
Freescale Semiconductor - MPC7410VS500LE Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Active

Core Processor PowerPC G4

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 500MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 1.8V, 2.5V, 3.3V

Operating Temperature 0°C ~ 105°C (TA)

Security Features -

Package / Case 360-BCBGA, FCCBGA

Supplier Device Package 360-CBGA (25x25)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc7410vs500le

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mpc7410vs500le-4470319
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors


MPC7410 RISC Microprocessor Hardware Specifications, Rev. 6.1

2 Freescale Semiconductor

Features

• The MPC7410 is implemented in a next generation process technology for core frequency improvement.

• The MPC7410 floating-point unit has been improved to make latency equal for double- and single-precision 
operations involving multiplication.

• The completion queue has been extended to eight slots.

• There are no other significant changes to scalar pipelines, decode/dispatch/completion mechanisms, or the 
branch unit. The MPC750 four-stage pipeline model is unchanged (fetch, decode/dispatch, execute, 
complete/writeback).

Some comments on the MPC7410 with respect to the MPC7400:

• The MPC7410 adds configurable direct-mapped SRAM capability to the L2 cache interface.

• The MPC7410 adds 32-bit interface support to the L2 cache interface. The MPC7410 implements a 19th L2 
address pin (L2ASPARE on the MPC7400) in order to support additional address range.

• The MPC7410 removes support for 3.3-V I/O on the L2 cache interface.

Figure 1 shows a block diagram of the MPC7410.

2 Features
This section summarizes features of the MPC7410 implementation of the PowerPC architecture. Major features of 
the MPC7410 are as follows:

• Branch processing unit

— Four instructions fetched per clock

— One branch processed per cycle (plus resolving two speculations)

— Up to one speculative stream in execution, one additional speculative stream in fetch

— 512-entry branch history table (BHT) for dynamic prediction

— 64-entry, four-way set-associative branch target instruction cache (BTIC) for eliminating branch delay 
slots

• Dispatch unit

— Full hardware detection of dependencies (resolved in the execution units)

— Dispatch two instructions to eight independent units (system, branch, load/store, fixed-point unit 1, 
fixed-point unit 2, floating-point, AltiVec permute, AltiVec ALU)

— Serialization control (predispatch, postdispatch, execution serialization)
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• Decode

— Register file access

— Forwarding control

— Partial instruction decode

• Completion

— Eight-entry completion buffer

— Instruction tracking and peak completion of two instructions per cycle

— Completion of instructions in program order while supporting out-of-order instruction execution, 
completion serialization, and all instruction flow changes

• Fixed point units (FXUs) that share 32 GPRs for integer operands

— Fixed point unit 1 (FXU1)—multiply, divide, shift, rotate, arithmetic, logical

— Fixed point unit 2 (FXU2)—shift, rotate, arithmetic, logical

— Single-cycle arithmetic, shifts, rotates, logical

— Multiply and divide support (multi-cycle)

— Early out multiply

• Three-stage floating-point unit and a 32-entry FPR file

— Support for IEEE Std 754™ single- and double-precision floating-point arithmetic

— Three-cycle latency, one-cycle throughput (single- or double-precision)

— Hardware support for divide

— Hardware support for denormalized numbers

— Time deterministic non-IEEE mode

• System unit

— Executes CR logical instructions and miscellaneous system instructions

— Special register transfer instructions

• AltiVec unit

— Full 128-bit data paths

— Two dispatchable units: vector permute unit and vector ALU unit.

— Contains its own 32-entry, 128-bit vector register file (VRF) with 6 renames

— The vector ALU unit is further subdivided into the vector simple integer unit (VSIU), the vector 
complex integer unit (VCIU), and the vector floating-point unit (VFPU).

— Fully pipelined

• Load/store unit

— One-cycle load or store cache access (byte, half word, word, double word)

— Two-cycle load latency with 1-cycle throughput

— Effective address generation

— Hits under misses (multiple outstanding misses)

— Single-cycle unaligned access within double-word boundary

— Alignment, zero padding, sign extend for integer register file

— Floating-point internal format conversion (alignment, normalization)

— Sequencing for load/store multiples and string operations
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— Store gathering

— Executes the cache and TLB instructions

— Big- and little-endian byte addressing supported

— Misaligned little-endian supported

— Supports FXU, FPU, and AltiVec load/store traffic

— Complete support for all four architecture AltiVec DST streams

• Level 1 (L1) cache structure

— 32 Kbyte, 32-byte line, eight-way set-associative instruction cache (iL1)

— 32 Kbyte, 32-byte line, eight-way set-associative data cache (dL1)

— Single-cycle cache access

— Pseudo least-recently-used (LRU) replacement

— Data cache supports AltiVec LRU and transient instructions algorithm

— Copy-back or write-through data cache (on a page-per-page basis)

— Supports all PowerPC memory coherency modes

— Nonblocking instruction and data cache

— Separate copy of data cache tags for efficient snooping

— No snooping of instruction cache except for ICBI instruction

• Level 2 (L2) cache interface 

— Internal L2 cache controller and tags; external data SRAMs

— 512-Kbyte, 1-Mbyte, and 2-Mbyte two-way set-associative L2 cache support

— Copy-back or write-through data cache (on a page basis, or for all L2)

