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Features

• The MPC7410 is implemented in a next generation process technology for core frequency improvement.

• The MPC7410 floating-point unit has been improved to make latency equal for double- and single-precision 
operations involving multiplication.

• The completion queue has been extended to eight slots.

• There are no other significant changes to scalar pipelines, decode/dispatch/completion mechanisms, or the 
branch unit. The MPC750 four-stage pipeline model is unchanged (fetch, decode/dispatch, execute, 
complete/writeback).

Some comments on the MPC7410 with respect to the MPC7400:

• The MPC7410 adds configurable direct-mapped SRAM capability to the L2 cache interface.

• The MPC7410 adds 32-bit interface support to the L2 cache interface. The MPC7410 implements a 19th L2 
address pin (L2ASPARE on the MPC7400) in order to support additional address range.

• The MPC7410 removes support for 3.3-V I/O on the L2 cache interface.

Figure 1 shows a block diagram of the MPC7410.

2 Features
This section summarizes features of the MPC7410 implementation of the PowerPC architecture. Major features of 
the MPC7410 are as follows:

• Branch processing unit

— Four instructions fetched per clock

— One branch processed per cycle (plus resolving two speculations)

— Up to one speculative stream in execution, one additional speculative stream in fetch

— 512-entry branch history table (BHT) for dynamic prediction

— 64-entry, four-way set-associative branch target instruction cache (BTIC) for eliminating branch delay 
slots

• Dispatch unit

— Full hardware detection of dependencies (resolved in the execution units)

— Dispatch two instructions to eight independent units (system, branch, load/store, fixed-point unit 1, 
fixed-point unit 2, floating-point, AltiVec permute, AltiVec ALU)

— Serialization control (predispatch, postdispatch, execution serialization)
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Figure 1. MPC7410 Block Diagram
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Electrical and Thermal Characteristics

Figure 2 shows the allowable undershoot and overshoot voltage for the MPC7410.

Figure 2. Overshoot/Undershoot Voltage

The MPC7410 provides several I/O voltages to support both compatibility with existing systems and migration to 
future systems. The MPC7410 core voltage must always be provided at nominal voltage (see Table 3 for actual 
recommended core voltage). Voltage to the L2 I/Os and processor interface I/Os are provided through separate sets 
of supply pins and may be provided at the voltages shown in Table 2. Voltage must be provided to the L2OVDD 
power pins even if the interface is not used. The input voltage threshold for each bus is selected by sampling the 
state of the voltage select pins BVSEL and L2VSEL at the negation of the signal HRESET. These signals must 
remain stable during part operation and cannot change. The output voltage will swing from GND to the maximum 
voltage applied to the OVDD or L2OVDD power pins. 

Rework temperature Trwk 260 °C —

Notes: 

1. Functional and tested operating conditions are given in Table 3. Absolute maximum ratings are stress ratings only, 
and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device 
reliability or cause permanent damage to the device.

2. Caution: Vin must not exceed OVDD or L2OVDD by more than 0.2 V at any time including during power-on reset.
3. Caution: L2OVDD/OVDD must not exceed VDD/AVDD/L2AVDD by more than 2.0 V at any time including during 

power-on reset; this limit may be exceeded for a maximum of 20 ms during power-on reset and power-down 
sequences.

4. Caution: VDD/AVDD/L2AVDD must not exceed L2OVDD/OVDD by more than 0.4 V at any time including during 
power-on reset; this limit may be exceeded for a maximum of 20 ms during power-on reset and power-down 
sequences.

5. Vin may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
6. Mxx7410xxnnnLE (Rev. 1.4) and later only. Previous revisions do not support 3.3 V OVDD and have a maximum 

value OVDD of –0.3 to 2.8 V.

Table 1. Absolute Maximum Ratings 1 (continued)

Characteristic Symbol Maximum Value Unit Notes

VIH

GND
GND – 0.3 V

GND – 0.7 V
Not to Exceed 10%

(L2)OVDD + 20%

VIL

(L2)OVDD

(L2)OVDD + 5%

of tSYSCLK (OVDD)
or tL2CLK (L2OVDD)
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Electrical and Thermal Characteristics

4.2.1  Clock AC Specifications
Table 7 provides the clock AC timing specifications as defined in Figure 3.

Figure 3 provides the SYSCLK input timing diagram.

