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8-pin Flash PIC®  Microcontroller Tips ‘n Tricks

The comparator and comparator voltage 
reference (CVref) on the PIC12F629/675 are 
ideal for this application.
1. GP1 average voltage = CVref

2. Time base as sampling rate
3. At the end of each time base period:
 - If GP1 > CVref, then GP2 Output Low
 - If GP1 < CVref, then GP2 Input mode
4. Accumulate the GP2 lows over many samples
5. Number of samples determines resolution
6. Number of GP2 lows determine effective duty 
 cycle of Rref

Figure 13-3
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Tip #13.2 Reading a Sensor With Higher 
 Accuracy – Charge Balancing 
 Method
1. Sensor charges a capacitor
2. Reference resistor discharges the capacitor
3. Modulate reference resistor to maintain 
 constant average charge in the capacitor
4. Use comparator to determine modulation
To improve resolution beyond 10 or 12 bits, 
a technique called “Charge Balancing” can 
be used. The basic concept is for the MCU 
to maintain a constant voltage on a capacitor 
by either allowing the charge to build through 
a sensor or discharge through a reference 
resistor. A timer is used to sample the 
capacitor voltage on regular intervals until a 
predetermined number of samples are counted. 
By counting the number of times the capacitor 
voltage is over an arbitrary threshold, the sensor 
voltage is determined.
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8-pin Flash PIC®  Microcontroller Tips ‘n Tricks

TIP #14 Delta-Sigma Converter
The charge on the capacitor on GP1 is 
maintained about equal to the CVref by the 
MCU monitoring Cout and switching GP2 from 
Input mode or output low appropriately. A timer 
is used to sample the Cout bit on a periodic 
basis. Each time GP2 is driven low, a counter is 
incremented. This counter value corresponds to 
the input voltage.
To minimize the affects of external component 
tolerances, temperature, etc., the circuit can be 
calibrated. Apply a known voltage to the input 
and allow the microcontroller to count samples 
until the expected result is calculated. By taking 
the same number of samples for subsequent 
measurements, they become calibrated 
measurements.

Figure 14-1
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1. GP1 average voltage = CVref

2. Time base as sampling rate
3. At the end of each time base period:
 - If GP1 > CVref, then GP2 Output Low
 - If GP1 < CVref, then GP2 Output High
4. Accumulate the GP2 lows over many 
 samples
5. Number of samples determines resolution

Tip #13.3 Reading a Sensor With Higher 
 Accuracy – A/D Method
NTC (Negative Temperature Coefficient) 
sensors have a non-linear response to 
temperature changes. As the temperature 
drops, the amount the resistance changes 
becomes less and less. Such sensors have 
a limited useful range because the resolution 
becomes smaller than the A/D resolution as the 
temperature drops. By changing the voltage 
divider of the Rsen, the temperature range can 
be expanded.
To select the higher temperature range, GP1 
outputs ‘1’ and GP2 is set as an input. For 
the lower range, GP2 outputs ‘1’ and GP1 
is configured as an input. The lower range 
will increase the amount the sensor voltage 
changes as the temperature drops to allow a 
larger usable sensor range.

Summary:
High range: GP1 output ‘1’ and GP2 input
Low range: GP1 input and GP2 output ‘1’
1. 10K and 100K resistors are used to set the 
 range
2. Vref for A/D = Vdd

3. Rth calculation is independent of Vdd

4. Count = Rsen/(Rsen+Rref) x 255
5. Don’t forget to allow acquisition time for the 
 A/D

Figure 13-4
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8-pin Flash PIC®  Microcontroller Tips ‘n Tricks

TIP #18 Swap File Register with W
Example 18-1

SWAPWF MACRO  REG
XORWF  REG,F
XORWF  REG,W
XORWF  REG,F
ENDM

The following macro swaps the contents of W 
and REG without using a second register.
Needs: 0 TEMP registers 
 3 Instructions 
 3 TCY
An efficient way of swapping the contents of a 
register with the working register is to use three 
XORWF instructions. It requires no temporary 
registers and three instructions. Here’s an 
example:
      W REG Instruction
10101100 01011100 XORWF REG,F
10101100 11110000 XORWF REG,W
01011100 11110000 XORWF REG,F
01011100 10101100 Result

TIP #19 Bit Shifting Using Carry Bit
Rotate a byte through carry without using RAM 
variable for loop count:
• Easily adapted to serial interface transmit 
 routines.
• Carry bit is cleared (except last cycle) and the 
 cycle repeats until the zero bit sets indicating 
 the end.

Example 19-1

bsf
rlf
bcf
btfsc
bsf
bcf
rlf
movf
btfss
goto

LIST P=PIC12f629
INCLUDE P12f629.INC
buffer

 STATUS,C
 buffer,f
 GPIO,Dout
 STATUS,C
 GPIO,Dout
 STATUS,C
 buffer,f
 buffer,f
 STATUS,Z
 Send_Loop

equ   0x20

 ;Set 'end of loop' flag
 ;Place first bit into C
 ;precondition output
 ;Check data 0 or 1 ?

