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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC® Microcontroller Low Power Tips ‘n Tricks

TIP #9	Two-Speed Start-Up
Two-speed startup is a useful feature on some 
nanoWatt and all nanoWatt XLP devices which 
helps reduce power consumption by allowing 
the device to wake up and return to sleep 
faster. Using the internal oscillator, the user can 
execute code while waiting for the Oscillator 
Start-up (OST) timer to expire (LP, XT or HS 
modes). This feature (called “Two-Speed Start-
up”) is enabled using the IESO configuration 
bit. A Two-Speed Start-up will clock the device 
from an internal RC oscillator until the OST has 
expired. Switching to a faster internal oscillator 
frequency during start-up is also possible using 
the OSCCON register. The example below 
shows several stages on how this can be 
achieved. The number of frequency changes 
is dependent upon the designer’s discretion. 
Assume a 20 MHz crystal (HS Mode) in the 
PIC16F example below.

Example:
Tcy

(Instruction Time)	 Instruction
	 ORG	 0x05	 ;Reset vector

125 ms @ 32 kHz	 BSF	 STATUS,RP0	 ;bank1
125 ms @ 32 kHz	 BSF	 OSCCON,IRCF2	 ;switch to 1 MHz

4 ms @ 1 MHz	 BSF	 OSCCON,IRCF1	 ;switch to 4 MHz

1 ms @ 4 MHz 	 BSF	 OSCCON,IRCF0	 ;switch to 8 MHz

500 ns	 application code
500 ns	 application code
…	 ….
..	 …
(eventually OST expires, 20 MHz crystal clocks the device)

200 ns	 application code
…	 ….
..	 …

TIP #10	Clock Switching
Some nanoWatt devices and all nanoWatt XLP 
devices have multiple internal and external 
clock sources, as well as logic to allow switching 
between the available clock sources as the 
main system clock. This allows for significant 
power savings by choosing different clocks 
for different portions of code. For example, an 
application can use the slower internal oscillator 
when executing non-critical code and then 
switch to a fast high-accuracy oscillator for time 
or frequency sensitive code. Clock switching 
allows much more flexible applications than 
being stuck with a single clock source. Clock 
switching sequences vary by device family, so 
refer to device data sheets or Family Reference 
Manuals for the specific clock switching 
sequences.

TIP #11	Use Internal RC Oscillators
If frequency precision better than ±5% is not 
required, it is best to utilize the internal RC 
oscillators inside all nanoWatt and nanoWatt 
XLP devices. The internal RC oscillators have 
better frequency stability than external RC 
oscillators, and consume less power than 
external crystal oscillators. Additionally, the 
internal clock can be configured for many 
frequency ranges using the internal PLL module 
to increase frequency and the postscaler to 
reduce it. All these options can be configured in 
firmware.
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PIC® Microcontroller Low Power Tips ‘n Tricks

TIP #12	Internal Oscillator Calibration
An internal RC oscillator calibrated from the 
factory may require further calibration as the 
temperature or Vdd change. Timer1/SOSC can 
be used to calibrate the internal oscillator by 
connecting a 32.768 kHz clock crystal. Refer 
to AN244, “Internal RC Oscillator Calibration” 
for the complete application details. Calibrating 
the internal oscillator can help save power by 
allowing for use of the internal RC oscillator 
in applications which normally require higher 
accuracy crystals

Figure 12-1:	Timer1 Used to Calibrate an 
	 Internal Oscillator

PIC16F818/819

T1OSI

T1OSO
C2

33 pF

C1
33 pF

XTAL
32.768 kHz

The calibration is based on the measured 
frequency of the internal RC oscillator. For 
example, if the frequency selected is 4 MHz, 
we know that the instruction time is 1 µs 
(Fosc/4) and Timer1 has a period of 30.5 µs 
(1/32.768 kHz). This means within one Timer1 
period, the core can execute 30.5 instructions. 
If the Timer1 registers are preloaded with a 
known value, we can calculate the number of 
instructions that will be executed upon a Timer1 
overflow. 
This calculated number is then compared 
against the number of instructions executed by 
the core. With the result, we can determine if 
re-calibration is necessary, and if the frequency 
must be increased or decreased. Tuning uses 
the OSCTUNE register, which has a ±12% 
tuning range in 0.8% steps.