— 32-byte (512-Kbyte), 64-byte (1-Mbyte), or 128-byte (2-Mbyte) sectored line size

— Supports pipelined (register-register) synchronous BurstRAMs and pipelined (register-register) late 
write synchronous BurstRAMs

— Supports direct-mapped mode for 256 Kbytes, 512 Kbytes, 1 Mbyte, or 2 Mbytes of SRAM (either all, 
half, or none of L2 SRAM must be configured as direct-mapped)

— Core-to-L2 frequency divisors of ÷1, ÷1.5, ÷2, ÷2.5, ÷3, ÷3.5, and ÷4 supported

— 64-bit data bus which also supports 32-bit bus mode

— Selectable interface voltages of 1.8 and 2.5 V

• Memory management unit

— 128-entry, two-way set-associative instruction TLB

— 128-entry, two-way set-associative data TLB

— Hardware reload for TLBs

— Four instruction BATs and four data BATs

— Virtual memory support for up to 4 hexabytes (252) of virtual memory

— Real memory support for up to 4 gigabytes (232) of physical memory

— Snooped and invalidated for TLBI instructions

• Efficient data flow

— All data buses between VRF, load/store unit, dL1, iL1, L2, and the bus are 128 bits wide

— dL1 is fully pipelined to provide 128 bits/cycle to/from the VRF
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Electrical and Thermal Characteristics

Table 4 provides the package thermal characteristics for the MPC7410.

Table 3. Recommended Operating Conditions 1

Characteristic Symbol
Recommended 

Value Unit Notes

Core supply voltage VDD 1.8 V ± 100 mV V —

PLL supply voltage AVDD 1.8 V ± 100 mV V —

L2 DLL supply voltage L2AVDD 1.8 V ± 100 mV V —

Processor bus supply 
voltage

BVSEL = 0 OVDD 1.8 V ± 100 mV V —

BVSEL = HRESET OVDD 2.5 V ± 100 mV V —

BVSEL = ¬HRESET or 
BVSEL = 1

OVDD 3.3 V ± 165 mV V 2, 3

L2 bus supply voltage L2VSEL = 0 L2OVDD 1.8 V ± 100 mV V —

L2VSEL = HRESET or 
L2VSEL = 1

L2OVDD 2.5 V ± 100 mV V —

Input voltage Processor bus and 
JTAG signals

Vin GND to OVDD V —

L2 bus Vin GND to L2OVDD V —

Die-junction temperature Tj 0 to 105 °C —

Notes: 
1. These are the recommended and tested operating conditions. Proper device operation outside of these conditions 

is not guaranteed.
2. Mxx7410xxnnnLE (Rev. 1.4) and later only. Previous revisions do not support 3.3 V OVDD and have a 

recommended OVDD value of 2.5 V ± 100 mV for BVSEL = 1.
3. Mxx7410xxnnnLE (Rev. 1.4) and later only. Previous revisions do not support BVSEL = ¬HRESET.

Table 4. Package Thermal Characteristics

Characteristic Symbol

Value

Unit Notes
MPC7410 

CBGA
MPC7410 

HCTE

Junction-to-ambient thermal resistance, natural convection, 
four-layer (2s2p) board

RθJMA 18 20 °C/W 1, 2

Junction-to-ambient thermal resistance, 1m/sec airflow, 
four-layer (2s2p) board

RθJMA 14 16 °C/W 1, 2

Junction-to-ambient thermal resistance, 2m/sec airflow, 
four-layer (2s2p) board

RθJMA 13 15 °C/W 1, 2

Junction-to-board thermal resistance RθJB 9 11 °C/W 3
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High-Z (off-state) leakage current, 
Vin = L2OVDD/OVDD

1.8 ITSI — 20 µA 2, 3,
5, 7

2.5 ITSI — 35

3.3 ITSI — 70

Output high voltage, IOH = –5 mA 1.8 VOH (L2)OVDD – 0.45 — V 8

2.5 VOH 1.7 —

3.3 VOH 2.4 —

Output low voltage, IOL = 5 mA 1.8 VOL — 0.45 V 8

2.5 VOL — 0.4

3.3 VOL — 0.4

Capacitance, Vin = 0 V, f = 1 MHz Cin — 6.0 pF 3, 4, 7

Notes: 

1. Nominal voltages; see Table 3 for recommended operating conditions.
2. For processor bus signals, the reference is OVDD while L2OVDD is the reference for the L2 bus signals.
3. Excludes factory test signals.
4. Capacitance is periodically sampled rather than 100% tested.
5. The leakage is measured for nominal OVDD and L2OVDD, or both OVDD and L2OVDD must vary in the same 

direction (for example, both OVDD and L2OVDD vary by either +5% or –5%).
6. Measured at max OVDD/L2OVDD.
7. Excludes IEEE 1149.1 boundary scan (JTAG) signals.
8. For JTAG support: all signals controlled by BVSEL and L2VSEL will see VIL/VIH/VOL/VOH/CVIH/CVIL DC limits of 

1.8 V mode while either the EXTEST or CLAMP instruction is loaded into the IEEE 1149.1 instruction register by 
the UpdateIR TAP state until a different instruction is loaded into the instruction register by either another UpdateIR 
or a Test-Logic-Reset TAP state. If only TSRT is asserted to the part, and then a SAMPLE instruction is executed, 
there is no way to control or predict what the DC voltage limits are. If HRESET is asserted before executing a 
SAMPLE instruction, the DC voltage limits will be controlled by the BVSEL/L2VSEL settings during HRESET. 
Anytime HRESET is not asserted (that is, just asserting TRST), the voltage mode is not known until either EXTEST 
or CLAMP is executed, at which time the voltage level will be at the DC limits of 1.8 V.