 ;Clear data in C
 ;Place next bit into C
 ;Force Z bit
 ;Exit?
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PIC® Microcontroller Low Power Tips ‘n Tricks

TIP #9 Two-Speed Start-Up
Two-speed startup is a useful feature on some 
nanoWatt and all nanoWatt XLP devices which 
helps reduce power consumption by allowing 
the device to wake up and return to sleep 
faster. Using the internal oscillator, the user can 
execute code while waiting for the Oscillator 
Start-up (OST) timer to expire (LP, XT or HS 
modes). This feature (called “Two-Speed Start-
up”) is enabled using the IESO configuration 
bit. A Two-Speed Start-up will clock the device 
from an internal RC oscillator until the OST has 
expired. Switching to a faster internal oscillator 
frequency during start-up is also possible using 
the OSCCON register. The example below 
shows several stages on how this can be 
achieved. The number of frequency changes 
is dependent upon the designer’s discretion. 
Assume a 20 MHz crystal (HS Mode) in the 
PIC16F example below.

Example:
Tcy

(Instruction Time) Instruction
 ORG 0x05 ;Reset vector

125 ms @ 32 kHz BSF STATUS,RP0 ;bank1
125 ms @ 32 kHz BSF OSCCON,IRCF2 ;switch to 1 MHz

4 ms @ 1 MHz BSF OSCCON,IRCF1 ;switch to 4 MHz

1 ms @ 4 MHz  BSF OSCCON,IRCF0 ;switch to 8 MHz

500 ns application code
500 ns application code
… ….
.. …
(eventually OST expires, 20 MHz crystal clocks the device)

200 ns application code
… ….
.. …

TIP #10 Clock Switching
Some nanoWatt devices and all nanoWatt XLP 
devices have multiple internal and external 
clock sources, as well as logic to allow switching 
between the available clock sources as the 
main system clock. This allows for significant 
power savings by choosing different clocks 
for different portions of code. For example, an 
application can use the slower internal oscillator 
when executing non-critical code and then 
switch to a fast high-accuracy oscillator for time 
or frequency sensitive code. Clock switching 
allows much more flexible applications than 
being stuck with a single clock source. Clock 
switching sequences vary by device family, so 
refer to device data sheets or Family Reference 
Manuals for the specific clock switching 
sequences.

TIP #11 Use Internal RC Oscillators
If frequency precision better than ±5% is not 
required, it is best to utilize the internal RC 
oscillators inside all nanoWatt and nanoWatt 
XLP devices. The internal RC oscillators have 
better frequency stability than external RC 
oscillators, and consume less power than 
external crystal oscillators. Additionally, the 
internal clock can be configured for many 
frequency ranges using the internal PLL module 
to increase frequency and the postscaler to 
reduce it. All these options can be configured in 
firmware.
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TIP #14 Use NOP and Idle Mode
When waiting on a blocking loop (e.g. waiting 
for an interrupt), instead put the device into 
Idle mode to disable the CPU. The peripheral 
interrupt will wake up the device.  Idle mode 
consumes much less current than constantly 
reading RAM and jumping back. If the CPU 
cannot be disabled because the loop required 
some calculations, such as incrementing a 
counter, instead of doing a very tight loop 
that loops many times, add NOPs into the 
loop. See the code example below.  A NOP 
requires less current to execute than reading 
RAM or branching operations, so current can 
be reduced. The overall loop count can be 
adjusted to account for the extra instructions for 
the NOPs.

Example:
Replace: 

 while(!_T1IF); 

with Idle mode:  

 IEC0bits.T1IE = 1;    
 Idle();

and replace:

 while(!_T1IF){

      i++;

 }

with extra NOP instructions:

 while(!_T1IF){

      i++;

      Nop();

      Nop();

      Nop();

      Nop();

      Nop();

 }

TIP #15 Peripheral Module Disable 
(PMD) Bits
PIC24, dsPIC DSCs, and PIC32 devices 
have PMD bits that can be used to disable 
peripherals that will not be used in the 
application. Setting these bits disconnects 
all power to the module as well as SFRs for 
the module. Because power is completely 
removed, the PMD bits offer additional power 
savings over disabling the module by turning 
off the module’s enable bit. These bits can be 
dynamically changed so that modules which are 
only used periodically can be disabled for the 
remainder of the application. The PMD bits are 
most effective at high clock speeds and when 
operating at full speed allowing the average 
power consumption to be significantly reduced.
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PIC® Microcontroller CCP and ECCP Tips ‘n Tricks

TIP #3 Measuring Pulse Width
Figure 3-1: Pulse Width

W
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1. Configure control bits CCPxM3:CCPxM0 
 (CCPxCON<3:0>) to capture every rising 
 edge of the waveform.
2. Configure Timer1 prescaler so that Timer1 
 will run Wmax without overflowing.
3. Enable the CCP interrupt (CCPxIE bit).
4. When CCP interrupt occurs, save the 
 captured timer value (t1) and reconfigure 
 control bits to capture every falling edge.
5. When CCP interrupt occurs again, subtract 
 saved value (t1) from current captured value 
 (t2) – this result is the pulse width (W).
6. Reconfigure control bits to capture the next 
 rising edge and start process all over again 
 (repeat steps 3 through 6).

