
Microchip Technology - PIC16C554-20/P Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 20MHz

Connectivity -

Peripherals POR, WDT

Number of I/O 13

Program Memory Size 896B (512 x 14)

Program Memory Type OTP

EEPROM Size -

RAM Size 80 x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 5.5V

Data Converters -

Oscillator Type External

Operating Temperature 0°C ~ 70°C (TA)

Mounting Type Through Hole

Package / Case 18-DIP (0.300", 7.62mm)

Supplier Device Package 18-PDIP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic16c554-20-p

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic16c554-20-p-4423755
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

© 2009 Microchip Technology Inc. DS01146B-Page 2-7

PIC® Microcontroller Low Power Tips ‘n Tricks

TIP #9	Two-Speed Start-Up
Two-speed startup is a useful feature on some
nanoWatt and all nanoWatt XLP devices which
helps reduce power consumption by allowing
the device to wake up and return to sleep
faster. Using the internal oscillator, the user can
execute code while waiting for the Oscillator
Start-up (OST) timer to expire (LP, XT or HS
modes). This feature (called “Two-Speed Start-
up”) is enabled using the IESO configuration
bit. A Two-Speed Start-up will clock the device
from an internal RC oscillator until the OST has
expired. Switching to a faster internal oscillator
frequency during start-up is also possible using
the OSCCON register. The example below
shows several stages on how this can be
achieved. The number of frequency changes
is dependent upon the designer’s discretion.
Assume a 20 MHz crystal (HS Mode) in the
PIC16F example below.

Example:
Tcy

(Instruction Time)	 Instruction
	 ORG	 0x05	 ;Reset vector

125 ms @ 32 kHz	 BSF	 STATUS,RP0	 ;bank1
125 ms @ 32 kHz	 BSF	 OSCCON,IRCF2	 ;switch to 1 MHz

4 ms @ 1 MHz	 BSF	 OSCCON,IRCF1	 ;switch to 4 MHz

1 ms @ 4 MHz 	 BSF	 OSCCON,IRCF0	 ;switch to 8 MHz

500 ns	 application code
500 ns	 application code
…	 ….
..	 …
(eventually OST expires, 20 MHz crystal clocks the device)

200 ns	 application code
…	 ….
..	 …

TIP #10	Clock Switching
Some nanoWatt devices and all nanoWatt XLP
devices have multiple internal and external
clock sources, as well as logic to allow switching
between the available clock sources as the
main system clock. This allows for significant
power savings by choosing different clocks
for different portions of code. For example, an
application can use the slower internal oscillator
when executing non-critical code and then
switch to a fast high-accuracy oscillator for time
or frequency sensitive code. Clock switching
allows much more flexible applications than
being stuck with a single clock source. Clock
switching sequences vary by device family, so
refer to device data sheets or Family Reference
Manuals for the specific clock switching
sequences.

TIP #11	Use Internal RC Oscillators
If frequency precision better than ±5% is not
required, it is best to utilize the internal RC
oscillators inside all nanoWatt and nanoWatt
XLP devices. The internal RC oscillators have
better frequency stability than external RC
oscillators, and consume less power than
external crystal oscillators. Additionally, the
internal clock can be configured for many
frequency ranges using the internal PLL module
to increase frequency and the postscaler to
reduce it. All these options can be configured in
firmware.

© 2009 Microchip Technology Inc.Page 2-8-DS01146B

PIC® Microcontroller Low Power Tips ‘n Tricks

TIP #12	Internal Oscillator Calibration
An internal RC oscillator calibrated from the
factory may require further calibration as the
temperature or Vdd change. Timer1/SOSC can
be used to calibrate the internal oscillator by
connecting a 32.768 kHz clock crystal. Refer
to AN244, “Internal RC Oscillator Calibration”
for the complete application details. Calibrating
the internal oscillator can help save power by
allowing for use of the internal RC oscillator
in applications which normally require higher
accuracy crystals

Figure 12-1:	Timer1 Used to Calibrate an
	 Internal Oscillator

PIC16F818/819

T1OSI

T1OSO
C2

33 pF

C1
33 pF

XTAL
32.768 kHz

The calibration is based on the measured
frequency of the internal RC oscillator. For
example, if the frequency selected is 4 MHz,
we know that the instruction time is 1 µs
(Fosc/4) and Timer1 has a period of 30.5 µs
(1/32.768 kHz). This means within one Timer1
period, the core can execute 30.5 instructions.
If the Timer1 registers are preloaded with a
known value, we can calculate the number of
instructions that will be executed upon a Timer1
overflow.
This calculated number is then compared
against the number of instructions executed by
the core. With the result, we can determine if
re-calibration is necessary, and if the frequency
must be increased or decreased. Tuning uses
the OSCTUNE register, which has a ±12%
tuning range in 0.8% steps.