Table 5. DC Electrical Specifications (continued)
At recommended operating conditions (see Table 3) 

Characteristic
Nominal

Bus 
Voltage1

Symbol Min Max Unit Notes
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Table 6 provides the power consumption for the MPC7410.

4.2  AC Electrical Characteristics
This section provides the AC electrical characteristics for the MPC7410. After fabrication, functional parts are 
sorted by maximum processor core frequency, see Section 4.2.1, “Clock AC Specifications,” and tested for 
conformance to the AC specifications for that frequency. The processor core frequency is determined by the bus 
(SYSCLK) frequency and the settings of the PLL_CFG[0:3] signals. Parts are sold by maximum processor core 
frequency; see Section 10, “Ordering Information.”

Table 6. Power Consumption for MPC7410

Processor (CPU) Frequency
Unit Notes

400 MHz 450 MHz 500 MHz

Full-On Mode

Typical 4.2 4.7 5.3 W 1, 3

Maximum 9.5 10.7 11.9 W 1, 2

Doze Mode

Maximum 4.3 4.8 5.3 W 1

Nap Mode

Maximum 1.35 1.5 1.65 W 1

Sleep Mode

Maximum 1.3 1.45 1.6 W 1

Sleep Mode—PLL and DLL Disabled

Typical 600 600 600 mW 1

Maximum 1.1 1.1 1.1 W 1

Notes: 
1. These values apply for all valid processor bus and L2 bus ratios. The values do not include I/O supply power (OVDD 

and L2OVDD) or PLL/DLL supply power (AVDD and L2AVDD). OVDD and L2OVDD power is system dependent, but 
is typically <5% of VDD power. Worst case power consumption for AVDD = 15 mW and L2AVDD = 15 mW.

2. Maximum power is measured at 105°C and VDD = 1.8 V while running an entirely cache-resident, contrived 
sequence of instructions which keep the execution units, including AltiVec, maximally busy.

3. Typical power is an average value measured at 65°C and VDD = 1.8 V in a system while running typical benchmarks.
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4.2.2  Processor Bus AC Specifications
Table 8 provides the processor bus AC timing specifications for the MPC7410 as defined in Figure 4 and Figure 5. 
Timing specifications for the L2 bus are provided in Section 4.2.3, “L2 Clock AC Specifications.”

Table 8. Processor Bus AC Timing Specifications 1

At recommended operating conditions (see Table 3)

Parameter Symbol 2
400, 450, 500 MHz

Unit Notes
Min Max

Input setup tIVKH 1.0 — ns 4

Input hold tIXKH 0 — ns 4

Output valid times:

TS
ARTRY, SHD0, SHD1

All other outputs

tKHTSV
tKHARV
tKHOV

—
—
—

3.0
2.3
3.0

ns 5, 6

Output hold times:

TS
ARTRY, SHD0, SHD1

All other outputs

tKHTSX
tKHARX
tKHOX

0.5
0.5
0.5

—
—
—

ns 5

SYSCLK to output enable tKHOE 0.5 — ns 9

SYSCLK to output high impedance (all except ABB/AMON(0), 
ARTRY/SHD, DBB/DMON(0), SHD0, SHD1)

tKHOZ — 3.5 ns

SYSCLK to ABB/AMON(0), DBB/DMON(0) high impedance after 
precharge

tKHABPZ — 1 t
SYSCLK

3, 7, 9

Maximum delay to ARTRY, SHD0, SHD1 precharge tKHARP — 1 t
SYSCLK

3, 8, 9
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Figure 4 provides the AC test load for the MPC7410.

Figure 4. AC Test Load

SYSCLK to ARTRY, SHD0, SHD1 high impedance after precharge tKHARPZ — 2 t
SYSCLK

3, 8, 9

Notes: 
1. All input specifications are measured from the midpoint of the signal in question to the midpoint of the rising edge of the input 

SYSCLK. All output specifications are measured from the midpoint of the rising edge of SYSCLK to the midpoint of the signal 
in question. All output timings assume a purely resistive 50-Ω load (see Figure 4). Input and output timings are measured at 
the pin; time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. The symbology used for timing specifications herein follows the pattern of t(signal)(state)(reference)(state) for inputs and 
t(reference)(state)(signal)(state) for outputs. For example, tIVKH symbolizes the time input signals (I) reach the valid state (V) 
relative to the SYSCLK reference (K) going to the high (H) state or input setup time. And tKHOV symbolizes the time from 
SYSCLK(K) going high (H) until outputs (O) are valid (V) or output valid time. Input hold time can be read as the time that 
the input signal (I) went invalid (X) with respect to the rising clock edge (KH)— note the position of the reference and its state 
for inputs—and output hold time can be read as the time from the rising edge (KH) until the output went invalid (OX). 