Figure 3. SYSCLK Input Timing Diagram

Table 7. Clock AC Timing Specifications
At recommended operating conditions (see Table 3) 

Characteristic Symbol

Maximum Processor Core Frequency

Unit Notes400 MHz 450 MHz 500 MHz

Min Max Min Max Min Max

Processor frequency fcore 350 400 350 450 350 500 MHz 1

VCO frequency fVCO 700 800 700 900 700 1000 MHz 1

SYSCLK frequency fSYSCLK 33 133 33 133 33 133 MHz 1

SYSCLK cycle time tSYSCLK 7.5 30 7.5 30 7.5 30 ns —

SYSCLK rise and fall time tKR and tKF — 0.5 — 0.5 — 0.5 ns/V 2

SYSCLK duty cycle 
measured at OVDD/2

tKHKL/tSYSCLK 40 60 40 60 40 60 % 3

SYSCLK jitter — — ±150 — ±150 — ±150 ps 4

Internal PLL-relock time — — 100 — 100 — 100 μs 5

Notes:

1. Caution: The SYSCLK frequency and PLL_CFG[0:3] settings must be chosen such that the resulting SYSCLK (bus) 
frequency, CPU (core) frequency, and PLL (VCO) frequency do not exceed their respective maximum or minimum operating 
frequencies. Refer to the PLL_CFG[0:3] signal description in Section 8.1, “PLL Configuration,” for valid PLL_CFG[0:3] 
settings.

2. Rise and fall times measurement are determined by the slew rates of the bus interface, rather than by time. As a result, the 
0.5 ns rise/fall time spec of the 1.8- and 2.5-V bus interfaces is equivalent to the 1 ns rise/fall time of the 3.3-V bus interface. 
Both interfaces required a 2 V/ns slew rate. The slew rate is measured as a 1-V change (from 0.2 to 1.2 V) in 0.5 ns for the 
1.8- and 2.5-V bus interfaces, whereas the 3.3-V bus interface required a 2-V change (from 0.4 to 2.4 V) in 1 ns.

3. Timing is guaranteed by design and characterization.

4. This represents total input jitter—short- and long-term combined—and is guaranteed by design.

5. Relock timing is guaranteed by design and characterization. PLL-relock time is the maximum amount of time required for PLL 
lock after a stable VDD and SYSCLK are reached during the power-on reset sequence. This specification also applies when 
the PLL has been disabled and subsequently re-enabled during sleep mode. Also note that HRESET must be held asserted 
for a minimum of 255 bus clocks after the PLL-relock time during the power-on reset sequence.

SYSCLK VMVMVM
CVIH

CVIL

VM = Midpoint Voltage (OVDD/2)

tSYSCLK

tKR tKFtKHKL
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4.2.2  Processor Bus AC Specifications
Table 8 provides the processor bus AC timing specifications for the MPC7410 as defined in Figure 4 and Figure 5. 
Timing specifications for the L2 bus are provided in Section 4.2.3, “L2 Clock AC Specifications.”

Table 8. Processor Bus AC Timing Specifications 1

At recommended operating conditions (see Table 3)

Parameter Symbol 2
400, 450, 500 MHz

Unit Notes
Min Max

Input setup tIVKH 1.0 — ns 4

Input hold tIXKH 0 — ns 4

Output valid times:

TS
ARTRY, SHD0, SHD1

All other outputs

tKHTSV
tKHARV
tKHOV

—
—
—

3.0
2.3
3.0

ns 5, 6

Output hold times:

TS
ARTRY, SHD0, SHD1

All other outputs

tKHTSX
tKHARX
tKHOX

0.5
0.5
0.5

—
—
—

ns 5

SYSCLK to output enable tKHOE 0.5 — ns 9

SYSCLK to output high impedance (all except ABB/AMON(0), 
ARTRY/SHD, DBB/DMON(0), SHD0, SHD1)

tKHOZ — 3.5 ns

SYSCLK to ABB/AMON(0), DBB/DMON(0) high impedance after 
precharge

tKHABPZ — 1 t
SYSCLK

3, 7, 9

Maximum delay to ARTRY, SHD0, SHD1 precharge tKHARP — 1 t
SYSCLK

3, 8, 9
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The L2CLK_OUT timing diagram is shown in Figure 7.