TIP #13	Idle and Doze Modes
nanoWatt and nanoWatt XLP devices have 
an Idle mode where the clock to the CPU is 
disconnected and only the peripherals are 
clocked. In PIC16 and PIC18 devices, Idle 
mode can be entered by setting the Idle bit in 
the OSCON register to ‘1’ and executing the 
SLEEP instruction. In PIC24, dsPIC® DSCs, 
and PIC32 devices, Idle mode can be entered 
by executing the instruction “PWRSAV #1”. Idle 
mode is best used whenever the CPU needs to 
wait for an event from a peripheral that cannot 
operate in Sleep mode. Idle mode can reduce 
power consumption by as much as 96% in 
many devices.
Doze mode is another low power mode 
available in PIC24, dsPIC DSCs, and PIC32 
devices.  In Doze mode, the system clock to 
the CPU is postscaled so that the CPU runs at 
a lower speed than the peripherals. If the CPU 
is not tasked heavily and peripherals need to 
run at high speed, then Doze mode can be 
used to scale down the CPU clock to a slower 
frequency. The CPU clock can be scaled down 
from 1:1 to 1:128.  Doze mode is best used in 
similar situations to Idle mode, when peripheral 
operation is critical, but the CPU only requires 
minimal functionality. 
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TIP #19	Low Power Timer1 Oscillator 
Layout
Applications requiring very low power Timer1/
SOSC oscillators on nanoWatt and nanoWatt 
XLP devices must take PCB layout into 
consideration. The very low power Timer1/
SOSC oscillators on nanoWatt and nanoWatt 
XLP devices consume very little current, and 
this sometimes makes the oscillator circuit 
sensitive to neighboring circuits. The oscillator 
circuit (crystal and capacitors) should be located 
as close as possible to the microcontroller. 
No circuits should be passing through the 
oscillator circuit boundaries. If it is unavoidable 
to have high-speed circuits near the oscillator 
circuit, a guard ring should be placed around the 
oscillator circuit and microcontroller pins similar 
to the figure below. Placing a ground plane 
under the oscillator components also helps to 
prevent interaction with high speed circuits.

Figure 19-1:  Guard Ring Around Oscillator 
	    Circuit and MCU Pins
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TIP #20	Use LVD to Detect Low 
Battery
The Low Voltage Detect (LVD) interrupt present 
in many PIC MCUs is critical in battery based 
systems. It is necessary for two reasons.  
First, many devices cannot run full speed at 
the minimum operating voltage. In this case, 
the LVD interrupt indicates when the battery 
voltage is dropping so that the CPU clock can 
be slowed down to an appropriate speed, 
preventing code misexecution. Second, it allows 
the MCU to detect when the battery is nearing 
the end of its life, so that a low battery indication 
can be provided and a lower power state can 
be entered to maximize battery lifetime. The 
LVD allows these functions to be implemented 
without requiring the use of extra analog 
channels to measure the battery level.

TIP #21	Use Peripheral FIFO and 
DMA
Some devices have peripherals with DMA or 
FIFO buffers. These features are not just useful 
to improve performance; they can also be used 
to reduce power. Peripherals with just one 
buffer register require the CPU to stay operating 
in order to read from the buffer so it doesn’t 
overflow. However, with a FIFO or DMA, the 
CPU can go to sleep or idle until the FIFO fills or 
DMA transfer completes. This allows the device 
to consume a lot less average current over the 
life of the application.
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TIP #22	Ultra Low-Power Wake-Up 
Peripheral
Newer devices have a modification to PORTA 
that creates an Ultra Low-Power Wake-Up 
(ULPWU) peripheral. A small current sink and 
a comparator have been added that allows 
an external capacitor to be used as a wake-
up timer. This feature provides a low-power 
periodic wake-up source which is dependent on 
the discharge time of the external RC circuit.

Figure 22-1: Ultra Low-Power Wake-Up 
	   Peripheral

VREF
I

Pin Wake-on-Change
InterruptC

If the accuracy of the Watchdog Timer is not 
required, this peripheral can save a lot of 
current.
Visit the low power design center at: 
www.microchip.com/lowpower for  
additional design resources. 
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TIP #9	 Generating the Time Tick for a 
	 RTOS 
Real Time Operating Systems (RTOS) require 
a periodic interrupt to operate. This periodic 
interrupt, or “tick rate”, is the basis for the 
scheduling system that RTOS’s employ. For 
instance, if a 2 ms tick is used, the RTOS will 
schedule its tasks to be executed at multiples 
of the 2 ms. A RTOS also assigns a priority to 
each task, ensuring that the most critical tasks 
are executed first. Table 9-1 shows an example 
list of tasks, the priority of each task and the 
time interval that the tasks need to be executed. 