3. tSYSCLK is the period of the external clock (SYSCLK) in ns. The numbers given in the table must be multiplied by the period 
of SYSCLK to compute the actual time duration (in ns) of the parameter in question.

4. Includes mode select signals: BVSEL, EMODE, L2VSEL. See Figure 5 for mode select timing with respect to HRESET.
5. All other output signals are composed of the following— A[0:31], AP[0:3], TT[0:4], TS, TBST, TSIZ[0:2], GBL, WT, CI, 

DH[0:31], DL[0:31], DP[0:7], BR, CKSTP_OUT, DRDY, HIT, QREQ, RSRV.
6. Output valid time is measured from 2.4 to 0.8 V which may be longer than the time required to discharge from VDD to 0.8 V.
7. According to the 60x bus protocol, ABB and DBB are driven only by the currently active bus master. They are asserted low 

then precharged high before returning to high-Z as shown in Figure 6. The nominal precharge width for ABB or DBB is 0.5 
× tSYSCLK, that is, less than the minimum tSYSCLK period, to ensure that another master asserting ABB, or DBB on the 
following clock will not contend with the precharge. Output valid and output hold timing is tested for the signal asserted. 
Output valid time is tested for precharge. The high-Z behavior is guaranteed by design.

8. According to the 60x bus protocol, ARTRY can be driven by multiple bus masters through the clock period immediately 
following AACK. Bus contention is not an issue since any master asserting ARTRY will be driving it low. Any master asserting 
it low in the first clock following AACK will then go to high-Z for one clock before precharging it high during the second cycle 
after the assertion of AACK. The nominal precharge width for ARTRY is 1.0 tSYSCLK; that is, it should be high-Z as shown in 
Figure 6 before the first opportunity for another master to assert ARTRY. Output valid and output hold timing are tested for 
the signal asserted. Output valid time is tested for precharge. The high-Z behavior is guaranteed by design.

9. Guaranteed by design and not tested.

Table 8. Processor Bus AC Timing Specifications 1 (continued)
At recommended operating conditions (see Table 3)

Parameter Symbol 2
400, 450, 500 MHz

Unit Notes
Min Max

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω
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The L2CLK_OUT timing diagram is shown in Figure 7.

Figure 7. L2CLK_OUT Output Timing Diagram

L2CLK_OUT output jitter — — ±150 — ±150 — ±150 ps 6

Notes: 

1. L2CLK outputs are L2CLK_OUTA, L2CLK_OUTB, and L2SYNC_OUT pins. The L2CLK frequency to core 
frequency settings must be chosen such that the resulting L2CLK frequency and core frequency do not exceed their 
respective maximum or minimum operating frequencies. The maximum L2CLK frequency will be system 
dependent. L2CLK_OUTA and L2CLK_OUTB must have equal loading.

2. The nominal duty cycle of the L2CLK is 50% measured at midpoint voltage.
3. The DLL-relock time is specified in terms of L2CLKs. The number in the table must be multiplied by the period of 

L2CLK to compute the actual time duration in ns. Relock timing is guaranteed by design and characterization.
4. The L2CR[L2SL] bit should be set for L2CLK frequencies less than 150 MHz. This adds more delay to each tap of 

the DLL.
5. Allowable skew between L2SYNC_OUT and L2SYNC_IN.
6. Guaranteed by design and not tested. This output jitter number represents the maximum delay of one tap forward 

or one tap back from the current DLL tap as the phase comparator seeks to minimize the phase difference between 
L2SYNC_IN and the internal L2CLK. This number must be comprehended in the L2 timing analysis. The input jitter 
on SYSCLK affects L2CLK_OUT and the L2 address/data/control signals equally and, therefore, is already 
comprehended in the AC timing and does not have to be considered in the L2 timing analysis.

Table 9. L2CLK Output AC Timing Specifications (continued)
At recommended operating conditions (see Table 3) 

Parameter Symbol
400 MHz 450 MHz 500 MHz

Unit Notes
Min Max Min Max Min Max

VM = Midpoint Voltage (L2OVDD/2)

L2CLK_OUTA

L2CLK_OUTB

L2 Differential Clock Mode

L2 Single-Ended Clock Mode

L2SYNC_OUT

tL2CLK
tCHCL

L2CLK_OUTA VM

tL2CR
tL2CF

VM

VMVML2CLK_OUTB

VMVM

VM

VM

VM

tL2CLK
tCHCL

L2SYNC_OUT

VM VM VM

VM VM VM

VM

VM

tL2CSKW

VM
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Figure 11 provides the AC test load for TDO and the boundary-scan outputs of the MPC7410.

Figure 11. Alternate AC Test Load for the JTAG Interface

Figure 12 provides the JTAG clock input timing diagram.