TIP #4 Measuring Duty Cycle
Figure 4-1: Duty Cycle
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The duty cycle of a waveform is the ratio 
between the width of a pulse (W) and the 
period (T). Acceleration sensors, for example, 
vary the duty cycle of their outputs based on 
the acceleration acting on a system. The CCP 
module, configured in Capture mode, can be 
used to measure the duty cycle of these types 
of sensors. Here’s how:
1. Configure control bits CCPxM3:CCPxM0 
 (CCPxCON<3:0>) to capture every rising 
 edge of the waveform.
2. Configure Timer1 prescaler so that Timer1 
 will run Tmax(1) without overflowing.
3. Enable the CCP interrupt (CCPxIE bit).
4. When CCP interrupt occurs, save the 
 captured timer value (t1) and reconfigure 
 control bits to capture every falling edge.

Note 1: Tmax is the maximum pulse period 
 that will occur.

5. When the CCP interrupt occurs again, 
 subtract saved value (t1) from current 
 captured value (t2) – this result is the pulse 
 width (W).
6. Reconfigure control bits to capture the next 
 rising edge.
7. When the CCP interrupt occurs, subtract 
 saved value (t1) from the current captured 
 value (t3) – this is the period (T) of the 
 waveform.
8. Divide T by W – this result is the Duty Cycle.
9. Repeat steps 4 through 8.
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TIP #5 Measuring RPM Using an 
 Encoder
Revolutions Per Minute (RPM), or how fast 
something turns, can be sensed in a variety of 
ways. Two of the most common sensors used 
to determine RPM are optical encoders and 
Hall effect sensors. Optical encoders detect the 
presence of light shining through a slotted wheel 
mounted to a turning shaft (see Figure 5-1.) 
As the shaft turns, the slots in the wheel pass 
by the eye of the optical encoder. Typically, an 
infrared source on the other side of the wheel 
emits light that is seen by the optical encoder 
through slots in the wheel. Hall effect sensors 
work by sensing the position of the magnets in 
an electric motor, or by sensing a permanent 
magnet mounted to a rotating object (see Figure 
5-2). These sensors output one or more pulses 
per revolution (depending on the sensor). 

Figure 5-1: Optical Encoder

Figure 5-2: Hall Effect Sensor
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In Figure 5-3 and Figure 5-4, the waveform 
is high when light is passing through a slot in 
the encoder wheel and shining on the optical 
sensor. In the case of a Hall effect sensor, the 
high corresponds to the time that the magnet is 
in front of the sensor. These figures show the 
difference in the waveforms for varying RPMs. 
Notice that as RPM increases, the period (T) 
and pulse width (W) becomes smaller. Both 
period and pulse width are proportional to RPM. 
However, since the period is the greater of the 
two intervals, it is good practice to measure the 
period so that the RPM reading from the sensor 
will have the best resolution. See Tip #1 for 
measuring period. The technique for measuring 
period with averaging described in Tip #2 is 
useful for measuring high RPMs.

Figure 5-3: Low RPM

Figure 5-4: High RPM 
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TIP #8 Modulation Formats
The CCP module, configured in Compare mode, 
can be used to generate a variety of modulation 
formats. The following figures show four 
commonly used modulation formats:

Figure 8-1: Pulse-width Modulation

Figure 8-2: Manchester
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Figure 8-3: Pulse Position Modulation
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Figure 8-4: Variable Pulse-width Modulation

TBP

TE TE

TBP

Logic
‘0’

Logic
‘1’

Transition Low
to High

Transition High
to Low

TBP

TE TE

TBP

The figures show what a logic ‘0’ or a logic 
‘1’ looks like for each modulation format. 
A transmission typically resembles an 
asynchronous serial transmission consisting of 
a Start bit, followed by 8 data bits, and a Stop 
bit.
Te is the basic timing element in each 
modulation format and will vary based on the 
desired baud rate.
Trigger Special Event mode can be used to 
generate Te, (the basic timing element). When 
the CCPx interrupt is generated, code in the ISR 
routine would implement the desired modulation 
format (additional modulation formats are also 
possible).