Figure 7. L2CLK_OUT Output Timing Diagram

L2CLK_OUT output jitter — — ±150 — ±150 — ±150 ps 6

Notes: 

1. L2CLK outputs are L2CLK_OUTA, L2CLK_OUTB, and L2SYNC_OUT pins. The L2CLK frequency to core 
frequency settings must be chosen such that the resulting L2CLK frequency and core frequency do not exceed their 
respective maximum or minimum operating frequencies. The maximum L2CLK frequency will be system 
dependent. L2CLK_OUTA and L2CLK_OUTB must have equal loading.

2. The nominal duty cycle of the L2CLK is 50% measured at midpoint voltage.
3. The DLL-relock time is specified in terms of L2CLKs. The number in the table must be multiplied by the period of 

L2CLK to compute the actual time duration in ns. Relock timing is guaranteed by design and characterization.
4. The L2CR[L2SL] bit should be set for L2CLK frequencies less than 150 MHz. This adds more delay to each tap of 

the DLL.
5. Allowable skew between L2SYNC_OUT and L2SYNC_IN.
6. Guaranteed by design and not tested. This output jitter number represents the maximum delay of one tap forward 

or one tap back from the current DLL tap as the phase comparator seeks to minimize the phase difference between 
L2SYNC_IN and the internal L2CLK. This number must be comprehended in the L2 timing analysis. The input jitter 
on SYSCLK affects L2CLK_OUT and the L2 address/data/control signals equally and, therefore, is already 
comprehended in the AC timing and does not have to be considered in the L2 timing analysis.

Table 9. L2CLK Output AC Timing Specifications (continued)
At recommended operating conditions (see Table 3) 

Parameter Symbol
400 MHz 450 MHz 500 MHz

Unit Notes
Min Max Min Max Min Max

VM = Midpoint Voltage (L2OVDD/2)

L2CLK_OUTA

L2CLK_OUTB

L2 Differential Clock Mode

L2 Single-Ended Clock Mode

L2SYNC_OUT

tL2CLK
tCHCL

L2CLK_OUTA VM

tL2CR
tL2CF

VM

VMVML2CLK_OUTB

VMVM

VM

VM

VM

tL2CLK
tCHCL

L2SYNC_OUT

VM VM VM

VM VM VM

VM

VM

tL2CSKW

VM
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Figure 11 provides the AC test load for TDO and the boundary-scan outputs of the MPC7410.

Figure 11. Alternate AC Test Load for the JTAG Interface

Figure 12 provides the JTAG clock input timing diagram.

Figure 12. JTAG Clock Input Timing Diagram

TRST assert time tTRST 25 — ns 2

Input setup times:

Boundary-scan data
TMS, TDI

tDVJH
tIVJH

4
0

—
—

ns
3

Input hold times:

Boundary-scan data
TMS, TDI

tDXJH
tIXJH

20
25

—
—

ns
3

Valid times:

Boundary-scan data
TDO

tJLDV
tJLOV

4
4

20
25

ns
4

TCK to output high impedance:

Boundary-scan data
TDO

tJLDZ
tJLOZ

3
3

19
9

ns
4, 5

5

Notes: 

1.  All outputs are measured from the midpoint voltage of the falling/rising edge of TCLK to the midpoint of the signal 
in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load 
(see Figure 11). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
3. Non-JTAG signal input timing with respect to TCK.
4. Non-JTAG signal output timing with respect to TCK.
5. Guaranteed by design and characterization.