Figure 12. JTAG Clock Input Timing Diagram

TRST assert time tTRST 25 — ns 2

Input setup times:

Boundary-scan data
TMS, TDI

tDVJH
tIVJH

4
0

—
—

ns
3

Input hold times:

Boundary-scan data
TMS, TDI

tDXJH
tIXJH

20
25

—
—

ns
3

Valid times:

Boundary-scan data
TDO

tJLDV
tJLOV

4
4

20
25

ns
4

TCK to output high impedance:

Boundary-scan data
TDO

tJLDZ
tJLOZ

3
3

19
9

ns
4, 5

5

Notes: 

1.  All outputs are measured from the midpoint voltage of the falling/rising edge of TCLK to the midpoint of the signal 
in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load 
(see Figure 11). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
3. Non-JTAG signal input timing with respect to TCK.
4. Non-JTAG signal output timing with respect to TCK.
5. Guaranteed by design and characterization.

Table 11. JTAG AC Timing Specifications (Independent of SYSCLK) 1 (continued)
At recommended operating conditions (see Table 3)

Parameter Symbol Min Max Unit Notes

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

TCLK VMVMVM

VM = Midpoint Voltage (OVDD/2)

tTCLK

tJR tJF
tJHJL
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DL[0:31] M6, P3, N4, N5, R3, M7, T2, N6, U2, N7, P11, V13, U12, 
P12, T13, W13, U13, V10, W8, T11, U11, V12, V8, T1, P1, 
V1, U1, N1, R2, V3, U3, W2

High I/O BVSEL —

DP[0:7] L1, P2, M2, V2, M1, N2, T3, R1 High I/O BVSEL —

DRDY K9 Low Output BVSEL 6, 8, 13

DBWO

DTI[0]

D1 Low Input BVSEL —

DTI[1:2] H6, G1 High Input BVSEL 5, 10, 13

EMODE A3 Low Input BVSEL 7, 10

GBL B1 Low I/O BVSEL —

GND D10, D14, D16, D4, D6, E12, E8, F4, F6, F10, F14, F16, 
G9, G11, H5, H8, H10, H12, H15, J9, J11, K4, K6, K8, K10, 
K12, K14, K16, L9, L11, M5, M8, M10, M12, M15, N9, N11, 
P4, P6, P10, P14, P16, R8, R12, T4, T6, T10, T14, T16

— — N/A —

HIT B5 Low Output BVSEL 6, 8

HRESET B6 Low Input BVSEL —

INT C11 Low Input BVSEL —

L1_TSTCLK F8 High Input BVSEL 2

L2ADDR[0:16] L17, L18, L19, M19, K18, K17, K15, J19, J18, J17, J16, 
H18, H17, J14, J13, H19, G18

High Output L2VSEL —

L2ADDR[17:18] K19,W19 High Output L2VSEL 8

L2AVDD L13 — Input VDD —

L2CE P17 Low Output L2VSEL —

L2CLK_OUTA N15 High Output L2VSEL —

L2CLK_OUTB L16 High Output L2VSEL —

L2DATA[0:63] U14, R13, W14, W15, V15, U15, W16, V16, W17, V17, 
U17, W18, V18, U18, V19, U19, T18, T17, R19, R18, R17, 
R15, P19, P18, P13, N14, N13, N19, N17, M17, M13, M18, 
H13, G19, G16, G15, G14, G13, F19, F18, F13, E19, E18, 
E17, E15, D19, D18, D17, C18, C17, B19, B18, B17, A18, 
A17, A16, B16, C16, A14, A15, C15, B14, C14, E13

High I/O L2VSEL —

L2DP[0:7] V14, U16, T19, N18, H14, F17, C19, B15 High I/O L2VSEL —

L2OVDD D15, E14, E16, H16, J15, L15, M16, K13, P15, R14, R16, 
T15, F15

— — N/A 11

L2SYNC_IN L14 High Input L2VSEL —

L2SYNC_OUT M14 High Output L2VSEL —

L2_TSTCLK F7 High Input BVSEL 2

Table 12. Pinout Listing for the MPC7410, 360 CBGA and 360 HCTE Packages (continued)

Signal Name Pin Number Active I/O I/F Select 1 Notes
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7 Package Description
The following sections provide the package parameters and mechanical dimensions for the MPC7410, 360 CBGA 
and 360 HCTE packages. 

7.1 Package Parameters for the MPC7410, 360 CBGA and 
360 HCTE_CBGA

The package parameters are as provided in the following list. The package types are the 25 × 25 mm, 360-lead 
ceramic ball grid array package (CBGA) or the 25 × 25 mm, 360-lead high coefficient of thermal expansion CBGA 
package (HCTE_CBGA).

Package outline 25 × 25 mm

Interconnects 360 (19 × 19 ball array – 1)

Pitch 1.27 mm (50 mil)

Minimum module height 2.72 mm

Maximum module height 3.20 mm

Ball diameter 0.89 mm (35 mil)

Coefficient of thermal expansion 6.8 ppm/°C (CBGA)

12.3ppm/°C (HCTE_CBGA)

7.2 Package Parameters for the MPC7410, 360 HCTE_CBGA (Lead 
Free C5 Spheres)

The package parameters are as listed here. The package types are the 25 × 25 mm, 360-lead high coefficient of 
thermal expansion CBGA package with lead-free C5 spheres (HCTE_CBGA lead-free spheres).