© 2009 Microchip Technology Inc.Page 3-14-DS01146B
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TIP #13 Deciding on PWM Frequency
In general, PWM frequency is application 
dependent although two general rules-of-thumb 
hold regarding frequency in all applications. 
They are:
1. As frequency increases, so does current 
 requirement due to switching losses.
2. Capacitance and inductance of the load tend 
 to limit the frequency response of a circuit.
In low-power applications, it is a good idea 
to use the minimum frequency possible to 
accomplish a task in order to limit switching 
losses. In circuits where capacitance and/or 
inductance are a factor, the PWM frequency 
should be chosen based on an analysis of the 
circuit. 

Motor Control
PWM is used extensively in motor control 
due to the efficiency of switched drive 
systems as opposed to linear drives. An 
important consideration when choosing PWM 
frequency for a motor control application is 
the responsiveness of the motor to changes 
in PWM duty cycle. A motor will have a faster 
response to changes in duty cycle at higher 
frequencies. Another important consideration 
is the sound generated by the motor. Brushed 
DC motors will make an annoying whine 
when driven at frequencies within the audible 
frequency range (20 Hz-4 kHz.) In order to 
eliminate this whine, drive brushed DC motors 
at frequencies greater than 4 kHz. (Humans 
can hear frequencies at upwards of 20 kHz, 
however, the mechanics of the motor winding 
will typically attenuate motor whine above 
4 kHz).

LED and Light Bulbs
PWM is also used in LED and light dimmer 
applications. Flicker may be noticeable with 
rates below 50 Hz. Therefore, it is generally a 
good rule to pulse-width modulate LEDs and 
light bulbs at 100 Hz or higher.

TIP #14 Unidirectional Brushed DC 
 Motor Control Using CCP
Figure 14-1: Brushed DC (BDC) Motor 
 Control Circuit
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Figure 14-1 shows a unidirectional speed 
controller circuit for a brushed DC motor. Motor 
speed is proportional to the duty cycle of the 
PWM output on the CCP1 pin. The following 
steps show how to configure the PIC16F628 to 
generate a 20 kHz PWM with 50% duty cycle. 
The microcontroller is running on a 20 MHz 
crystal.
Step #1: Choose Timer2 Prescaler
a) Fpwm = Fosc/((PR2+1)*4*prescaler) = 
 19531 Hz for PR2 = 255 and prescaler of 1
b) This frequency is lower than 20 kHz, 
 therefore a prescaler of 1 is adequate.
Step #2: Calculate PR2
PR2 = Fosc/(Fpwm*4*prescaler) – 1 = 249
Step #3: Determine CCPR1L and 
 CCP1CON<5:4>
a) CCPR1L:CCP1CON<5:4> = 
 DutyCycle*0x3FF = 0x1FF
b) CCPR1L = 0x1FF >> 2 = 0x7F, 
 CCP1CON<5:4> = 3
Step #4: Configure CCP1CON
The CCP module is configured in PWM mode 
with the Least Significant bits of the duty cycle 
set, therefore, CCP1CON = ‘b001111000’.
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TIP #18 Varying LED Intensity
The intensity of an LED can be varied by 
pulse-width modulating the voltage across 
the LED. A microcontroller typically drives an 
LED with the circuit shown in Figure 18-1. The 
purpose of R1 is to limit the LED current so 
that the LED runs in its specified current and 
voltage range, typically around 1.4 volts at 
20 mA. Modulating the LED drive pin on the 
microcontroller will vary the average current 
seen by the LED and thus its intensity. As 
mentioned in Tip #13, LEDs and other light 
sources should be modulated at no less than 
100 Hz in order to prevent noticeable flicker.

Figure 18-1: LED Drive

PIC16F684

CCP1
R1

270Ω

The CCP module, configured in PWM mode, 
is ideal for varying the intensity of an LED. 
Adjustments to the intensity of the LED are 
made by simply varying the duty cycle of 
the PWM signal driving the LED. This is 
accomplished by varying the CCPRxL register 
between 0 and 0xFF. 

TIP #19 Generating X-10® Carrier 
 Frequency
X-10 uses a piggybacked 120 kHz square wave 
(at 50% duty cycle) to transmit information over 
60 Hz power lines. The CCP module, running 
in PWM mode, can accurately create the 120 
kHz square wave, referred to as the carrier 
frequency. Figure 19-1 shows how the 120 
kHz carrier frequency is piggybacked onto the 
sinusoidal 60 Hz power waveform.

Figure 19-1: Carrier Frequency With 
 Sinusoidal Waveform
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X-10 specifies the carrier frequency at 120 kHz 
(± 2 kHz). The system oscillator in Figure 18-1 
is chosen to be 7.680 MHz, so that the CCP 
module can generate precisely 120 kHz. X-10 
requires that the carrier frequency be turned on 
and off at different points on the 60 Hz power 
waveform. This is accomplished by configuring 
the TRIS register for the CCP1 pin as either 
an input (carrier frequency off) or an output 
(carrier frequency on). Refer to Application 
Note AN236 “X-10 Home Automation Using the 
PIC16F877A”  for more details on X-10 and 
for source code for setting up the CCP module 
appropriately.
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When the voltage across C1 exceeds the high 
threshold voltage, the output of the comparator 
goes low, C1 is discharged to just above the 
0.7V limit, the non-inverting input is pulled below 
0.7V, and the circuit is reset for the next pulse 
input, waiting for the next trigger input.