TIP #13	Idle and Doze Modes
nanoWatt and nanoWatt XLP devices have
an Idle mode where the clock to the CPU is
disconnected and only the peripherals are
clocked. In PIC16 and PIC18 devices, Idle
mode can be entered by setting the Idle bit in
the OSCON register to ‘1’ and executing the
SLEEP instruction. In PIC24, dsPIC® DSCs,
and PIC32 devices, Idle mode can be entered
by executing the instruction “PWRSAV #1”. Idle
mode is best used whenever the CPU needs to
wait for an event from a peripheral that cannot
operate in Sleep mode. Idle mode can reduce
power consumption by as much as 96% in
many devices.
Doze mode is another low power mode
available in PIC24, dsPIC DSCs, and PIC32
devices. In Doze mode, the system clock to
the CPU is postscaled so that the CPU runs at
a lower speed than the peripherals. If the CPU
is not tasked heavily and peripherals need to
run at high speed, then Doze mode can be
used to scale down the CPU clock to a slower
frequency. The CPU clock can be scaled down
from 1:1 to 1:128. Doze mode is best used in
similar situations to Idle mode, when peripheral
operation is critical, but the CPU only requires
minimal functionality.

© 2009 Microchip Technology Inc. DS01146B-Page 2-11

PIC® Microcontroller Low Power Tips ‘n Tricks

TIP #19	Low Power Timer1 Oscillator
Layout
Applications requiring very low power Timer1/
SOSC oscillators on nanoWatt and nanoWatt
XLP devices must take PCB layout into
consideration. The very low power Timer1/
SOSC oscillators on nanoWatt and nanoWatt
XLP devices consume very little current, and
this sometimes makes the oscillator circuit
sensitive to neighboring circuits. The oscillator
circuit (crystal and capacitors) should be located
as close as possible to the microcontroller.
No circuits should be passing through the
oscillator circuit boundaries. If it is unavoidable
to have high-speed circuits near the oscillator
circuit, a guard ring should be placed around the
oscillator circuit and microcontroller pins similar
to the figure below. Placing a ground plane
under the oscillator components also helps to
prevent interaction with high speed circuits.

Figure 19-1: Guard Ring Around Oscillator
	 Circuit and MCU Pins

VSS

OSC2

OSC1

RB6

RB7

RB5

TIP #20	Use LVD to Detect Low
Battery
The Low Voltage Detect (LVD) interrupt present
in many PIC MCUs is critical in battery based
systems. It is necessary for two reasons.
First, many devices cannot run full speed at
the minimum operating voltage. In this case,
the LVD interrupt indicates when the battery
voltage is dropping so that the CPU clock can
be slowed down to an appropriate speed,
preventing code misexecution. Second, it allows
the MCU to detect when the battery is nearing
the end of its life, so that a low battery indication
can be provided and a lower power state can
be entered to maximize battery lifetime. The
LVD allows these functions to be implemented
without requiring the use of extra analog
channels to measure the battery level.

TIP #21	Use Peripheral FIFO and
DMA
Some devices have peripherals with DMA or
FIFO buffers. These features are not just useful
to improve performance; they can also be used
to reduce power. Peripherals with just one
buffer register require the CPU to stay operating
in order to read from the buffer so it doesn’t
overflow. However, with a FIFO or DMA, the
CPU can go to sleep or idle until the FIFO fills or
DMA transfer completes. This allows the device
to consume a lot less average current over the
life of the application.

© 2009 Microchip Technology Inc.Page 2-12-DS01146B

PIC® Microcontroller Low Power Tips ‘n Tricks

TIP #22	Ultra Low-Power Wake-Up
Peripheral
Newer devices have a modification to PORTA
that creates an Ultra Low-Power Wake-Up
(ULPWU) peripheral. A small current sink and
a comparator have been added that allows
an external capacitor to be used as a wake-
up timer. This feature provides a low-power
periodic wake-up source which is dependent on
the discharge time of the external RC circuit.

Figure 22-1: Ultra Low-Power Wake-Up
	 Peripheral

VREF
I

Pin Wake-on-Change
InterruptC

If the accuracy of the Watchdog Timer is not
required, this peripheral can save a lot of
current.
Visit the low power design center at:
www.microchip.com/lowpower for
additional design resources.

© 2009 Microchip Technology Inc.Page 3-10-DS01146B

PIC® Microcontroller CCP and ECCP Tips ‘n Tricks

TIP #9	 Generating the Time Tick for a
	 RTOS
Real Time Operating Systems (RTOS) require
a periodic interrupt to operate. This periodic
interrupt, or “tick rate”, is the basis for the
scheduling system that RTOS’s employ. For
instance, if a 2 ms tick is used, the RTOS will
schedule its tasks to be executed at multiples
of the 2 ms. A RTOS also assigns a priority to
each task, ensuring that the most critical tasks
are executed first. Table 9-1 shows an example
list of tasks, the priority of each task and the
time interval that the tasks need to be executed.