Table 9-1: Tasks
Task Interval Priority

Read ADC Input 1 20 ms 2

Read ADC Input 2 60 ms 1

Update LCD 24 ms 2

Update LED Array 36 ms 3

Read Switch 10 ms 1

Dump Data to Serial Port 240 ms 1

The techniques described in Tip #7 can be used 
to generate the 2 ms periodic interrupt using the 
CCP module configured in Compare mode.

Note:	For more information on RTOSs 
	 and their use, see Application Note 
	 AN777 “Multitasking on the 
	 PIC16F877 with the Salvo™ RTOS”.

TIP #10	16-Bit Resolution PWM
Figure 10-1: 16-Bit Resolution PWM

CCPx Interrupt:
Clear CCPx pin

Timer1 Interrupt:
Set CCPx pin

1.	Configure CCPx to clear output (CCPx pin) 
	 on match in Compare mode (CCPxCON 
	 <CCPSM3:CCPxM0>).
2.	Enable the Timer1 interrupt.
3.	Set the period of the waveform via Timer1 
	 prescaler (T1CON <5:4>).
4.	Set the duty cycle of the waveform using 
	 CCPRxL and CCPRxH.
5.	Set CCPx pin when servicing the Timer1 
	 overflow interrupt(1).

Note 1:	One hundred percent duty cycle 
	 is not achievable with this 
	 implementation due to the interrupt 
	 latency in servicing Timer1. The 
	 period is not affected because 
	 the interrupt latency will be the 
	 same from period to period as long 
	 as the Timer1 interrupt is serviced 
	 first in the ISR. 

Timer1 has four configurable prescaler values. 
These are 1:1, 1:2, 1:4 and 1:8. The frequency 
possibilities of the PWM described above are 
determined by Equation 10-1.

Equation 10-1

For a microcontroller running on a 20 MHz 
oscillator (Fosc) this equates to frequencies 
of 76.3 Hz, 38.1 Hz, 19.1 Hz and 9.5 Hz for 
increasing prescaler values. 

Fpwm = Fosc/(65536*4*prescaler)
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COMBINATION CAPTURE AND 
COMPARE TIPS
The CCP and ECCP modules can be 
configured on the fly. Therefore, these modules 
can perform different functions in the same 
application provided these functions operate 
exclusively (not at the same time). This section 
will provide examples of using a CCP module in 
different modes in the same application.

TIP #20	RS-232 Auto-baud
RS-232 serial communication has a variety 
of baud rates to choose from. Multiple 
transmission rates require software which 
detects the transmission rate and adjusts the 
receive and transmit routines accordingly. 
Auto-baud is used in applications where 
multiple transmission rates can occur. The CCP 
module can be configured in Capture mode to 
detect the baud rate and then be configured in 
Compare mode to generate or receive RS-232 
transmissions.
In order for auto-baud to work, a known 
calibration character must be transmitted initially 
from one device to another. One possible 
calibration character is show in Figure 20-1. 
Timing this known character provides the 
device with the baud rate for all subsequent 
communications. 
Figure 20-1: RS-232 Calibration Character

Start
Bit

Stop
Bit

LSB MSB

0       0       0       0       0       0       0 1

Auto-baud Routine Implementation:
1.	Configure CCP module to capture the falling 
	 edge (beginning of Start bit).
2.	When the falling edge is detected, store the 
	 CCPR1 value.
3.	Configure the CCP module to capture the 
	 rising edge.
4.	Once the rising edge is detected, store the 
	 CCPR1 value.
5.	Subtract the value stored in step 2 from the 
	 value in step 4. This is the time for 8 bits.
6.	Shift the value calculated in step 5 right 3 
	 times to divide by 8. This result is the period 
	 of a bit (Tb).
7.	Shift value calculated in step 6 right by 1. 
	 This result is half the period of a bit.
The following code segments show the process 
for transmitting and receiving data in the normal 
program flow. This same functionality can 
be accomplished using the CCP module by 
configuring the module in Compare mode and 
generating a CCP interrupt every bit period. 
When this method is used, one bit is either sent 
or received when the CCP interrupt occurs.