Figure 7-1: One-Shot Circuit
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To design the one-shot, first create the 
hysteresis feedback using the techniques from 
Tip #3. Remember to set the low threshold 
below 0.7V. Next, choose values for R2 and C1 
using Equation 7-1.

Equation 7-1

D1 can be any low voltage switching diode. R1 
should be 1% to 2% of R2 and C2 should be 
between 100 and 220 pF.

Example:
• Vdd = 5V, Vth = 3.0V, Vtl = 2.5V
• From Tip #3, R4 = 1k, R5 = 1.5k and R3 = 12k
• Tpulse = Ims, C1 = .1 mF and R2 = 15k
• D1 is a 1N4148, R1 = 220W and C2 = 150 pF

TIP #7  One-Shot
When dealing with short duration signals or 
glitches, it is often convenient to stretch out the 
event using a mono-stable, multi-vibrator or 
one-shot. Whenever the input pulses, the 
one-shot fires holding its output for a preset 
period of time. This stretches the short 
trigger input into a long output which the 
microcontroller can capture.
The circuit is designed with two feedback paths 
around a comparator. The first is a positive 
hysteresis feedback which sets a two level 
threshold, Vhi and Vlo, based on the state of 
the comparator output. The second feedback 
path is an RC time circuit.
The one-shot circuit presented in Figure 7-1 is 
triggered by a low-high transition on its input 
and generates a high output pulse. Using 
the component values from the example, the 
circuit’s operation is as follows.
Prior to triggering, C1 will have charged to 
a voltage slightly above 0.7V due to resistor 
R2 and D1 (R1 << R2 and will have only a 
minimal effect on the voltage). The comparator 
output will be low, holding the non-inverting 
input slightly below 0.7V due to the hysteresis 
feedback through R3, R4 and R5 (the hysteresis 
lower limit is designed to be less than 0.7V). 
With the non-inverting input held low, C2 will 
charge up to the difference between the 
circuit input and the voltage present at the 
non-inverting input.
When the circuit input is pulsed high, the 
voltage present at the non-inverting input is 
pulled above 0.7V due to the charge in C2. 
This causes the output of the comparator to go 
high, the hysteresis voltage at the non-inverting 
input goes to the high threshold voltage, and C1 
begins charging through R2. 

Tpulse  =    R2 * C1 * In(Vth/vtl)  
                4
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To design a multi-vibrator, first design the 
hysteresis feedback path using the procedure in 
Tip #3. Be careful to choose threshold voltages 
(Vth and Vtl) that are evenly spaced within the 
common mode range of the comparator and 
centered on Vdd/2. Then use Vdd and Vtl to 
calculate values for RT and CT that will result in 
the desired oscillation frequency Fosc. Equation 
8-1 defines the relationship between RT, CT, 
Vth, Vtl and Fosc.

Equation 8-1

Example:
• Vdd = 5V, Vth = 3.333, Vtl = 1.666V
• R1, to R2, to R3 = 10k
• Rt = 15 kHz, Ct = .1 mF for Fosc = 480 Hz

TIP #8 Multi-Vibrator (Square Wave 
 Output)
A multi-vibrator is an oscillator designed around 
a voltage comparator or operational amplifier 
(see Figure 8-1). Resistors R1 through R3 
form a hysteresis feedback path from the 
output to the non-inverting input. Resistor RT 
and capacitor CT form a time delay network 
between the output and the inverting input. At 
the start of the cycle, CT is discharged holding 
the non-inverting input at ground, forcing 
the output high. A high output forces the 
non-inverting input to the high threshold voltage 
(see Tip #3) and charges CT through RT. 
When the voltage across CT reaches the high 
threshold voltage, the output is forced low. A low 
output drops the non-inverting input to the low 
threshold voltage and discharges CT through 
RT. When the voltage across CT reaches the 
low threshold voltage, the output is forced high 
and the cycle starts over.

Figure 8-1: Multi-Vibrator Circuit
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Fosc  =                      1                      
                2 * RT * CT * In(Vth/Vtl)
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Once the gain has been determined, values for 
R3 and C2 can be determined. R3 and C2 form 
a low-pass filter on the output of the amplifier. 
The corner frequency of the low pass should 
be 2 to 3 times the maximum frequency of the 
signal being amplified to prevent attenuation 
of the signal, and R3 should be kept small to 
minimize the output impedance of the amplifier. 
Equation 12-2 shows the relationship between 
R3, C2 and the corner frequency of the low 
pass filter.