Table 11. JTAG AC Timing Specifications (Independent of SYSCLK) 1 (continued)
At recommended operating conditions (see Table 3)

Parameter Symbol Min Max Unit Notes

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

TCLK VMVMVM

VM = Midpoint Voltage (OVDD/2)

tTCLK

tJR tJF
tJHJL
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5 Pin Assignments
Figure 16, part A shows the pinout for the MPC7410, 360 CBGA, 360 HCTE, and 360 HCTE Lead Free C5 Spheres 
packages as viewed from the top surface. Figure 16, part B shows the side profile of the CBGA and HCTE_CBGA 
packages to indicate the direction of the top surface view. Figure 16, part C shows the side profile of the 
HCTE_LGA package to indicate the direction of the top surface view. 
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DL[0:31] M6, P3, N4, N5, R3, M7, T2, N6, U2, N7, P11, V13, U12, 
P12, T13, W13, U13, V10, W8, T11, U11, V12, V8, T1, P1, 
V1, U1, N1, R2, V3, U3, W2

High I/O BVSEL —

DP[0:7] L1, P2, M2, V2, M1, N2, T3, R1 High I/O BVSEL —

DRDY K9 Low Output BVSEL 6, 8, 13

DBWO

DTI[0]

D1 Low Input BVSEL —

DTI[1:2] H6, G1 High Input BVSEL 5, 10, 13

EMODE A3 Low Input BVSEL 7, 10

GBL B1 Low I/O BVSEL —

GND D10, D14, D16, D4, D6, E12, E8, F4, F6, F10, F14, F16, 
G9, G11, H5, H8, H10, H12, H15, J9, J11, K4, K6, K8, K10, 
K12, K14, K16, L9, L11, M5, M8, M10, M12, M15, N9, N11, 
P4, P6, P10, P14, P16, R8, R12, T4, T6, T10, T14, T16

— — N/A —

HIT B5 Low Output BVSEL 6, 8

HRESET B6 Low Input BVSEL —

INT C11 Low Input BVSEL —

L1_TSTCLK F8 High Input BVSEL 2

L2ADDR[0:16] L17, L18, L19, M19, K18, K17, K15, J19, J18, J17, J16, 
H18, H17, J14, J13, H19, G18

High Output L2VSEL —

L2ADDR[17:18] K19,W19 High Output L2VSEL 8

L2AVDD L13 — Input VDD —

L2CE P17 Low Output L2VSEL —

L2CLK_OUTA N15 High Output L2VSEL —

L2CLK_OUTB L16 High Output L2VSEL —

L2DATA[0:63] U14, R13, W14, W15, V15, U15, W16, V16, W17, V17, 
U17, W18, V18, U18, V19, U19, T18, T17, R19, R18, R17, 
R15, P19, P18, P13, N14, N13, N19, N17, M17, M13, M18, 
H13, G19, G16, G15, G14, G13, F19, F18, F13, E19, E18, 
E17, E15, D19, D18, D17, C18, C17, B19, B18, B17, A18, 
A17, A16, B16, C16, A14, A15, C15, B14, C14, E13

High I/O L2VSEL —

L2DP[0:7] V14, U16, T19, N18, H14, F17, C19, B15 High I/O L2VSEL —

L2OVDD D15, E14, E16, H16, J15, L15, M16, K13, P15, R14, R16, 
T15, F15

— — N/A 11

L2SYNC_IN L14 High Input L2VSEL —

L2SYNC_OUT M14 High Output L2VSEL —

L2_TSTCLK F7 High Input BVSEL 2

Table 12. Pinout Listing for the MPC7410, 360 CBGA and 360 HCTE Packages (continued)

Signal Name Pin Number Active I/O I/F Select 1 Notes
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L2VSEL A19 High Input N/A 1, 3, 8,
9, 14

