to ‘HCTE’ to include both HCTE_CBGA and HCTE_LGA 
package thermal characteristics.

Section 5—added HCTE_LGA package. The HCTE_LGA has the same pin assignments as the 
CBGA and HCTE_CBGA packages. Added side view Part C for HCTE_LGA.

Section 6—added HCTE_LGA package (VS package descriptor). The HCTE_LGA has the same 
pinout listing as the CBGA and HCTE packages.

Section 7.3—added HCTE_LGA package parameters.

Section 7.4—added HCTE_LGA package mechanical dimensions.

Table 17—added HCTE_LGA package (VS package descriptor) to part numbering nomenclature.

4 — Table 5—Changed measurement test condition IOH from -6mA to –5 mA for VOH and IOL from 6 mA 
to 5 mA for VOL per Product Bulletin.

Section 1.8.2—revised text regarding AVDD filter selection for the CBGA package.

3 —  Table 6—Changed note 1 to specify that OVDD and L2OVDD power is typically <5% of VDD power.

Figure 17—revised diagram and dimensions to specify ‘cap regions’ versus individual cap 
measurements. Moved individual capacitor placement to separate figure.

Figure 18—Added this figure to show each individual capacitor placement and value.

Figure 22—updated COP Connector Diagram to recommend a weak pull-up resistor on TCK.

2 — Public release, includes Rev 1.1 changes.

Section 1.7.2—added package capacitor values.

Section 1.8.6—added recommendation that strong pull-up/down resistors be used on the 
PLL_CFG[0:3] signals.

Table 8—removed mode input setup and hold times. These inputs adhere to the general input setup 
and hold specifications.

Figure 5—revised mode input diagram to show sample points around HRESET negation.

Section 1.3—added HCTE package description.

Figure 22—added note 6 to emphasize that COP emulator and target board need to be able to drive 
HRESET and TRST independently to the CPU.

Section 1.8.2—revised section for HCTE package. Added text and figure for AVDD filter for the CBGA 
package.

Section 1.8.6—removed AACK, TEA, and TS from control signals requiring pull-ups. Removed TBST 
from snooped transfer attribute list. TBST is an output and is not snooped.

Table 16. Document Revision History (continued)

Revision Date Substantive Change(s)
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1.1 — Internal release.

Table 12—added note 16 for ABB/AMON and DBB/DMON signal clarification.

Table 12—changed CHK note 4 reference to note 2, signal is for factory test only. Changed previous 
note 4 (CHK related) to now provide additional PLL info.

Table 1—modified maximum value for OVDD from –0.3 to 3.465 to now be –0.3 to 3.6 and L2OVDD 
from –0.3 to 2.6 to now be –0.3 to 2.8. Modified note 6, OVDD for revisions prior to Rev. 1.4 have 
maximum value for OVDD of –0.3 to 2.8.

Table 8—removed note 12. L2_TSTCLK is for factory use only (see Table 12, note 2).

Section 1.10.2—revised section to include nomenclature tables for part markings not covered by this 
spec.

Figure 2—added that under/overshoot for L2OVDD references tL2CLK while OVDD references tSYSCLK.

Table 4—added HCTE package (HX package descriptor) thermal characteristics.

Section 1.5—added HCTE package (HX package descriptor). Both the CBGA and HCTE packages 
have the same pin assignments.

Section 1.6—added HCTE package (HX package descriptor). Both the CBGA and HCTE packages 
have the same pinout listings.

Section 1.7—added HCTE package (HX package descriptor). Both the CBGA and HCTE packages 
have the same package parameters and dimensions.

Table 17—added HCTE package (HX package descriptor) to part numbering nomenclature.

Table 21—added MPC7410THXnnnLE extended temperature HCTE package part numbers and part 
number specification document reference.

Table 16. Document Revision History (continued)
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0.3 — Added 3.3 V support on the processor bus (BVSEL).

Table 7—update typical and maximum power numbers for full-on mode in. Removed note 4. 
Reworded notes 2 and 3.

Table 9, Note 2—removed reference to application note.

Figure 17—corrected side view datum A to be datum C.

Section 1.8.7—added CI and WT to transfer attribute signals requiring pull-ups.

Section 1.8.7—added 1-kΩ pull-up recommendation to GBL when GBL is not connected.

Table 2— added pull-down resistance necessary for internally pulled-up voltage select pins. Added 
3.3-V support for BVSEL.

Table 13—added note 14 for BVSEL, L2VSEL, and TRST pins to address pull-down resistance 
necessary for these internally pulled-up pins to recognize a low signal.

Table 6—lowered 2.5 V CVIH from 2.2 to 2.0 V to be compatible with VOH of the MPC107. Added 
support for 3.3-V processor bus.

Table 15—modified note 1, use L2CR[L2SL] for L2CLK frequency less than 150 MHz.

Table 8—revised note 2 discussing for 3.3-V bus voltage support.

Table 14—added note 5, do not use PL off during power-up sequence.

Table 1—update output hold times (tL2CHOX).

0.2 — Corrected Section 1.3—technology from 0.13 µm to 0.18 µm.

Updated Table 7—adds power consumption numbers; adds note on estimated decrease w/o AltiVec.

Updated Table 8—adds minimum values for processor frequency and VCO frequency.

Updated Table 9—input setup, output valid times, output hold times, SYSCLK to output high 
impedance.

Updated Table 11—L2SYNC_IN to high impedance.

Updated Figure 17—mechanical dimensions, adds capacitor pad dimensions.

0.1 — Minor updates.

0 — Initial release.

Table 16. Document Revision History (continued)
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10.3 Part Marking
Parts are marked as the example shown in Figure 31.

Figure 31. Part Marking for HCTE_CBGA Device

HCTE_CBGA

MPC7410
HXnnnLE

MMMMMM
AWLYYWWA

7410

Notes:

CCCCC is the country of assembly. This space is left blank if parts are assembled in the United States.

MMMMMM is the 6-digit mask number.
AWLYYWWA is the traceability code.