Package outline 25 × 25 mm

Interconnects 360 (19 × 19 ball array – 1)

Pitch 1.27 mm (50 mil)

Minimum module height 2.32 mm

Maximum module height 2.80 mm

Ball diameter 0.76 mm (30 mil)

Coefficient of thermal expansion 12.3ppm/°C
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MPC7410 core, and the phase adjustment range that the L2 DLL supports. Table 14 shows various example L2 clock 
frequencies that can be obtained for a given set of core frequencies. The minimum L2 frequency target is 133 MHz. 
Sample core-to-L2 frequencies for the MPC7410 is shown in Table 14. In this example, shaded cells represent 
settings that, for a given core frequency, result in L2 frequencies that do not comply with the minimum and 
maximum L2 frequencies listed in Table 10.

8.2 PLL and DLL Power Supply Filtering
The AVDD and L2AVDD power signals are provided on the MPC7410 to supply power to the PLL and DLL, 
respectively. Both AVDD and L2AVDD can be supplied power from the VDD power plane. High frequency noise in 
the 500 kHz to 10 MHz resonant frequency range of the PLL on the VDD power plane could affect the stability of 
the internal clocks.

On systems that use the MPC7410 HCTE device, the AVDD and L2AVDD input signals should both implement the 
circuit shown in Figure 21.

On systems that use the MPC7410 CBGA device, the L2AVDD input should implement the circuit shown in 
Figure 21. 

When selecting which filter to use on the AVDD input of the MPC7410 CBGA device specifically, system designers 
should refer to Erratum No. 18 in the MPC7410 RISC Microprocessor Chip Errata (MPC7410CE). The AVDD input 
of the MPC7410 CBGA device is sensitive to system noise on both the VDD power plane, as described above, and 
the OVDD power plane as described in the Erratum No. 18. With these AVDD sensitivities to OVDD and VDD noise, 
care must be taken when selecting the filter circuit for the AVDD input of the MPC7410 CBGA device. Erratum 
No. 18 does not apply to the AVDD input of the MPC7401 HCTE device, nor does it affect the L2AVDD input of 
either the HCTE or the CBGA device.

As described in Erratum No. 18, when there is a high amount of noise on the OVDD power plane due to I/O switching 
rates, it is possible for the OVDD noise to couple into the PLL supply voltage (AVDD) internal to the MPC7410 
CBGA package. It is the recommendation of Freescale, that new designs using the MPC7410 CBGA package 
provide the ability to implement either filter shown in Figure 21 and Figure 22 at the AVDD input. Existing designs 
that implemented Figure 21 on AVDD may never experience the error described in Erratum No. 18. Both new and 

Table 14. Sample Core-to-L2 Frequencies

Core Frequency
(MHz)

÷1 ÷1.5 ÷2 ÷2.5 ÷3 ÷3.5 ÷4

350 350 233 175 140 — — —

366 366 244 183 147 — — —

400 400 266 200 160 133 — —

433 — 288 216 173 144 — —

450 — 300 225 180 150 — —

466 — 311 233 186 155 133 —

500 — 333 250 200 166 143 —

Note: The core and L2 frequencies are for reference only. Some examples may 
represent core or L2 frequencies which are not useful, not supported, or not tested 
for by the MPC7410; see Section 4.2.3, “L2 Clock AC Specifications,” for valid 
L2CLK frequencies. The L2CR[L2SL] bit should be set for L2CLK frequencies less 
than 150 MHz.
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RP and RN are designed to be close to each other in value. Then, Z0 = (RP + RN)/2. Figure 24 describes the alternate 
driver impedance measurement circuit.

Figure 24. Alternate Driver Impedance Measurement Circuit

Table 15 summarizes the signal impedance results. The driver impedance values were characterized at 0°, 65°, and 
105°C. The impedance increases with junction temperature and is relatively unaffected by bus voltage.

8.6 Pull-Up Resistor Requirements
The MPC7410 requires pull-up resistors (1 kΩ–5 kΩ) on several control pins of the bus interface to maintain the 
control signals in the negated state after they have been actively negated and released by the MPC7410 or other bus 
masters. These pins are: TS, ARTRY, SHDO, SHD1.

Four test pins also require pull-up resistors (100 Ω−1 kΩ). These pins are CHK, L1_TSTCLK, L2_TSTCLK, and 
LSSD_MODE. These signals are for factory use only and must be pulled up to OVDD for normal machine 
operation. 

If pull-down resistors are used to configure BVSEL or L2VSEL, the resistors should be less than 250 Ω (see Table 
12). Because PLL_CFG[0:3] must remain stable during normal operation, strong pull-up and pull-down resistors 
(1 kΩ or less) are recommended to configure these signals in order to protect against erroneous switching due to 
ground bounce, power supply noise or noise coupling.

In addition, CKSTP_OUT is an open-drain style output that requires a pull-up resistor (1 kΩ–5 kΩ) if it is used by 
the system. The CKSTP_IN signal should likewise be pulled up through a pull-up resistor (1 kΩ–5 kΩ) to prevent 
erroneous assertions of this signal.