Table 9-1: Tasks
Task Interval Priority

Read ADC Input 1 20 ms 2

Read ADC Input 2 60 ms 1

Update LCD 24 ms 2

Update LED Array 36 ms 3

Read Switch 10 ms 1

Dump Data to Serial Port 240 ms 1

The techniques described in Tip #7 can be used
to generate the 2 ms periodic interrupt using the
CCP module configured in Compare mode.

Note:	For more information on RTOSs
	 and their use, see Application Note
	 AN777 “Multitasking on the
	 PIC16F877 with the Salvo™ RTOS”.

TIP #10	16-Bit Resolution PWM
Figure 10-1: 16-Bit Resolution PWM

CCPx Interrupt:
Clear CCPx pin

Timer1 Interrupt:
Set CCPx pin

1.	Configure CCPx to clear output (CCPx pin)
	 on match in Compare mode (CCPxCON
	 <CCPSM3:CCPxM0>).
2.	Enable the Timer1 interrupt.
3.	Set the period of the waveform via Timer1
	 prescaler (T1CON <5:4>).
4.	Set the duty cycle of the waveform using
	 CCPRxL and CCPRxH.
5.	Set CCPx pin when servicing the Timer1
	 overflow interrupt(1).

Note 1:	One hundred percent duty cycle
	 is not achievable with this
	 implementation due to the interrupt
	 latency in servicing Timer1. The
	 period is not affected because
	 the interrupt latency will be the
	 same from period to period as long
	 as the Timer1 interrupt is serviced
	 first in the ISR.

Timer1 has four configurable prescaler values.
These are 1:1, 1:2, 1:4 and 1:8. The frequency
possibilities of the PWM described above are
determined by Equation 10-1.

Equation 10-1

For a microcontroller running on a 20 MHz
oscillator (Fosc) this equates to frequencies
of 76.3 Hz, 38.1 Hz, 19.1 Hz and 9.5 Hz for
increasing prescaler values.

Fpwm = Fosc/(65536*4*prescaler)

© 2009 Microchip Technology Inc. DS01146B-Page 3-19

PIC® Microcontroller CCP and ECCP Tips ‘n Tricks

COMBINATION CAPTURE AND
COMPARE TIPS
The CCP and ECCP modules can be
configured on the fly. Therefore, these modules
can perform different functions in the same
application provided these functions operate
exclusively (not at the same time). This section
will provide examples of using a CCP module in
different modes in the same application.

TIP #20	RS-232 Auto-baud
RS-232 serial communication has a variety
of baud rates to choose from. Multiple
transmission rates require software which
detects the transmission rate and adjusts the
receive and transmit routines accordingly.
Auto-baud is used in applications where
multiple transmission rates can occur. The CCP
module can be configured in Capture mode to
detect the baud rate and then be configured in
Compare mode to generate or receive RS-232
transmissions.
In order for auto-baud to work, a known
calibration character must be transmitted initially
from one device to another. One possible
calibration character is show in Figure 20-1.
Timing this known character provides the
device with the baud rate for all subsequent
communications.
Figure 20-1: RS-232 Calibration Character

Start
Bit

Stop
Bit

LSB MSB

0 0 0 0 0 0 0 1

Auto-baud Routine Implementation:
1.	Configure CCP module to capture the falling
	 edge (beginning of Start bit).
2.	When the falling edge is detected, store the
	 CCPR1 value.
3.	Configure the CCP module to capture the
	 rising edge.
4.	Once the rising edge is detected, store the
	 CCPR1 value.
5.	Subtract the value stored in step 2 from the
	 value in step 4. This is the time for 8 bits.
6.	Shift the value calculated in step 5 right 3
	 times to divide by 8. This result is the period
	 of a bit (Tb).
7.	Shift value calculated in step 6 right by 1.
	 This result is half the period of a bit.
The following code segments show the process
for transmitting and receiving data in the normal
program flow. This same functionality can
be accomplished using the CCP module by
configuring the module in Compare mode and
generating a CCP interrupt every bit period.
When this method is used, one bit is either sent
or received when the CCP interrupt occurs.

Note:	Refer to Application Note AN712
	 “RS-232 Auto-baud for the PIC16C5X
	 Devices” for more details on
	 auto-baud.

© 2009 Microchip Technology Inc.Page 3-22-DS01146B

PIC® Microcontroller CCP and ECCP Tips ‘n Tricks

NOTES:

© 2009 Microchip Technology Inc. DS01146B-Page 4-3

PIC® Microcontroller Comparator Tips ‘n Tricks

TIP #2	Faster Code for Detecting
	 Change
When using a comparator to monitor a sensor,
it is often just as important to know when
a change occurs as it is to know what the
change is. To detect a change in the output of
a comparator, the traditional method has been
to store a copy of the output and periodically
compare the held value to the actual output to
determine the change. An example of this type
of routine is shown below.