L2WE N16 Low Output L2VSEL —

L2ZZ G17 High Output L2VSEL —

LSSD_MODE F9 Low Input BVSEL 2

MCP B11 Low Input BVSEL 15

OVDD D5, D8, D12, E4, E6, E9, E11, F5, H4, J5, L5, M4, P5, R4, 
R6, R9, R11, T5, T8, T12

— — N/A —

PLL_CFG[0:3] A4, A5, A6, A7 High Input BVSEL 4

QACK B2 Low Input BVSEL —

QREQ J3 Low Output BVSEL —

RSRV D3 Low Output BVSEL —

SHD0 B3 Low I/O BVSEL 8

SHD1 B4 Low I/O BVSEL 5, 8

SMI A12 Low Input BVSEL —

SRESET E10 Low Input BVSEL —

SYSCLK H9 — Input BVSEL —

TA F1 Low Input BVSEL —

TBEN A2 High Input BVSEL —

TBST A11 Low Output BVSEL —

TCK B10 High Input BVSEL —

TDI B7 High Input BVSEL 9

TDO D9 High Output BVSEL —

TEA J1 Low Input BVSEL —

TMS C8 High Input BVSEL 9

TRST A10 Low Input BVSEL 9

TS K7 Low I/O BVSEL —

TSIZ[0:2] A9, B9, C9 High Output BVSEL —

TT[0:4] C10, D11, B12, C12, F11 High I/O BVSEL —

WT C3 Low I/O BVSEL —

Table 12. Pinout Listing for the MPC7410, 360 CBGA and 360 HCTE Packages (continued)

Signal Name Pin Number Active I/O I/F Select 1 Notes
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7.3 Mechanical Dimensions for the MPC7410, 360 CBGA and 
360 HCTE_CBGA

Figure 17 provides the mechanical dimensions and bottom surface nomenclature of the MPC7410, 360 CBGA and 
360 HCTE_CBGA packages.

Figure 17. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7410,
360 CBGA and 360 HCTE_CBGA Packages

NOTES:
1. DIMENSIONING AND TOLERANCING 

PER ASME Y14.5M, 1994.
2. DIMENSIONS IN MILLIMETERS.
3. TOP SIDE A1 CORNER INDEX IS A 

METALIZED FEATURE WITH 
VARIOUS SHAPES. BOTTOM SIDE A1 
CORNER IS DESIGNATED WITH A 
BALL MISSING FROM THE ARRAY.
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DIM MIN MAX
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e 1.27 BSC
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F 22.86 BSC

K1 — 9.75
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K4 2.75 —

L1 — 9.50
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7.4 Mechanical Dimensions for the MPC7410, 360 HCTE_CBGA 
(Lead Free C5 Spheres)

Figure 18 provides the mechanical dimensions and bottom surface nomenclature of the MPC7410, 
360 HCTE_CBGA (lead-free C5 spheres) package.

Figure 18. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7410 
360 HCTE_CBGA (Lead-Free C5 Spheres) Package

NOTES:
1. DIMENSIONING AND TOLERANCING 

PER ASME Y14.5M, 1994.
2. DIMENSIONS IN MILLIMETERS.
3. TOP SIDE A1 CORNER INDEX IS A 

METALIZED FEATURE WITH 
VARIOUS SHAPES. BOTTOM SIDE A1 
CORNER IS DESIGNATED WITH A 
BALL MISSING FROM THE ARRAY.
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D 25.00 BSC

D2 — 12.50
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E4 8.00 11.00
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8.4 Connection Recommendations
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level 
through a resistor. Unused active low inputs should be tied to OVDD. Unused active high inputs should be connected 
to GND. All NC (no connect) signals must remain unconnected.

Power and ground connections must be made to all external VDD, OVDD, L2OVDD, and GND pins of the MPC7410. 
Note that power must be supplied to L2OVDD even if the L2 interface of the MPC7410 will not be used; the 
remainder of the L2 interface may be left unterminated.

8.5 Output Buffer DC Impedance
The MPC7410 60x and L2 I/O drivers are characterized over process, voltage, and temperature. To measure Z0, an 
external resistor is connected from the chip pad to OVDD or GND. Then, the value of each resistor is varied until 
the pad voltage is OVDD/2 (see Figure 23).