Note:	Refer to Application Note AN712 
	 “RS-232 Auto-baud for the PIC16C5X 
	 Devices” for more details on 
	 auto-baud. 
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NOTES:
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PIC® Microcontroller Comparator Tips ‘n Tricks

TIP #2	Faster Code for Detecting 
	 Change
When using a comparator to monitor a sensor, 
it is often just as important to know when 
a change occurs as it is to know what the 
change is. To detect a change in the output of 
a comparator, the traditional method has been 
to store a copy of the output and periodically 
compare the held value to the actual output to 
determine the change. An example of this type 
of routine is shown below.

Example 2-1

Test
 MOVF hold,w ;get old Cout
 XORWF CMCON,w ;compare to new Cout
 ANDLW COUTMASK
 BTFSC STATUS,Z
 RETLW 0 ;if = return "no change"
 MOVF CMCON,w ;if not =, get new Cout
 ANDLW COUTMASK ;remove all other bits
 MOVWF hold ;store in holding var.
 IORLW CHNGBIT ;add change flag
 RETURN

This routine requires 5 instructions for each test, 
9 instructions if a change occurs, and 1 RAM 
location for storage of the old output state.
A faster method for microcontrollers with a 
single comparator is to use the comparator 
interrupt flag to determine when a change has 
occurred.

Example 2-2

Test
 BTFSS PIR1,CMIF ;test comparator flag
 RETLW 0 ;if clear, return a 0
 BTFSS CMCON,COUT ;test Cout
 RETLW CHNGBIT ;if clear return 
   ;CHNGFLAG
 RETLW COUTMASK + CHNGBIT;if set,
   ;return both

This routine requires 2 instructions for each test, 
3 instructions if a change occurs, and no RAM 
storage. 
If the interrupt flag can not be used, or if two 
comparators share an interrupt flag, an alternate 
method that uses the comparator output polarity 
bit can be used.

Example 2-3

Test
 BTFSS CMCON,COUT ;test Cout
 RETLW 0 ;if clear, return 0
 MOVLW CINVBIT ;if set, invert Cout
 XORWF CMCON,f ;forces Cout to 0
 BTFSS CMCON,CINV ;test Cout polarity
 RETLW CHNGFLAG ;if clear, return
   ;CHNGFLAG
 RETLW COUTMASK + CHNGFLAG;if set,
   ;return both 

This routine requires 2 instructions for each test, 
5 instructions if a change occurs, and no GPR 
storage.
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TIP #9	Multi-Vibrator (Ramp Wave 
	 Output) 
A multi-vibrator (ramp wave output) is an 
oscillator designed around a voltage comparator 
or operational amplifier that produces an 
asymmetrical output waveform (see Figure 9-1). 
Resistors R1 through R3 form a hysteresis 
feedback path from the output to the 
non-inverting input. Resistor RT, diode D1 and 
capacitor CT form a time delay network between 
the output and the inverting input. At the start 
of the cycle, CT is discharged holding the 
non-inverting input at ground, forcing the output 
high. A high output forces the non-inverting 
input to the high threshold voltage (see Tip #3) 
and charges CT through RT. When the voltage 
across CT reaches the high threshold voltage, 
the output is forced low. A low output drops the 
non-inverting input to the low threshold voltage 
and discharges CT through D1. Because 
the dynamic on resistance of the diode is 
significantly lower than RT, the discharge of CT 
is small when compared to the charge time, and 
the resulting waveform across CT is a pseudo 
ramp function with a ramping charge phase and 
a short-sharp discharge phase.

Figure 9-1: Ramp Waveform Multi-Vibrator
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R1VDD
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To design this multi-vibrator, first design the 
hysteresis feedback path using the procedure 
in Tip #3. Remember that the peak-to-peak 
amplitude of the ramp wave will be determined 
by the hysteresis limits. Also, be careful to 
choose threshold voltages (Vth and Vtl) that 
are evenly spaced within the common mode 
range of the comparator.

Then use Vth and Vtl to calculate values for RT 
and CT that will result in the desired oscillation 
frequency Fosc. Equation 9-1 defines the 
relationship between RT, CT, Vth, Vtl and Fosc.

Equation 9-1

This assumes that the dynamic on resistance of 
D1 is much less than RT.