Example 2-1

Test
 MOVF hold,w ;get old Cout
 XORWF CMCON,w ;compare to new Cout
 ANDLW COUTMASK
 BTFSC STATUS,Z
 RETLW 0 ;if = return "no change"
 MOVF CMCON,w ;if not =, get new Cout
 ANDLW COUTMASK ;remove all other bits
 MOVWF hold ;store in holding var.
 IORLW CHNGBIT ;add change flag
 RETURN

This routine requires 5 instructions for each test,
9 instructions if a change occurs, and 1 RAM
location for storage of the old output state.
A faster method for microcontrollers with a
single comparator is to use the comparator
interrupt flag to determine when a change has
occurred.

Example 2-2

Test
 BTFSS PIR1,CMIF ;test comparator flag
 RETLW 0 ;if clear, return a 0
 BTFSS CMCON,COUT ;test Cout
 RETLW CHNGBIT ;if clear return
 ;CHNGFLAG
 RETLW COUTMASK + CHNGBIT;if set,
 ;return both

This routine requires 2 instructions for each test,
3 instructions if a change occurs, and no RAM
storage.
If the interrupt flag can not be used, or if two
comparators share an interrupt flag, an alternate
method that uses the comparator output polarity
bit can be used.

Example 2-3

Test
 BTFSS CMCON,COUT ;test Cout
 RETLW 0 ;if clear, return 0
 MOVLW CINVBIT ;if set, invert Cout
 XORWF CMCON,f ;forces Cout to 0
 BTFSS CMCON,CINV ;test Cout polarity
 RETLW CHNGFLAG ;if clear, return
 ;CHNGFLAG
 RETLW COUTMASK + CHNGFLAG;if set,
 ;return both

This routine requires 2 instructions for each test,
5 instructions if a change occurs, and no GPR
storage.

© 2009 Microchip Technology Inc.Page 4-10-DS01146B

PIC® Microcontroller Comparator Tips ‘n Tricks

TIP #9	Multi-Vibrator (Ramp Wave
	 Output)
A multi-vibrator (ramp wave output) is an
oscillator designed around a voltage comparator
or operational amplifier that produces an
asymmetrical output waveform (see Figure 9-1).
Resistors R1 through R3 form a hysteresis
feedback path from the output to the
non-inverting input. Resistor RT, diode D1 and
capacitor CT form a time delay network between
the output and the inverting input. At the start
of the cycle, CT is discharged holding the
non-inverting input at ground, forcing the output
high. A high output forces the non-inverting
input to the high threshold voltage (see Tip #3)
and charges CT through RT. When the voltage
across CT reaches the high threshold voltage,
the output is forced low. A low output drops the
non-inverting input to the low threshold voltage
and discharges CT through D1. Because
the dynamic on resistance of the diode is
significantly lower than RT, the discharge of CT
is small when compared to the charge time, and
the resulting waveform across CT is a pseudo
ramp function with a ramping charge phase and
a short-sharp discharge phase.

Figure 9-1: Ramp Waveform Multi-Vibrator

+

-

RT

Comparator

Output

R2
R3

CT

R1VDD

D1

To design this multi-vibrator, first design the
hysteresis feedback path using the procedure
in Tip #3. Remember that the peak-to-peak
amplitude of the ramp wave will be determined
by the hysteresis limits. Also, be careful to
choose threshold voltages (Vth and Vtl) that
are evenly spaced within the common mode
range of the comparator.

Then use Vth and Vtl to calculate values for RT
and CT that will result in the desired oscillation
frequency Fosc. Equation 9-1 defines the
relationship between RT, CT, Vth, Vtl and Fosc.

Equation 9-1

This assumes that the dynamic on resistance of
D1 is much less than RT.

Example:
•	Vdd = 5V, Vth = 1.666V and Vth = 3.333V
•	R1, R2 and R3 = 10k
•	Rt = 15k, Ct = .1 mF for a Fosc = 906 Hz

Note:	Replacing Rt with a current limiting
	 diode will significantly improve the
	 linearity of the ramp wave form.
	 Using the example shown above, a
	 CCL1000 (1 mA Central Semiconductor
	 CLD), will produce a very linear
	 6 kHz output (see Equation 9-2).