Equation 12-2 

A value for C1 can then be determined using 
Equation 12-3. The corner frequency should be 
the same as Equation 12-3.

Equation 12-3 

To design an inverting amp, choose resistors R1 
and R2 using the Gain formula for an op amp 
inverting amplifier (see Equation 12-4).

Equation 12-4 

Then choose values for the resistor divider 
formed by R4 and R5. Finally choose C1 and 
C2 as shown in the non-inverting amplifier 
design.

Example:
• For C2 will set the corner F
• Gain = 6.156, R1 = R3 = 19.8k
• R2 = 3.84k, C1 = .047 mF, Fcorner = 171 Hz
• C2 = .22 mF

TIP #12 Making an Op Amp 
 Out of a Comparator
When interfacing to a sensor, some gain is 
typically required to match the full range of the 
sensor to the full range of an ADC. Usually this 
is done with an operational amplifier, however, 
in cost sensitive applications, an additional 
active component may exceed the budget. 
This tip shows how an on-chip comparator can 
be used as an op amp like gain stage for slow 
sensor signals. Both an inverting and 
non-inverting topology are shown (see Figure 
12-1 and Figure 12-2).

Figure 12-1: Non-Inverting Amplifier
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Figure 12-2: Inverting Amplifier
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To design a non-inverting amplifier, choose 
resistors R1 and R2 using the Gain formula for 
an op amp non-inverting amplifier (see Equation 
12-1).

Equation 12-1

Gain  =    R1 + R2  
                    R2

Fcorner  =              1            
                    2 * W * R3 * C2

Fcorner  =                    1                 
                    2 * W * (R1 II R2) * C2

Gain  =     R1   
                 R2
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TIP #13 PWM High-Current Driver
This tip combines a comparator with a MOSFET 
transistor and an inductor to create a switch mode 
high-current driver circuit. (See Figure 13-1).
The operation of the circuit begins with the 
MOSFET off and no current flowing in the 
inductor and load. With the sense voltage across 
R1 equal to zero and a DC voltage present at 
the drive level input, the output of the comparator 
goes low. The low output turns on the MOSFET 
and a ramping current builds through the 
MOSFET, inductor, load and R1.

Figure 13-1: High Current Driver
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When the current ramps high enough to generate 
a voltage across R1 equal to the drive level, the 
comparator output goes high turning off the 
MOSFET. The voltage at the junction of the 
MOSFET and the inductor then drops until D1 
forward biases. The current continues ramping 
down from its peak level toward zero. When the 
voltage across the sense resistor R1 drops below 
the drive level, the comparator output goes low, 
the MOSFET turns on, and the cycle starts over.
R2 and C1 form a time delay network that limits 
the switching speed of the driver and causes it 
to slightly overshoot and undershoot the drive 
level when operating. The limit is necessary to 
keep the switching speed low, so the MOSFET 
switches efficiently. If R2 and C1 were not 
present, the system would run at a speed set 
by the comparator propagation delay and the 
switching speed of the MOSFET. At that speed, 
the switching time of the MOSFET would be a 
significant portion of the switching time and the 
switching efficiency of the MOSFET would be too 
low.

Figure 13-1: Current Through the Load
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To design a PWM high current driver, first 
determine a switching speed (Fswx) that is 
appropriate for the system. Next, choose a 
MOSFET and D1 capable of handling the load 
current requirements. Then choose values for 
R2 and C1 using Equation 13-1.

Equation 13-1 

Next determine the maximum ripple current that 
the load will tolerate, and calculate the required 
inductance value for L1 using Equation 13-2.

Equation 13-2 

Finally, choose a value for R1 that will produce 
a feedback ripple voltage of 100 mV for the 
maximum ripple current Iripple.

Example:
• Fswx = 10 kHz, R2 = 22k, C1 = .01 mF
• Iripple = 100 mA, Vdd = 12V, Vl = 3.5V
• L = 4.25 mH

Fswx  =          2        
                 R2 * C1

L  =        Vdd - Vload       
          Iripple * Fswx * 2
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TIP #17 Logic: AND/NAND Gate
This tip shows the use of the comparator to 
implement an AND gate and its complement 
the NAND gate (see Figure 17-2). Resistors R1 
and R2 drive the non-inverting input with 2/3 the 
supply voltage. Resistors R3 and R4 average 
the voltage of input A and B at the inverting 
input. If either A or B is low, the average voltage 
will be one half Vdd and the output of the 
comparator remains low. The output will go 
high only if both inputs A and B are high, which 
raises the input to the inverting input above 2/3 
Vdd. 
The operation of the NAND gate is identical 
to the AND gate, except that the output is 
inverted due to the swap of the inverting and 
non-inverting inputs.