Example:
•	Vdd = 5V, Vth = 1.666V and Vth = 3.333V
•	R1, R2 and R3 = 10k
•	Rt = 15k, Ct = .1 mF for a Fosc = 906 Hz

Note:	Replacing Rt with a current limiting 
	 diode will significantly improve the 
	 linearity of the ramp wave form. 
	 Using the example shown above, a 
	 CCL1000 (1 mA Central Semiconductor 
	 CLD), will produce a very linear 
	 6 kHz output (see Equation 9-2).

Equation 9-2

Figure 9-2: Alternate Ramp Waveform 
	 Multi-Vibrator Using a CLD

CLD
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Fosc  =                      1                 
                RT * CT * In(Vth/Vtl)

Fosc  =           Icld        
               C (Vth - Vtl)
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TIP #15	Level Shifter
This tip shows the use of the comparator as a 
digital logic level shifter. The inverting input is 
biased to the center of the input voltage range 
(Vin/2). The non-inverting input is then used for 
the circuit input. When the input is below the 
Vin/2 threshold, the output is low. When the 
input is above Vin/2, then the output is high. 
Values for R1 and R2 are not critical, though 
their ratio should result in a threshold voltage 
Vin/2 at the mid-point of the input signal voltage 
range. Some microcontrollers have the option to 
connect the inverting input to an internal voltage 
reference. To use the reference in place of R1 
and R2, simply select the internal reference and 
configure it for one half the input voltage range.

Note:	Typical propagation delay for the 
	 circuit is 250-350 ns using the typical 
	 on-chip comparator peripheral of a 
	 microcontroller. 

Figure 15-1: Level Shifter
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Example:
•	Vin = 0 - 2V, Vin/2 = 1V, Vdd = 5V
•	R2 = 10k, R3 = 3.9k

TIP #16	Logic: Inverter
When designing embedded control applications, 
there is often the need for an external gate. 
Using the comparator, several simple gates can 
be implemented. This tip shows the use of the 
comparator as an inverter. 
The non-inverting input is biased to the center 
of the input voltage range, typically Vdd/2. The 
inverting input is then used for the circuit input. 
When the input is below Vdd/2, the output is 
high. When the input is above Vdd/2, then the 
output is low. 
Values for R1 and R2 are not critical, though 
they must be equal to set the threshold at 
Vdd/2. 
Some microcontrollers have the option to 
connect the inverting input to an internal voltage 
reference. To use the reference in place of R1 
and R2, move the input to the non-inverting 
input and set the output polarity bit in the 
comparator control register to invert the 
comparator output.

Note:	Typical propagation delay for the 
	 circuit is 250-350 ns using the typical 
	 on-chip comparator peripheral of a 
	 microcontroller. 

Figure 16-1: Inverter
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TIP #5	Writing a PWM Value to the 
	 the CCP Registers With a 
	 Mid-Range PIC® Microcontroller
The two PWM LSb’s are located in the 
CCPCON register of the CCP. This can make 
changing the PWM period frustrating for a 
developer. Example 5-1 through Example 5-3 
show three macros written for the mid-range 
product family that can be used to set the PWM 
period. The first macro takes a 16-bit value and 
uses the 10 MSb’s to set the PWM period. The 
second macro takes a 16-bit value and uses the 
10 LSb’s to set the PWM period. The last macro 
takes 8 bits and sets the PWM period. This 
assumes that the CCP is configured for no more 
than 8 bits.

Example 5-1: Left Justified 16-Bit Macro

pwm_tmp equ xxx ;this variable must be
   ;allocated someplace
setPeriod macro a ;a is 2 SFR’s in
   ;Low:High arrangement
   ;the 10 MSb’s are the
   ;desired PWM value
 RRF a,w ;This macro will
   ;change w
 MOVWF pwm_tmp
 RRF pwm_tmp,w
 ANDLW 0x30
 IORLW 0x0F
 MOVWF CCP1CON
 MOVF a+1,w
 MOVWF CCPR1L

Example 5-2: Right Justified 16-Bit Macro

pwm_tmp equ xxx ;this variable must be
   ;allocated someplace
setPeriod macro a ;a is 2 bytes in
   ;Low:High arrangement
   ;the 10 LSb’s are the
   ;desired PWM value
 SWAPF a,w ;This macro will
   ;change w
 ANDLW 0x30
 IORLW 0x0F
 MOVWF CCP1CON
 RLF a,w
 IORLW 0x0F
 MOVWF pwm_tmp
 RRF pwm_tmp,f
 RRF pwm_tmp,w
 MOVWF CCPR1L