During inactive periods on the bus, the address and transfer attributes may not be driven by any master and may, 
therefore, float in the high-impedance state for relatively long periods of time. Since the MPC7410 must continually 
monitor these signals for snooping, this float condition may cause excessive power draw by the input receivers on 

Table 15. Impedance Characteristics
VDD = 1.8 V, OVDD = 2.5 V, Tj = 0° – 105°C

Impedance Processor Bus L2 Bus Symbol Unit

RN 41.5–54.3 42.7–54.1 Z0 Ω

RP 37.3–55.3 39.3–50.0 Z0 Ω

(L2)OVDD

BGA

Data
Pin

Vforce

OGND
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Figure 25. COP Connector Diagram
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Notes:
1. RUN/STOP, normally found on pin 5 of the COP header, is not implemented on the MPC7410. Connect

pin 5 of the COP header to OVDD with a 10-kΩ pull-up resistor.
2. Key location; pin 14 is not physically present on the COP header.
3. Component not populated. Populate only if debug tool does not drive QACK.
4. Populate only if debug tool uses an open-drain type output and does not actively negate QACK.
5. If the JTAG interface is implemented, connect HRESET from the target source to TRST from the COP

header though an AND gate to TRST of the part. If the JTAG interface is not implemented, connect
HRESET from the target source to TRST of the part through a 0-Ω isolation resistor.

6. The COP port and target board should be able to independently assert HRESET and TRST to the pro-
cessor in order to fully control the processor as shown above.

TRST 6

10 kΩ
OVDD
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Figure 27. LGA Package Exploded Cross-Sectional View with Heat Sink Clip to PCB Option

The board designer can choose between several types of heat sinks to place on the MPC7410. There are several 
commercially-available heat sinks for the MPC7410 from the following vendors:

Aavid Thermalloy 603-224-9988
70 Commercial Street, Suite 200
Concord, NH 03301
Internet: www.aavidthermalloy.com

Alpha Novatech 408-567-8082
473 Sapena Ct. #12
Santa Clara, CA 95054
Internet: www.alphanovatech.com

The Bergquist Company 800-347-4572
18930 West 78th St.
Chanhassen, MN 55317
Internet: www.bergquistcompany.com

International Electronic Research Corporation (IERC) 818-842-7277
413 North Moss St.
Burbank, CA 91502
Internet: www.ctscorp.com

Wakefield Engineering 603-635-2800
33 Bridge St.
Pelham, NH 03076
Internet: www.wakefield.com

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal performance at 
a given air velocity, spatial volume, mass, attachment method, assembly, and cost. 

Thermal

Heat Sink
LGA Package

Heat Sink
Clip

Printed-Circuit Board

Interface Material
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8.8.1 Internal Package Conduction Resistance
For the exposed-die packaging technology, shown in Table 3, the intrinsic conduction thermal resistance paths are 
as follows:

• The die junction-to-case (or top-of-die for exposed silicon) thermal resistance

• The die junction-to-ball thermal resistance

Figure 28 depicts the primary heat transfer path for a package with an attached heat sink mounted to a printed-circuit 
board.

Heat generated on the active side of the chip is conducted through the silicon, then through the heat sink attach 
material (or thermal interface material), and finally to the heat sink where it is removed by forced-air convection. 

Since the silicon thermal resistance is quite small, for a first-order analysis, the temperature drop in the silicon may 
be neglected. Thus, the heat sink attach material and the heat sink conduction/convective thermal resistances are the 
dominant terms.

Figure 28. C4 Package with Heat Sink Mounted to a Printed-Circuit Board 

8.8.2 Adhesives and Thermal Interface Materials
A thermal interface material is recommended at the package lid-to-heat sink interface to minimize the thermal 
contact resistance. For those applications where the heat sink is attached by spring clip mechanism, Figure 29 shows 
the thermal performance of three thin-sheet thermal-interface materials (silicone, graphite/oil, floroether oil), a bare 
joint, and a joint with thermal grease as a function of contact pressure. As shown, the performance of these thermal 
interface materials improves with increasing contact pressure. The use of thermal grease significantly reduces the 
interface thermal resistance. That is, the bare joint results in a thermal resistance approximately seven times greater 
than the thermal grease joint. 

Heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board (see Figure 26). 
This spring force should not exceed 5.5 pounds of force. Therefore, the synthetic grease offers the best thermal 
performance, considering the low interface pressure. Of course, the selection of any thermal interface material 
depends on many factors—thermal performance requirements, manufacturability, service temperature, dielectric 
properties, cost, and so on.

External Resistance

External Resistance

Internal Resistance

Note the internal versus external package resistance.

Radiation Convection

Radiation Convection

Heat Sink

Printed-Circuit Board

Thermal Interface Material

Package/Leads
Die Junction
Die/Package
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5 4/13/2005 Section numbering revised. In all previous versions, section numbering began with ‘1.’ These extra 
‘1’s’ were deleted. For example, previously numbered section 1.8.2 changed to 8.2.

Section 7.1—added CTE value for HCTE package. Corrected minimum module height from 2.65 mm 
to 2.72 mm per Figure 17.

Section 3—added HCTE_LGA (VS package descriptor) package description which is the 
HCTE_CBGA (HX package descriptor) with the spheres removed.

Table 4—generalized ‘HCTE CBGA’ column to ‘HCTE’ to include both HCTE_CBGA and HCTE_LGA 
package thermal characteristics.

Section 5—added HCTE_LGA package. The HCTE_LGA has the same pin assignments as the 
CBGA and HCTE_CBGA packages. Added side view Part C for HCTE_LGA.