Note: Typical propagation delay for the 
 circuit is 250-350 ns using the typical 
 on-chip comparator peripheral of a 
 microcontroller. Delay measurements 
 were made with 10k resistance 
 values. 

While the circuit is fairly simple, there are a few 
requirements for correct operation:
1. The inputs A and B must drive from ground 
 to Vdd for the circuit to operate properly.
2. The combination of R1 and R2 will draw 
 current constantly, so they must be kept 
 large to minimize current draw.
3. All resistances on the inverting input react 
 with the input capacitance of the comparator. 
 So the speed of the gate will be affected by 
 the source resistance of A and B, as well as, 
 the size of resistors R3 and R4.
4. Resistor R2 must be 2 x R1.
5. Resistor R3 must be equal to R4.

Figure 17-1: AND Gate
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Figure 17-2: NAND Gate
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Example:
• Vdd = 5V, R3 = R4 = 10k
• R1 = 5.1k, R2 = 10k
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TIPS ‘N TRICKS INTRODUCTION
Every motor control circuit can be divided 
into the drive electronics and the controlling 
software. These two pieces can be fairly simple 
or extremely complicated depending upon 
the motor type, the system requirements and 
the hardware/software complexity trade-off. 
Generally, higher performance systems require 
more complicated hardware. This booklet 
describes many basic circuits and software 
building blocks commonly used to control 
motors. The booklet also provides references 
to Microchip application notes that describe 
many motor control concepts in more detail. The 
application notes can be found on the Microchip 
web site at www.microchip.com. 
Additional motor control design information can 
be found at the Motor Control Design Center 
(www.microchip.com/motor).

CHAPTER 5
DC Motor Control

Tips ‘n Tricks
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Figure 7-2: Optical Speed/Direction/Position 
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Quadrature sensing can easily be accomplished 
in software, but there is generally an upper limit 
to the RPM. By using a few gates, the sensing 
can be done partially in hardware and partially 
in software. The new PIC18FXX31 and dsPIC 
16-bit Digital Signal Controller families include 
an encoder interface that allows MUCH higher 
RPM motors to be measured with an excellent 
degree of accuracy.

Older Methods of Motor Sensing
Resolvers and analog tachometers are two 
older technologies for motor position/velocity 
sensing. An analog tachometer is simply an 
electric generator with a linear output over 
a	specified	range	of	RPM’s.	By	knowing	the	
output characteristics, the RPM can be known 
by simply measuring the voltage across the 
tachometer terminals.
A resolver is a pair of coils that are excited 
by an external AC signal. The two coils are 
at 90° to each other so they pick up the AC 
signal at different strengths, depending on 
their orientation. The result is a sine or cosine 
output related to the angle of the resolver in 
reference to the AC signal. Inverse cosine/sine 
will produce the angle of the sensor. This type 
of sensor can be very accurate and is still used 
where absolute position must be known.
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TIP #4 Creating a Dithered PWM 
 Clock
In order to meet emissions requirements as 
mandated by the FCC and other regulatory 
organizations, the switching frequency of a 
power supply can be varied. Switching at a fixed 
frequency produces energy at that frequency. 
By varying the switching frequency, the energy 
is spread out over a wider range and the 
resulting magnitude of the emitted energy at 
each individual frequency is lower.
The PIC10F200 has an internal 4 MHz 
oscillator. A scaled version of oscillator can be 
output on a pin (Fosc/4). The scaled output 
is 1/4 of the oscillator frequency (1 MHz) and 
will always have a 50% duty cycle. Figure 4-1 
shows a spectrum analyzer shot of the output of 
the Fosc/4 output. 

Figure 4-1: Spectrum of Clock Output 
 Before Dithering

10 dB/REF 20 dBm 

Center 1.0 MHz Span 1.8 MHz

The PIC10F200 provides an Oscillator 
Calibration (OSCCAL) register that is used 
to calibrate the frequency of the oscillator. By 
varying the value of the OSCCAL setting, the 
frequency of the clock output can be varied. 
A pseudo-random sequence was used to vary 
the OSCCAL setting, allowing frequencies 
from approximately 600 kHz to 1.2 MHz. The 
resulting spectrum is shown in Figure 4-2.

Figure 4-2: Spectrum of Clock Output 
 After Dithering

10 dB/REF 20 dBm 

Center 1.0 MHz Span 1.8 MHz

By spreading the energy over a wider range of 
frequencies, a drop of more than 20 dB is 
achieved.
Example software is provided for the 
PIC10F200 that performs the pseudo-random 
sequence generation and loads the OSCCAL 
register.
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The A/D converter is used to sense the output 
voltage for this particular application, Vdd is 
used as the reference to the A/D converter. If 
desired, a more accurate reference could be 
used. The output voltage is subtracted from the 
desired value, creating an error value. 
This error becomes the input to the PID routine. 
The PID routine uses the error voltage to 
determine the appropriate duty cycle for the 
output drive. The PID constants are weighted 
so that the main portion of the control is 
proportional and integral. The differential 
component is not essential to this system and is 
not used. Furthermore, the PID constants could 
be optimized if a particular type of transient 
response was desired, or if a predictable 
transient load was to be connected. 
Finally, the CCP module is used to create a 
PWM signal at the chosen frequency with the 
proper duty cycle.
Example software is provided for the 
PIC12F683 using the schematic in Figure 16-1.
The following application notes are related to 
PID control algorithms and all include example 
software:
• AN258, “Low Cost USB Microcontroller 