The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When 
data is held low, SW2 is closed (SW1 is open), and RN is trimmed until the voltage at the pad equals (L2)OVDD/2. 
RN then becomes the resistance of the pull-down devices. When data is held high, SW1 is closed (SW2 is open), and 
RP is trimmed until the voltage at the pad equals (L2)OVDD/2. RP then becomes the resistance of the pull-up devices. 
RP and RN are designed to be close to each other in value. Then, Z0 = (RP + RN)/2.

Figure 23 describes the driver impedance measurement circuit described above.

Figure 23. Driver Impedance Measurement Circuit

Alternately, the following is another method to determine the output impedance of the MPC7410. A voltage source, 
Vforce, is connected to the output of the MPC7410, as in Figure 24. Data is held low, the voltage source is set to a 
value that is equal to (L2)OVDD/2, and the current sourced by Vforce is measured. The voltage drop across the 
pull-down device, which is equal to (L2)OVDD/2, is divided by the measured current to determine the output 
impedance of the pull-down device, RN. Similarly, the impedance of the pull-up device is determined by dividing 
the voltage drop of the pull-up, (L2)OVDD/2, by the current sank by the pull-up when the data is high and Vforce is 
equal to (L2)OVDD/2. This method can be employed with either empirical data from a test setup or with data from 
simulation models, such as IBIS.
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the MPC7410 or by other receivers in the system. These signals can be pulled up through weak (10-kΩ) pull-up 
resistors by the system, address bus driven mode can be enabled (see the MPC7410 RISC Microprocessor Family 
Users’ Manual for more information on this mode), or these signals may be otherwise driven by the system during 
inactive periods of the bus to avoid this additional power draw. The snooped address and transfer attribute inputs 
are: A[0:31], AP[0:3], TT[0:4], CI, WT, and GBL.

In systems where GBL is not connected and other devices may be asserting TS for a snoopable transaction while not 
driving GBL to the processor, we recommend that a strong (1 kΩ) pull-up resistor be used on GBL. Note that the 
MPC7410 will only snoop transactions when GBL is asserted.

The data bus input receivers are normally turned off when no read operation is in progress and, therefore, do not 
require pull-up resistors on the bus. Other data bus receivers in the system, however, may require pull-ups, or that 
those signals be otherwise driven by the system during inactive periods by the system. The data bus signals are: 
DH[0:31], DL[0:31], and DP[0:7].

If address or data parity is not used by the system, and the respective parity checking is disabled through HID0, the 
input receivers for those pins are disabled, and those pins do not require pull-up resistors and should be left 
unconnected by the system. If parity checking is disabled through HID0, and parity generation is not required by the 
MPC7410 (note that the MPC7410 always generates parity), then all parity pins may be left unconnected by the 
system.

The L2 interface does not normally require pull-up resistors.

8.7 JTAG Configuration Signals
Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE 
1149.1 specification, but is provided on all processors that implement the PowerPC architecture. While it is possible 
to force the TAP controller to the reset state using only the TCK and TMS signals, more reliable power-on reset 
performance will be obtained if the TRST signal is asserted during power-on reset. Because the JTAG interface is 
also used for accessing the common on-chip processor (COP) function, simply tying TRST to HRESET is not 
practical.

The COP function of these processors allows a remote computer system (typically, a PC with dedicated hardware 
and debugging software) to access and control the internal operations of the processor. The COP interface connects 
primarily through the JTAG port of the processor, with some additional status monitoring signals. The COP port 
requires the ability to independently assert HRESET or TRST in order to fully control the processor. If the target 
system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or 
push-button switches, then the COP reset signals must be merged into these signals with logic.

The arrangement shown in Figure 25 allows the COP port to independently assert HRESET or TRST, while ensuring 
that the target can drive HRESET as well. If the JTAG interface and COP header will not be used, TRST should be 
tied to HRESET through a 0-Ω isolation resistor so that it is asserted when the system reset signal (HRESET) is 
asserted, ensuring that the JTAG scan chain is initialized during power-on. While Freescale recommends that the 
COP header be designed into the system as shown in Figure 25, if this is not possible, the isolation resistor will allow 
future access to TRST in the case where a JTAG interface may need to be wired onto the system in debug situations.