Section 6—added HCTE_LGA package (VS package descriptor). The HCTE_LGA has the same 
pinout listing as the CBGA and HCTE packages.

Section 7.3—added HCTE_LGA package parameters.

Section 7.4—added HCTE_LGA package mechanical dimensions.

Table 17—added HCTE_LGA package (VS package descriptor) to part numbering nomenclature.

4 — Table 5—Changed measurement test condition IOH from -6mA to –5 mA for VOH and IOL from 6 mA 
to 5 mA for VOL per Product Bulletin.

Section 1.8.2—revised text regarding AVDD filter selection for the CBGA package.

3 —  Table 6—Changed note 1 to specify that OVDD and L2OVDD power is typically <5% of VDD power.

Figure 17—revised diagram and dimensions to specify ‘cap regions’ versus individual cap 
measurements. Moved individual capacitor placement to separate figure.

Figure 18—Added this figure to show each individual capacitor placement and value.

Figure 22—updated COP Connector Diagram to recommend a weak pull-up resistor on TCK.

2 — Public release, includes Rev 1.1 changes.

Section 1.7.2—added package capacitor values.

Section 1.8.6—added recommendation that strong pull-up/down resistors be used on the 
PLL_CFG[0:3] signals.

Table 8—removed mode input setup and hold times. These inputs adhere to the general input setup 
and hold specifications.

Figure 5—revised mode input diagram to show sample points around HRESET negation.

Section 1.3—added HCTE package description.

Figure 22—added note 6 to emphasize that COP emulator and target board need to be able to drive 
HRESET and TRST independently to the CPU.

Section 1.8.2—revised section for HCTE package. Added text and figure for AVDD filter for the CBGA 
package.

Section 1.8.6—removed AACK, TEA, and TS from control signals requiring pull-ups. Removed TBST 
from snooped transfer attribute list. TBST is an output and is not snooped.

Table 16. Document Revision History (continued)
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0.3 — Added 3.3 V support on the processor bus (BVSEL).

Table 7—update typical and maximum power numbers for full-on mode in. Removed note 4. 
Reworded notes 2 and 3.

Table 9, Note 2—removed reference to application note.

Figure 17—corrected side view datum A to be datum C.

Section 1.8.7—added CI and WT to transfer attribute signals requiring pull-ups.

Section 1.8.7—added 1-kΩ pull-up recommendation to GBL when GBL is not connected.

Table 2— added pull-down resistance necessary for internally pulled-up voltage select pins. Added 
3.3-V support for BVSEL.

Table 13—added note 14 for BVSEL, L2VSEL, and TRST pins to address pull-down resistance 
necessary for these internally pulled-up pins to recognize a low signal.

Table 6—lowered 2.5 V CVIH from 2.2 to 2.0 V to be compatible with VOH of the MPC107. Added 
support for 3.3-V processor bus.

Table 15—modified note 1, use L2CR[L2SL] for L2CLK frequency less than 150 MHz.

Table 8—revised note 2 discussing for 3.3-V bus voltage support.

Table 14—added note 5, do not use PL off during power-up sequence.

Table 1—update output hold times (tL2CHOX).

0.2 — Corrected Section 1.3—technology from 0.13 µm to 0.18 µm.

Updated Table 7—adds power consumption numbers; adds note on estimated decrease w/o AltiVec.

Updated Table 8—adds minimum values for processor frequency and VCO frequency.

Updated Table 9—input setup, output valid times, output hold times, SYSCLK to output high 
impedance.

Updated Table 11—L2SYNC_IN to high impedance.

Updated Figure 17—mechanical dimensions, adds capacitor pad dimensions.

0.1 — Minor updates.

0 — Initial release.

Table 16. Document Revision History (continued)
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10 Ordering Information
Ordering information for the parts fully covered by this specification document is provided in Section 10.1, “Part 
Numbers Addressed by This Specification.” Section 10.2, “Part Numbers Not Fully Addressed by This Document,” 
lists the part numbers which do not fully conform to the specifications of this document. These special part numbers 
require an additional document called a part number specification.

10.1 Part Numbers Addressed by This Specification
Table 17 provides the Freescale part numbering nomenclature for the MPC7410 Note that the individual part 
numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale 
sales office. In addition to the processor frequency, the part numbering scheme also includes an application modifier 
which may specify special application conditions. Each part number also contains a revision code which refers to 
the die mask revision number.

Table 17. Part Numbering Nomenclature

Mxx 7410 xx nnn x x

Product 
Code

Part 
Identifier Package 1

Processor 
Frequency 2

Application 
Modifier Revision Level

MPC 7410 RX = CBGA 400
450
500

L: 1.8 V ± 100 mV 

0° to 105°C
C: 1.2; PVR = 800C 1102

D: 1.3; PVR = 800C 1103

E: 1.4; PVR = 800C 1104

HX = HCTE_CBGA E: 1.4; PVR = 800C 1104

VS = HCTE_LGA

MC VU = HCTE_CBGA 
(Lead Free C5 
Solder Spheres)

400
500

Notes: 
1. See Section 7, “Package Description,” for more information on available package types and Table 4 for more 

information on thermal characteristics. 
2. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this 

specification support all core frequencies. Additionally, parts addressed by part number specifications may 
support other maximum core frequencies.