Programmer The Building of the PICkit® 1 
Flash Starter Kit” (DS00258)

• AN937, “Implementing a PID Controller Using 
a PIC18 MCU” (DS00937)

• AN964, “Software PID Control of an Inverted 
Pendulum Using the PIC16F684” (DS00937)

TIP #17 An Error Detection and 
 Restart Controller
An error detection and restart controller can 
be created by combining Tip #18 and Tip #19. 
The controller uses the PIC microcontroller 
(MCU) Analog-to-Digital Converter (ADC) for 
making voltage and current measurements. 
Input voltage, input current, output voltage, 
output current, temperature and more can all 
be measured using the A/D converter. The 
on-board comparators are used for monitoring 
faster signals, such as output current, 
ensuring that they do not exceed maximum 
allowable levels. Many PIC MCUs have 
internal programmable comparator references, 
simplifying the circuit.

Figure 17-1: Block Diagram
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Using a PIC MCU as a controller allows 
for a greater level of intelligence in system 
monitoring. Rather than a single event causing 
a shutdown, a combination of events can 
cause a shutdown. A certain number of events 
in a certain time frame or possibly a certain 
sequence of events could be responsible for a 
shutdown.
The PIC MCU has the ability to restart the 
supply based on the shutdown event. Some 
events (such as overcurrent) may call for 
immediate restart, while other events (such as 
overtemperature) may require a delay before 
restarting, perhaps monitoring other parameters 
and using those to determine when to restart. 
It is also possible to build this type of error 
detection and restart controller into many of the 
tips listed within this guide. 
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TIP	#17	5V	→	3V	Analog	Limiter
When	moving	a	5V	signal	down	to	a	3.3V	
system, it is sometimes possible to use the 
attenuation	as	gain.	If	the	desired	signal	is	less	
than 5V, then attaching that signal to a 3.3V 
ADC will result in larger conversion values. The 
danger is when the signal runs to the 5V rail. 
A	method	is	therefore	required	to	control	the	
out-of-range	voltages	while	leaving	the	in-range	
voltages	unaffected.	Three	ways	to	accomplish	
this will be discussed here.
1. Using a diode to clamp the overvoltage to the 
 3.3V supply.
2. Using a Zener diode to clamp the voltage to 
 any desired limit.
3.	Using	an	op	amp	with	a	diode	to	perform	a 
 precision clamp.
The	simplest	method	to	perform	the	overvoltage	
clamp	is	identical	to	the	simple	method	of	
interfacing	a	5V	digital	signal	to	the	3.3V	digital	
signals. A resistor and a diode are used to direct 
excess	current	into	the	3.3V	supply.	The	resistor	
must be sized to protect the diode and the 3.3V 
supply	while	not	adversely	affecting	the	analog	
performance.	If	the	impedance	of	the	3.3V	
supply	is	too	low,	then	this	type	of	clamp	can	
cause	the	3.3V	supply	voltage	to	increase.	Even	
if	the	3.3V	supply	has	a	good	low-impedance,	
this	type	of	clamp	will	allow	the	input	signal	to	
add noise to the 3.3V supply when the diode is 
conducting	and	if	the	frequency	is	high	enough,	
even when the diode is not conducting due to 
the parasitic capacitance across the diode.

Figure 17-1: Diode Clamp

VOUT = 3.3V + VF if VIN > 3.3V + VF
VOUT = VIN if VIN ≤ 3.3V + VF
VF is the forward drop of the diode.

+3.3V

VIN VOUT

R1

D1

To	prevent	the	input	signal	from	affecting	the	
supply	or	to	make	the	input	more	robust	to	
larger transients, a variation is to use a Zener 
diode.	The	Zener	diode	is	slower	than	the	fast	
signal	diode	typically	used	in	the	first	circuit.	
However, they are generally more robust and do 
not	rely	on	the	characteristics	of	the	power	
supply	to	perform	the	clamping.	The	amount	of	
clamping they provide is dependant upon the 
current through the diode. This is set by the 
value	of	R1.	R1	may	not	be	required	if	the	
output	impedance	of	the	Vin source is 
sufficiently	large.

Figure 17-2: Zener Clamp

VOUT = VBR if VIN > VBR
VOUT = VIN if VIN ≤ VBR
VBR is the reverse breakdown voltage of
the Zener diode.
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