Equation 9-2

Figure 9-2: Alternate Ramp Waveform
	 Multi-Vibrator Using a CLD

CLD

+

-
Comparator

Output

R2
R3

CT

R1VDD

D1

Fosc = 1
 RT * CT * In(Vth/Vtl)

Fosc = Icld
 C (Vth - Vtl)

© 2009 Microchip Technology Inc.Page 4-16-DS01146B

PIC® Microcontroller Comparator Tips ‘n Tricks

TIP #15	Level Shifter
This tip shows the use of the comparator as a
digital logic level shifter. The inverting input is
biased to the center of the input voltage range
(Vin/2). The non-inverting input is then used for
the circuit input. When the input is below the
Vin/2 threshold, the output is low. When the
input is above Vin/2, then the output is high.
Values for R1 and R2 are not critical, though
their ratio should result in a threshold voltage
Vin/2 at the mid-point of the input signal voltage
range. Some microcontrollers have the option to
connect the inverting input to an internal voltage
reference. To use the reference in place of R1
and R2, simply select the internal reference and
configure it for one half the input voltage range.

Note:	Typical propagation delay for the
	 circuit is 250-350 ns using the typical
	 on-chip comparator peripheral of a
	 microcontroller.

Figure 15-1: Level Shifter

VDD

A +

-
Y

R1

R2

Example:
•	Vin = 0 - 2V, Vin/2 = 1V, Vdd = 5V
•	R2 = 10k, R3 = 3.9k

TIP #16	Logic: Inverter
When designing embedded control applications,
there is often the need for an external gate.
Using the comparator, several simple gates can
be implemented. This tip shows the use of the
comparator as an inverter.
The non-inverting input is biased to the center
of the input voltage range, typically Vdd/2. The
inverting input is then used for the circuit input.
When the input is below Vdd/2, the output is
high. When the input is above Vdd/2, then the
output is low.
Values for R1 and R2 are not critical, though
they must be equal to set the threshold at
Vdd/2.
Some microcontrollers have the option to
connect the inverting input to an internal voltage
reference. To use the reference in place of R1
and R2, move the input to the non-inverting
input and set the output polarity bit in the
comparator control register to invert the
comparator output.

Note:	Typical propagation delay for the
	 circuit is 250-350 ns using the typical
	 on-chip comparator peripheral of a
	 microcontroller.

Figure 16-1: Inverter

VDD

A

+

- Y

R1

R2

© 2009 Microchip Technology Inc. DS01146B-Page 5-7

DC Motor Control Tips ‘n Tricks

TIP #5	Writing a PWM Value to the
	 the CCP Registers With a
	 Mid-Range PIC® Microcontroller
The two PWM LSb’s are located in the
CCPCON register of the CCP. This can make
changing the PWM period frustrating for a
developer. Example 5-1 through Example 5-3
show three macros written for the mid-range
product family that can be used to set the PWM
period. The first macro takes a 16-bit value and
uses the 10 MSb’s to set the PWM period. The
second macro takes a 16-bit value and uses the
10 LSb’s to set the PWM period. The last macro
takes 8 bits and sets the PWM period. This
assumes that the CCP is configured for no more
than 8 bits.

Example 5-1: Left Justified 16-Bit Macro

pwm_tmp equ xxx ;this variable must be
 ;allocated someplace
setPeriod macro a ;a is 2 SFR’s in
 ;Low:High arrangement
 ;the 10 MSb’s are the
 ;desired PWM value
 RRF a,w ;This macro will
 ;change w
 MOVWF pwm_tmp
 RRF pwm_tmp,w
 ANDLW 0x30
 IORLW 0x0F
 MOVWF CCP1CON
 MOVF a+1,w
 MOVWF CCPR1L

Example 5-2: Right Justified 16-Bit Macro

pwm_tmp equ xxx ;this variable must be
 ;allocated someplace
setPeriod macro a ;a is 2 bytes in
 ;Low:High arrangement
 ;the 10 LSb’s are the
 ;desired PWM value
 SWAPF a,w ;This macro will
 ;change w
 ANDLW 0x30
 IORLW 0x0F
 MOVWF CCP1CON
 RLF a,w
 IORLW 0x0F
 MOVWF pwm_tmp
 RRF pwm_tmp,f
 RRF pwm_tmp,w
 MOVWF CCPR1L

Example 5-3: 8-Bit Macro

pwm_tmp equ xxx ;this variable must be
 ;allocated someplace
setPeriod macro a ;a is 1 SFR
 SWAPF a,w ;This macro will
 ;change w
 ANDLW 0x30
 IORLW 0x0F
 MOVWF CCP1CON
 RRF a,w
 MOVWF pwm_tmp
 RRF pwm_tmp,w
 MOVWF CCPR1L

© 2009 Microchip Technology Inc.Page 5-12-DS01146B

DC Motor Control Tips ‘n Tricks

NOTES:

© 2009 Microchip Technology Inc. DS01146B-Page 6-3

LCD PIC® Microcontroller Tips ‘n Tricks

TIP #3	Resistor Ladder for Low
	 Current
Bias voltages are generated by using an
external resistor ladder. Since the resistor
ladder is connected between Vdd and Vss,
there will be current flow through the resistor
ladder in inverse proportion to the resistance. In
other words, the higher the resistance, the less
current will flow through the resistor ladder. If
we use 10K resistors and Vdd = 5V, the resistor
ladder will continuously draw 166 mA. That
is a lot of current for some battery-powered
applications.