Example 5-3: 8-Bit Macro

pwm_tmp equ xxx ;this variable must be
   ;allocated someplace
setPeriod macro a ;a is 1 SFR
 SWAPF a,w ;This macro will
   ;change w
 ANDLW 0x30
 IORLW 0x0F
 MOVWF CCP1CON
 RRF a,w
 MOVWF pwm_tmp
 RRF pwm_tmp,w
 MOVWF CCPR1L
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NOTES:
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LCD PIC® Microcontroller Tips ‘n Tricks

TIP #3	Resistor Ladder for Low 
	 Current 
Bias voltages are generated by using an 
external resistor ladder. Since the resistor 
ladder is connected between Vdd and Vss, 
there will be current flow through the resistor 
ladder in inverse proportion to the resistance. In 
other words, the higher the resistance, the less 
current will flow through the resistor ladder. If 
we use 10K resistors and Vdd = 5V, the resistor 
ladder will continuously draw 166 mA. That 
is a lot of current for some battery-powered 
applications.

Figure 3-1: Resistor Ladder
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How do we maximize the resistance without 
adversely effecting the quality of the display? 
Some basic circuit analysis helps us determine 
how much we can increase the size of the 
resistors in the ladder.
The LCD module is basically an analog 
multiplexer that alternately connects the LCD 
voltages to the various segment and common 
pins that connect across the LCD pixels. The 
LCD pixels can be modeled as a capacitor. 
Each tap point on the resistor ladder can be 
modeled as a Thevenin equivalent circuit. The 
Thevenin resistance is 0 for Vlcd3 and Vlcd0, 
so we look at the two cases where it is non-
zero, Vlcd2 and Vlcd1.

The circuit can be simplified as shown in Figure 
3-2. Rsw is the resistance of the segment 
multiplex switch; Rcom is the resistance of the 
common multiplex switch.

Figure 3-2: Simplified LCD Circuit

CPIXEL
+
-

RTH RSW

RCOM
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The Thevenin voltage is equal to either 2/3 Vdd, 
or 1/3 Vdd, for the cases where the Thevenin 
resistance is non-zero. The Thevenin resistance 
is equal to the parallel resistance of the upper 
and lower parts of the resistor ladder.

Figure 3-3: LCD Circuit Resistance Estimate

CPIXEL
+
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VTH

RTOTAL = RTH + RSW + RCOM

RTH = (2R * R)/(2R + R)
RTH = 2R2/3R
RTH = 2R/3

RSW = 4.7K
RCOM = 0.4K

As you can see, we can model the drive of a 
single pixel as an RC circuit, where the voltage 
switches from 0V to Vlcd2, for example. For 
LCD PIC microcontrollers, we can estimate the 
resistance of the segment and common 
switching circuits as about 4.7K and 0.4K, 
respectively.
We can see that the time for the voltage 
across the pixel to change from 0 to Vth will 
depend on the capacitance of the pixel and the 
total resistance, of which the resistor ladder 
Thevenin resistance forms the most significant 
part.
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TIP #12	4 x 4 Keypad Interface that 
	 Conserves Pins for LCD 
	 Segment Drivers
A typical digital interface to a 4 x 4 keypad uses 
8 digital I/O pins. But using eight pins as digital 
I/Os can take away from the number of segment 
driver pins available to interface to an LCD.
By using 2 digital I/O pins and 2 analog input 
pins, it is possible to add a 4 x 4 keypad to the 
PIC microcontroller without sacrificing any of its 
LCD segment driver pins.
The schematic for keypad hook-up is shown 
in Figure 12-1. This example uses the 
PIC18F8490, but the technique could be used 
on any of the LCD PIC MCUs.

Figure 12-1: Keypad Hook-up Schematic

Figure 11-1: Common Clock Application

Fortunately, blinking is quite easy to implement. 
There are many ways to implement a blinking 
effect in software. Any regular event can be 
used to update a blink period counter. A blink 
flag can be toggled each time the blink period 
elapses. Each character or display element 
that you want to blink can be assigned a 
corresponding blink enable flag. The flowchart 
for updating the display would look like:

Figure 11-2: Updating Display Flowchart
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The switching frequency of the MCP1630 can 
be adjusted by changing the frequency of the 
clock source. The maximum on-timer of the 
MCP1630 PWM can be adjusted by changing 
the duty cycle of the clock source.
The PIC MCU has several options for providing 
this clock source:
•	The Fosc/4 pin can be enabled. This will 

produce a 50% duty cycle square wave that 
is 1/4th of the oscillator frequency. Tip #4 
provides both example software and 
information on clock dithering using the Fosc/4 
output.