The COP header shown in Figure 25 adds many benefits—breakpoints, watchpoints, register and memory 
examination/modification, and other standard debugger features are possible through this interface—and can be as 
inexpensive as an unpopulated footprint for a header to be added when needed.
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The COP interface has a standard header for connection to the target system, based on the 0.025" square-post 0.100" 
centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a connector 
key.

There is no standardized way to number the COP header shown in Figure 25; consequently, many different pin 
numbers have been observed from emulator vendors. Some are numbered top-to-bottom then left-to-right, while 
others use left-to-right then top-to-bottom, while still others number the pins counter clockwise from pin 1 (as with 
an IC). Regardless of the numbering, the signal placement recommended in Figure 25 is common to all known 
emulators.

The QACK signal shown in Figure 25 is usually connected to the PCI bridge chip in a system and is an input to the 
MPC7410 informing it that it can go into the quiescent state. Under normal operation this occurs during a low-power 
mode selection. In order for COP to work, the MPC7410 must see this signal asserted (pulled down). While shown 
on the COP header, not all emulator products drive this signal. If the product does not, a pull-down resistor can be 
populated to assert this signal. Additionally, some emulator products implement open-drain type outputs and can 
only drive QACK asserted; for these tools, a pull-up resistor can be implemented to ensure this signal is negated 
when it is not being driven by the tool. Note that the pull-up and pull-down resistors on the QACK signal are 
mutually exclusive and it is never necessary to populate both in a system. To preserve correct power-down operation, 
QACK should be merged via logic so that it also can be driven by the PCI bridge.

8.8 Thermal Management Information
This section provides thermal management information for the MPC7410 for air-cooled applications. Proper
thermal control design is primarily dependent on the system-level design—the heat sink, airflow, and thermal
interface material. To reduce the die-junction temperature, heat sinks may be attached to the package by several
methods such as spring clip to holes in the printed circuit board or with screws and springs to the printed circuit
board; see Figure 26 for the BGA package and Figure 27 for the LGA package. This spring force should not exceed
5.5 pounds of force. Note that care should be taken to avoid focused forces being applied to die corners and/or edges
when mounting heat sinks.

Figure 26. BGA Package Exploded Cross-Sectional View with Heat Sink Clip to PCB Option

Thermal Interface Material

Heat Sink BGA Package

Heat Sink
Clip

Printed-Circuit Board
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Figure 29 describes the thermal performance of selected thermal interface materials.

Figure 29. Thermal Performance of Select Thermal Interface Material

The board designer can choose between several types of thermal interface. Heat sink adhesive materials should be 
selected based on high conductivity, yet adequate mechanical strength to meet equipment shock/vibration 
requirements. There are several commercially-available thermal interfaces and adhesive materials provided by the 
following vendors:

Chomerics, Inc. 781-935-4850
77 Dragon Court
Woburn, MA 01888-4014
Internet: www.chomerics.com

Dow-Corning Corporation 800-248-2481
Dow-Corning Electronic Materials
2200 W. Salzburg Rd.
Midland, MI 48686-0997
Internet: www.dow.com

Shin-Etsu MicroSi, Inc. 888-642-7674
10028 S. 51st St.
Phoenix, AZ 85044
Internet: www.microsi.com
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Thermagon Inc. 888-246-9050
4707 Detroit Ave.
Cleveland, OH 44102
Internet: www.thermagon.com

8.8.3 Heat Sink Selection Example
For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:

Tj = Ta + Tr + (θjc + θint + θsa) × Pd 

where:

Tj is the die-junction temperature 

Ta is the inlet cabinet ambient temperature

Tr is the air temperature rise within the computer cabinet

θjc is the junction-to-case thermal resistance

θint is the adhesive or interface material thermal resistance

θsa is the heat sink base-to-ambient thermal resistance

Pd is the power dissipated by the device

During operation the die-junction temperatures (Tj) should be maintained less than the value specified in Table 3. 
The temperature of the air cooling the component greatly depends upon the ambient inlet air temperature and the air 
temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (Ta) may range from 30° 
to 40°C. The air temperature rise within a cabinet (Tr) may be in the range of 5° to 10°C. The thermal resistance of 
the thermal interface material (θint) is typically about 1°C/W. Assuming a Ta of 30°C, a Tr of 5°C, a CBGA package 
θjc = 0.03, and a power consumption (Pd) of 5.0 W, the following expression for Tj is obtained:

Die-junction temperature: Tj = 30°C + 5°C + (0.03°C/W + 1.0°C/W + θsa) × 5.0 W

For a Thermalloy heat sink #2328B, the heat sink-to-ambient thermal resistance (θsa) versus airflow velocity is 
shown in Figure 30.

Assuming an air velocity of 0.5 m/s, we have an effective Rsa of 7°C/W, thus 

Tj = 30°C + 5°C + (0.03°C/W + 1.0°C/W + 7°C/W) × 5.0 W,

resulting in a die-junction temperature of approximately 75°C which is well within the maximum operating 
temperature of the component.

Other heat sinks offered by Aavid Thermalloy, Alpha Novatech, The Bergquist Company, IERC, and Wakefield 
Engineering offer different heat sink-to-ambient thermal resistances, and may or may not need airflow. 
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Figure 30. Thermalloy #2328B Heat Sink-to-Ambient Thermal Resistance Versus Airflow Velocity

Though the die junction-to-ambient and the heat sink-to-ambient thermal resistances are a common figure-of-merit 
used for comparing the thermal performance of various microelectronic packaging technologies, one should 
exercise caution when only using this metric in determining thermal management because no single parameter can 
adequately describe three-dimensional heat flow. The final die-junction operating temperature, is not only a function 
of the component-level thermal resistance, but the system-level design and its operating conditions. In addition to 
the component's power consumption, a number of factors affect the final operating die-junction 
temperature—airflow, board population (local heat flux of adjacent components), heat sink efficiency, heat sink 
attach, heat sink placement, next-level interconnect technology, system air temperature rise, altitude, and so on. 

Due to the complexity and the many variations of system-level boundary conditions for today's microelectronic 
equipment, the combined effects of the heat transfer mechanisms (radiation, convection, and conduction) may vary 
widely. For these reasons, we recommend using conjugate heat transfer models for the board, as well as, 
system-level designs.
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1.1 — Internal release.

Table 12—added note 16 for ABB/AMON and DBB/DMON signal clarification.

Table 12—changed CHK note 4 reference to note 2, signal is for factory test only. Changed previous 
note 4 (CHK related) to now provide additional PLL info.

Table 1—modified maximum value for OVDD from –0.3 to 3.465 to now be –0.3 to 3.6 and L2OVDD 
from –0.3 to 2.6 to now be –0.3 to 2.8. Modified note 6, OVDD for revisions prior to Rev. 1.4 have 
maximum value for OVDD of –0.3 to 2.8.

Table 8—removed note 12. L2_TSTCLK is for factory use only (see Table 12, note 2).

Section 1.10.2—revised section to include nomenclature tables for part markings not covered by this 
spec.

Figure 2—added that under/overshoot for L2OVDD references tL2CLK while OVDD references tSYSCLK.

Table 4—added HCTE package (HX package descriptor) thermal characteristics.

Section 1.5—added HCTE package (HX package descriptor). Both the CBGA and HCTE packages 
have the same pin assignments.

Section 1.6—added HCTE package (HX package descriptor). Both the CBGA and HCTE packages 
have the same pinout listings.

Section 1.7—added HCTE package (HX package descriptor). Both the CBGA and HCTE packages 
have the same package parameters and dimensions.

Table 17—added HCTE package (HX package descriptor) to part numbering nomenclature.

Table 21—added MPC7410THXnnnLE extended temperature HCTE package part numbers and part 
number specification document reference.

Table 16. Document Revision History (continued)

Revision Date Substantive Change(s)
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