Figure 3-1: Resistor Ladder

LCD PIC® MCU

COMm

VDD

R

CPIXEL (n x m)

VSS

VLCD3

VLCD2

VLCD1

VLCD0

SEGn

R

R

How do we maximize the resistance without
adversely effecting the quality of the display?
Some basic circuit analysis helps us determine
how much we can increase the size of the
resistors in the ladder.
The LCD module is basically an analog
multiplexer that alternately connects the LCD
voltages to the various segment and common
pins that connect across the LCD pixels. The
LCD pixels can be modeled as a capacitor.
Each tap point on the resistor ladder can be
modeled as a Thevenin equivalent circuit. The
Thevenin resistance is 0 for Vlcd3 and Vlcd0,
so we look at the two cases where it is non-
zero, Vlcd2 and Vlcd1.

The circuit can be simplified as shown in Figure
3-2. Rsw is the resistance of the segment
multiplex switch; Rcom is the resistance of the
common multiplex switch.

Figure 3-2: Simplified LCD Circuit

CPIXEL
+
-

RTH RSW

RCOM

VTH

The Thevenin voltage is equal to either 2/3 Vdd,
or 1/3 Vdd, for the cases where the Thevenin
resistance is non-zero. The Thevenin resistance
is equal to the parallel resistance of the upper
and lower parts of the resistor ladder.

Figure 3-3: LCD Circuit Resistance Estimate

CPIXEL
+
-

VTH

RTOTAL = RTH + RSW + RCOM

RTH = (2R * R)/(2R + R)
RTH = 2R2/3R
RTH = 2R/3

RSW = 4.7K
RCOM = 0.4K

As you can see, we can model the drive of a
single pixel as an RC circuit, where the voltage
switches from 0V to Vlcd2, for example. For
LCD PIC microcontrollers, we can estimate the
resistance of the segment and common
switching circuits as about 4.7K and 0.4K,
respectively.
We can see that the time for the voltage
across the pixel to change from 0 to Vth will
depend on the capacitance of the pixel and the
total resistance, of which the resistor ladder
Thevenin resistance forms the most significant
part.

© 2009 Microchip Technology Inc.Page 6-10-DS01146B

LCD PIC® Microcontroller Tips ‘n Tricks

TIP #12	4 x 4 Keypad Interface that
	 Conserves Pins for LCD
	 Segment Drivers
A typical digital interface to a 4 x 4 keypad uses
8 digital I/O pins. But using eight pins as digital
I/Os can take away from the number of segment
driver pins available to interface to an LCD.
By using 2 digital I/O pins and 2 analog input
pins, it is possible to add a 4 x 4 keypad to the
PIC microcontroller without sacrificing any of its
LCD segment driver pins.
The schematic for keypad hook-up is shown
in Figure 12-1. This example uses the
PIC18F8490, but the technique could be used
on any of the LCD PIC MCUs.

Figure 12-1: Keypad Hook-up Schematic

Figure 11-1: Common Clock Application

Fortunately, blinking is quite easy to implement.
There are many ways to implement a blinking
effect in software. Any regular event can be
used to update a blink period counter. A blink
flag can be toggled each time the blink period
elapses. Each character or display element
that you want to blink can be assigned a
corresponding blink enable flag. The flowchart
for updating the display would look like:

Figure 11-2: Updating Display Flowchart

NN

YY

Character 1
Blink

Enable

Blink Flag

Start

Finish

Is Blink
flag
set?

Update
Character 1

Pixels

Clear
Character 1

Pixels

Is
Character 1
Blink enable

set?

LCDDATA
Pixel Bits

Update Character 1

Character 1
Buffer

© 2009 Microchip Inc.Page 7-6-DS01146B

Intelligent Power Supply Design Tips ‘n Tricks

The switching frequency of the MCP1630 can
be adjusted by changing the frequency of the
clock source. The maximum on-timer of the
MCP1630 PWM can be adjusted by changing
the duty cycle of the clock source.
The PIC MCU has several options for providing
this clock source:
•	The Fosc/4 pin can be enabled. This will

produce a 50% duty cycle square wave that
is 1/4th of the oscillator frequency. Tip #4
provides both example software and
information on clock dithering using the Fosc/4
output.

•	For PIC MCUs equipped with a Capture/
Compare/PWM (CCP) or Enhanced CCP
(ECCP) module, a variable frequency, variable
duty cycle signal can be created with little
software overhead. This PWM signal is entirely
under software control and allows advanced
features, such as soft-start, to be implemented
using software.