•	For PIC MCUs equipped with a Capture/
Compare/PWM (CCP) or Enhanced CCP 
(ECCP) module, a variable frequency, variable 
duty cycle signal can be created with little 
software overhead. This PWM signal is entirely 
under software control and allows advanced 
features, such as soft-start, to be implemented 
using software.

•	For smaller parts that do not have a CCP 
or ECCP module, a software PWM can be 
created. Tips #1 and #2 use software PWM for 
soft-start and provide software examples. 

TIP #5	Using a PIC® Microcontroller 
	 as a Clock Source for a SMPS 
	 PWM Generator
A PIC MCU can be used as the clock source for 
a PWM generator, such as the MCP1630.

Figure 5-1:	PIC MCU and MCP1630 Example 
	 Boost Application
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The MCP1630 begins its cycle when its clock/
oscillator source transitions from high-to-low, 
causing its PWM output to go high state. The 
PWM pulse can be terminated in any of three 
ways: 
1.	The sensed current in the magnetic device 
	 reaches 1/3 of the error amplifier output.
2.	The voltage at the Feedback (FB) pin is 
	 higher than the reference voltage (Vref).
3.	The clock/oscillator source transitions from 
	 low-to-high.
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Figure 7-2:	Desired and Actual Inductor 
	 Currents
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A PIC MCU has several features that allow it to 
perform power factor correction.
•	The PIC MCUs CCP module can be used to 

generate a PWM signal that, once filtered, can 
be used to generate the sine wave reference 
signal.

•	The PIC Analog-to-Digital (A/D) converter can 
be used to sense VBoost and the reference 
sine wave can be adjusted in software.

•	The interrupt-on-change feature of the PIC 
MCU input pins can be used to allow the PIC 
MCU to synchronize the sine wave reference 
to the line voltage by detecting the zero 
crossings.

•	The on-chip comparators can be used for 
driving the boost MOSFET(s) using the PWM 
sine wave reference as one input and the 
actual inductor current as another.

TIP #7	Using a PIC® Microcontroller 
	 for Power Factor Correction
In AC power systems, the term Power Factor 
(PF) is used to describe the fraction of power 
actually used by a load compared to the total 
apparent power supplied.
Power Factor Correction (PFC) is used to 
increase the efficiency of power delivery by 
maximizing the PF.
The basis for most Active PFC circuits is a boost 
circuit, shown in Figure 7-1.

Figure 7-1:	Typical Power Factor Correction 
	 Boost Supply

PWM
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VBoost

++
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The AC voltage is rectified and boosted to 
voltages as high as 400 Vdc. The unique feature 
of the PFC circuit is that the inductor current is 
regulated to maintain a certain PF. A sine wave 
reference current is generated that is in phase 
with the line voltage. The magnitude of the sine 
wave is inversely proportional to the voltage at 
VBoost. Once the sine wave reference is 
established, the inductor current is regulated to 
follow it, as shown in Figure 7-2.
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Figure 15-2: Flux Directions
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The net flux in the core should be approximately 
zero. Because the flux will always be very near 
zero, the core will be very linear over the small 
operating range.
When Iin = 0, the output of the comparator 
will have an approximate 50% duty cycle. 
As the current moves one direction, the duty 
cycle will increase. As the current moves the 
other direction, the duty cycle will decrease. 
By measuring the duty cycle of the resulting 
comparator output, we can determine the value 
of Iin.
Finally, a Delta-Sigma ADC can be used to 
perform the actual measurement. Features such 
as comparator sync and Timer1 gate allow the 
Delta-Sigma conversion to be taken care of 
entirely in hardware. By taking 65,536 (2^16) 
samples and counting the number of samples 
that the comparator output is low or high, we 
can obtain a 16-bit A/D result.
Example schematic and software are provided 
for the PIC12F683 in both C and Assembly.
For more information on using a PIC MCU to 
implement a Delta-Sigma converter, please 
refer to AN700, “Make a Delta-Sigma Converter 
Using a Microcontroller’s Analog Comparator 
Module” (DS00700), which includes example 
software.