•	For smaller parts that do not have a CCP
or ECCP module, a software PWM can be
created. Tips #1 and #2 use software PWM for
soft-start and provide software examples.

TIP #5	Using a PIC® Microcontroller
	 as a Clock Source for a SMPS
	 PWM Generator
A PIC MCU can be used as the clock source for
a PWM generator, such as the MCP1630.

Figure 5-1:	PIC MCU and MCP1630 Example
	 Boost Application

C1

FB

MCP1630

VIN

P�C�
MC�

VIN VEXT

CS

OSC IN R2

R1
M1

D1L1

RSENSE

The MCP1630 begins its cycle when its clock/
oscillator source transitions from high-to-low,
causing its PWM output to go high state. The
PWM pulse can be terminated in any of three
ways:
1.	The sensed current in the magnetic device
	 reaches 1/3 of the error amplifier output.
2.	The voltage at the Feedback (FB) pin is
	 higher than the reference voltage (Vref).
3.	The clock/oscillator source transitions from
	 low-to-high.

© 2009 Microchip Inc.Page 7-8-DS01146B

Intelligent Power Supply Design Tips ‘n Tricks

Figure 7-2:	Desired and Actual Inductor
	 Currents

Reference
Inductor
Current

Actual
Inductor
Current

A PIC MCU has several features that allow it to
perform power factor correction.
•	The PIC MCUs CCP module can be used to

generate a PWM signal that, once filtered, can
be used to generate the sine wave reference
signal.

•	The PIC Analog-to-Digital (A/D) converter can
be used to sense VBoost and the reference
sine wave can be adjusted in software.

•	The interrupt-on-change feature of the PIC
MCU input pins can be used to allow the PIC
MCU to synchronize the sine wave reference
to the line voltage by detecting the zero
crossings.

•	The on-chip comparators can be used for
driving the boost MOSFET(s) using the PWM
sine wave reference as one input and the
actual inductor current as another.

TIP #7	Using a PIC® Microcontroller
	 for Power Factor Correction
In AC power systems, the term Power Factor
(PF) is used to describe the fraction of power
actually used by a load compared to the total
apparent power supplied.
Power Factor Correction (PFC) is used to
increase the efficiency of power delivery by
maximizing the PF.
The basis for most Active PFC circuits is a boost
circuit, shown in Figure 7-1.

Figure 7-1:	Typical Power Factor Correction
	 Boost Supply

PWM
M1

C2

+

C1

VBoost

++

-

+ -

L1 D1

The AC voltage is rectified and boosted to
voltages as high as 400 Vdc. The unique feature
of the PFC circuit is that the inductor current is
regulated to maintain a certain PF. A sine wave
reference current is generated that is in phase
with the line voltage. The magnitude of the sine
wave is inversely proportional to the voltage at
VBoost. Once the sine wave reference is
established, the inductor current is regulated to
follow it, as shown in Figure 7-2.

© 2009 Microchip Inc. DS01146B-Page 7-17

Intelligent Power Supply Design Tips ‘n Tricks

Figure 15-2: Flux Directions

Flux due to input current

Flux due to
driven coil

IIN

The net flux in the core should be approximately
zero. Because the flux will always be very near
zero, the core will be very linear over the small
operating range.
When Iin = 0, the output of the comparator
will have an approximate 50% duty cycle.
As the current moves one direction, the duty
cycle will increase. As the current moves the
other direction, the duty cycle will decrease.
By measuring the duty cycle of the resulting
comparator output, we can determine the value
of Iin.
Finally, a Delta-Sigma ADC can be used to
perform the actual measurement. Features such
as comparator sync and Timer1 gate allow the
Delta-Sigma conversion to be taken care of
entirely in hardware. By taking 65,536 (2^16)
samples and counting the number of samples
that the comparator output is low or high, we
can obtain a 16-bit A/D result.
Example schematic and software are provided
for the PIC12F683 in both C and Assembly.
For more information on using a PIC MCU to
implement a Delta-Sigma converter, please
refer to AN700, “Make a Delta-Sigma Converter
Using a Microcontroller’s Analog Comparator
Module” (DS00700), which includes example
software.

TIP #16	Implementing a PID
	 Feedback Control in a
	 PIC12F683-Based SMPS
	 Design
Simple switching power supplies can be
controlled digitally using a Proportional Integral
Derivative (PID) algorithm in place of an analog
error amplifier and sensing the voltage using the
Analog-to-Digital Converter (ADC).

Figure 16-1: Simple PID Power Supply

D2

Q1

PIC12F683

+

+5V

AN0

VSS

VDD

GP1

GP5

L1

C2

C1

VOUT

R2

R1

CCP1 GP3

GP4

+5V

VSENSE

R3

VSENSE

The design in Figure 16-1 utilizes an 8-pin
PIC12F683 PIC MCU in a buck topology.
The PIC12F683 has the basic building blocks
needed to implement this type of power supply:
an A/D converter and a CCP module.

Figure 16-2: PID Block Diagram

PIC® Microcontroller

Desired
Value

A/D Voltage
Sense

Software
PID

Routine
CCP

Duty Cycle+-

© 2009 Microchip Inc. DS01146B-Page 7-21

Intelligent Power Supply Design Tips ‘n Tricks

TIP #20	Compensating Sensors
	 Digitally
Many sensors and references tend to drift
with temperature. For example, the MCP9700
specification states that its typical is ±0.5°C and
its max error is ±4°C.

Figure 20-1: MCP9700 Accuracy

6.0

4.0

2.0

0.0

-2.0

-4.0

A
cc

ur
ac

y
(°

C
)

-55 -35 -15 5 25 45 65 85 105 125
Temperature (°C)

+σ

-σ

Spec. Limit

Average

Figure 20-1 shows the accuracy of a 100
sample lot of MCP9700 temperature sensors.
Despite the fact that the sensor’s error is
nonlinear, a PIC microcontroller (MCU) can be
used to compensate the sensor’s reading.
Polynomials can be fitted to the average error of
the sensor. Each time a temperature reading is
received, the PIC MCU can use the measured
result and the error compensation polynomials
to determine what the true temperature is.

Figure 20-2: MCP9700 Average Accuracy
	 After Compensation

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

Ac
cu

ra
cy

 (°
C)

-55 -35 -15 5 25 45 65 85 105 125
Temperature (°C)

Average

Figure 20-2 shows the average accuracy for the
100 sample lot of MCP9700 temperature
sensors after compensation. The average error
has been decreased over the full temperature
range.
It is also possible to compensate for error from
voltage references using this method.
For more information on compensating
a temperature sensor digitally, refer to
AN1001, “IC Temperature Sensor Accuracy
Compensation with a PIC Microcontroller”
(DS01001).

© 2009 Microchip Inc.Page 7-22-DS01146B

Intelligent Power Supply Design Tips ‘n Tricks

TIP #21	Using Output Voltage
	 Monitoring to Create a
	 Self-Calibration Function
A PIC microcontroller can be used to create
a switching power supply controlled by a PID
loop (as described in Tip #16). This type of
power supply senses its output voltage digitally,
compares that voltage to the desired reference
voltage and makes duty cycle changes
accordingly. Without calibration, it is sensitive to
component tolerances.

Figure 21-1: Typical Power Supply Output
	 Stage

Switching Circuitry
C1

R2

R1

VOUT

Voltage Sense

The output stage of many power supplies is
similar to Figure 21-1. R1 and R2 are used to
set the ratio of the voltage that is sensed and
compared to the reference.
A simple means of calibrating this type of power
supply is as follows:
1.	Supply a known reference voltage to the
	 output of the supply.
2.	Place the supply in Calibration mode and
	 allow it to sense that reference voltage.
By providing the supply with the output voltage
that it is to produce, it can then sense the
voltage across the resistor divider and store
the sensed value. Regardless of resistor
tolerances, the sensed value will always
correspond to the proper output value for that
particular supply.
Futhermore, this setup could be combined with
Tip #20 to calibrate at several temperatures.
This setup could also be used to create a
programmable power supply by changing the
supplied reference and the resistor divider for
voltage feedback.

© 2009 Microchip Technology Inc. DS01146B-Page 8-13

3V Tips ‘n Tricks

TIP #14	3.3V → 5V Analog Gain Block
To scale analog voltage up when going from
3.3V supply to 5V supply. The 33 kΩ and 17 kΩ
set the op amp gain so that the full scale range
is used in both sides. The 11 kΩ resistor limits
current back to the 3.3V circuitry.

Figure 14-1: Analog Gain Block

+3.3V +5.0V

+5.0V
11k

MCP6XXX

17k33k

+

-

TIP #15	3.3V → 5V Analog
	 Offset Block
Offsetting an analog voltage for translation
between 3.3V and 5V.
Shift an analog voltage from 3.3V supply to 5V
supply. The 147 kΩ and 30.1 kΩ resistors on
the top right and the +5V supply voltage are
equivalent to a 0.85V voltage source in series
with a 25 kΩ resistor. This equivalent 25 kΩ
resistance, the three 25 kΩ resistors, and the
op amp form a difference amplifier with a gain
of 1 V/V. The 0.85V equivalent voltage source
shifts any signal seen at the input up by the
same amount; signals centered at 3.3V/2 =
1.65V will also be centered at 5.0V/2 = 2.50V.
The top left resistor limits current from the 5V
circuitry.

Figure 15-1: Analog Offset Block

+3.3V +5.0V

+5.0V

25k 25k

MCP6XXX

25k 30.1k

147k
+5.0V

+

-