TIP #16	Implementing a PID 
	 Feedback Control in a 
	 PIC12F683-Based SMPS 
	 Design
Simple switching power supplies can be 
controlled digitally using a Proportional Integral 
Derivative (PID) algorithm in place of an analog 
error amplifier and sensing the voltage using the 
Analog-to-Digital Converter (ADC).

Figure 16-1: Simple PID Power Supply
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The design in Figure 16-1 utilizes an 8-pin 
PIC12F683 PIC MCU in a buck topology. 
The PIC12F683 has the basic building blocks 
needed to implement this type of power supply: 
an A/D converter and a CCP module.

Figure 16-2: PID Block Diagram
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TIP #20	Compensating Sensors 
	 Digitally
Many sensors and references tend to drift 
with temperature. For example, the MCP9700 
specification states that its typical is ±0.5°C and 
its max error is ±4°C.

Figure 20-1: MCP9700 Accuracy
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Figure 20-1 shows the accuracy of a 100 
sample lot of MCP9700 temperature sensors. 
Despite the fact that the sensor’s error is 
nonlinear, a PIC microcontroller (MCU) can be 
used to compensate the sensor’s reading.
Polynomials can be fitted to the average error of 
the sensor. Each time a temperature reading is 
received, the PIC MCU can use the measured 
result and the error compensation polynomials 
to determine what the true temperature is.

Figure 20-2: MCP9700 Average Accuracy 
	 After Compensation
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Figure 20-2 shows the average accuracy for the 
100 sample lot of MCP9700 temperature 
sensors after compensation. The average error 
has been decreased over the full temperature 
range.
It is also possible to compensate for error from 
voltage references using this method.
For more information on compensating 
a temperature sensor digitally, refer to 
AN1001, “IC Temperature Sensor Accuracy 
Compensation with a PIC Microcontroller” 
(DS01001).
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TIP #21	Using Output Voltage 
	 Monitoring to Create a 
	 Self-Calibration Function
A PIC microcontroller can be used to create 
a switching power supply controlled by a PID 
loop (as described in Tip #16). This type of 
power supply senses its output voltage digitally, 
compares that voltage to the desired reference 
voltage and makes duty cycle changes 
accordingly. Without calibration, it is sensitive to 
component tolerances.

Figure 21-1: Typical Power Supply Output 
	 Stage 

Switching Circuitry
C1

R2

R1

VOUT

Voltage Sense

The output stage of many power supplies is 
similar to Figure 21-1. R1 and R2 are used to 
set the ratio of the voltage that is sensed and 
compared to the reference.
A simple means of calibrating this type of power 
supply is as follows:
1.	Supply a known reference voltage to the 
	 output of the supply.
2.	Place the supply in Calibration mode and 
	 allow it to sense that reference voltage. 
By providing the supply with the output voltage 
that it is to produce, it can then sense the 
voltage across the resistor divider and store 
the sensed value. Regardless of resistor 
tolerances, the sensed value will always 
correspond to the proper output value for that 
particular supply.
Futhermore, this setup could be combined with 
Tip #20 to calibrate at several temperatures.
This setup could also be used to create a 
programmable power supply by changing the 
supplied reference and the resistor divider for 
voltage feedback.
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TIP #14	3.3V → 5V Analog Gain Block
To scale analog voltage up when going from 
3.3V supply to 5V supply. The 33 kΩ and 17 kΩ 
set the op amp gain so that the full scale range 
is used in both sides. The 11 kΩ resistor limits 
current back to the 3.3V circuitry.

Figure 14-1: Analog Gain Block
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TIP #15	3.3V → 5V Analog 
	 Offset Block
Offsetting an analog voltage for translation 
between 3.3V and 5V.
Shift an analog voltage from 3.3V supply to 5V 
supply. The 147 kΩ and 30.1 kΩ resistors on 
the top right and the +5V supply voltage are 
equivalent to a 0.85V voltage source in series 
with a 25 kΩ resistor. This equivalent 25 kΩ 
resistance, the three 25 kΩ resistors, and the 
op amp form a difference amplifier with a gain 
of 1 V/V. The 0.85V equivalent voltage source 
shifts any signal seen at the input up by the 
same amount; signals centered at 3.3V/2 = 
1.65V will also be centered at 5.0V/2 = 2.50V. 
The top left resistor limits current from the 5V 
circuitry.

Figure 15-1: Analog Offset Block
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