

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active			
Core Processor	PIC			
Core Size	8-Bit			
Speed	4MHz			
Connectivity	I²C, SPI, UART/USART			
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT			
Number of I/O	22			
Program Memory Size	7KB (4K x 14)			
Program Memory Type	OTP			
EEPROM Size	-			
RAM Size	192 x 8			
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V			
Data Converters	-			
Oscillator Type	External			
Operating Temperature	-40°C ~ 85°C (TA)			
Mounting Type	Through Hole			
Package / Case	28-DIP (0.300", 7.62mm)			
Supplier Device Package	28-SPDIP			
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c63a-04i-sp			

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TIP #1 Dual Speed RC Oscillator

Figure 1-1

- 1. After reset I/O pin is High-Z
- 2. Output '1' on I/O pin
- 3. R1, R2 and C determine OSC frequency
- 4. Also works with additional capacitors

Frequency of PIC MCU in external RC oscillator mode depends on resistance and capacitance on OSC1 pin. Resistance is changed by the output voltage on GP0. GP0 output '1' puts R2 in parallel with R1 reduces OSC1 resistance and increases OSC1 frequency. GP0 as an input increases the OSC1 resistance by minimizing current flow through R2, and decreases frequency and power consumption.

Summary:

- GP0 = Input: Slow speed for low current
- GP0 = Output high: High speed for fast processing

TIP #2 Input/Output Multiplexing

Individual diodes and some combination of diodes can be enabled by driving I/Os high and low or switching to inputs (Z). The number of diodes (D) that can be controlled depends on the number of I/Os (GP) used.

The equation is: $D = GP \times (GP - 1)$.

Example 2-1: Six LEDs on Three I/O Pins

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Figure 2-1

CHAPTER 2 PIC[®] Microcontroller Low Power Tips 'n Tricks

Table Of Contents

GENERAL LOW POWER TIPS 'N TRICKS

TIP #1	Switching Off External Circuits/	
	Duty Cycle	2-2
TIP #2	Power Budgeting	2-3
TIP #3	Configuring Port Pins	2-4
TIP #4	Use High-Value Pull-Up Resistors	2-4
TIP #5	Reduce Operating Voltage	2-4
TIP #6	Use an External Source for	
	CPU Core Voltage	2-5
TIP #7	Battery Backup for PIC MCUs	2-6

DYNAMIC OPERATION TIPS 'N TRICKS

TIP #8	Enhanced PIC16 Mid-Range Core	2-6
TIP #9	Two-Speed Start-Up	2-7
TIP #10	Clock Switching	2-7
TIP #11	Use Internal RC Oscillators	2-7
TIP #12	Internal Oscillator Calibration	2-8
TIP #13	Idle and Doze Modes	2-8
TIP #14	Use NOP and Idle Mode	2-9
TIP #15	Peripheral Module Disable	
	(PMD) Bits	2-9

STATIC POWER REDUCTION TIPS 'N TRICKS

TIP #16	Deep Sleep Mode	.2-10
TIP #17	Extended WDT and Deep Sleep WDT	.2-10
TIP #18	Low Power Timer1 Oscillator and RTCC	2-10
TIP #19	Low Power Timer1 Oscillator Layout.	2-11
TIP #20	Use LVD to Detect Low Battery	2-11
TIP #21	Use Peripheral FIFO and DMA	.2-11
TIP #22	Ultra Low-Power Wake-Up Peripheral	.2-12

TIPS 'N TRICKS INTRODUCTION

Microchip continues to provide innovative products that are smaller, faster, easier to use and more reliable. The Flash-based PIC[®] microcontrollers (MCUs) are used in an wide range of everyday products, from smoke detectors, hospital ID tags and pet containment systems, to industrial, automotive and medical products.

PIC MCUs featuring nanoWatt technology implement a variety of important features which have become standard in PIC microcontrollers. Since the release of nanoWatt technology, changes in MCU process technology and improvements in performance have resulted in new requirements for lower power. PIC MCUs with nanoWatt eXtreme Low Power (nanoWatt XLP[™]) improve upon the original nanoWatt technology by dramatically reducing static power consumption and providing new flexibility for dynamic power management.

The following series of Tips n' Tricks can be applied to many applications to make the most of PIC MCU nanoWatt and nanoWatt XLP devices.

GENERAL LOW POWER TIPS 'N TRICKS

The following tips can be used with all PIC MCUs to reduce the power consumption of almost any application.

TIP #3 Configuring Port Pins

All PIC MCUs have bidirectional I/O pins. Some of these pins have analog input capabilities. It is very important to pay attention to the signals applied to these pins so the least amount of power will be consumed.

Unused Port Pins

If a port pin is unused, it may be left unconnected but configured as an output pin driving to either state (high or low), or it may be configured as an input with an external resistor (about 10 kΩ) pulling it to VDD or VSS. If configured as an input, only the pin input leakage current will be drawn through the pin (the same current would flow if the pin was connected directly to VDD or VSS). Both options allow the pin to be used later for either input or output without significant hardware modifications.

Digital Inputs

A digital input pin consumes the least amount of power when the input voltage is near V_{DD} or Vss. If the input voltage is near the midpoint between V_{DD} and Vss, the transistors inside the digital input buffer are biased in a linear region and they will consume a significant amount of current. If such a pin can be configured as an analog input, the digital buffer is turned off, reducing both the pin current as well as the total controller current.

Analog Inputs

Analog inputs have a very high-impedance so they consume very little current. They will consume less current than a digital input if the applied voltage would normally be centered between VDD and Vss. Sometimes it is appropriate and possible to configure digital inputs as analog inputs when the digital input must go to a low power state.

Digital Outputs

There is no additional current consumed by a digital output pin other than the current going through the pin to power the external circuit. Pay close attention to the external circuits to minimize their current consumption.

TIP #4 Use High-Value Pull-Up Resistors

It is more power efficient to use larger pull-up resistors on I/O pins such as MCLR, I^2C^{TM} signals, switches and for resistor dividers. For example, a typical I^2C pull-up is 4.7k. However, when the I^2C is transmitting and pulling a line low, this consumes nearly 700 uA of current for each bus at 3.3V. By increasing the size of the I^2C pull-ups to 10k, this current can be halved. The tradeoff is a lower maximum I^2C bus speed, but this can be a worthwhile trade in for many low power applications. This technique is especially useful in cases where the pull-up can be increased to a very high resistance such as 100k or 1M.

TIP #5 Reduce Operating Voltage

Reducing the operating voltage of the device, V_{DD} , is a useful step to reduce the overall power consumption. When running, power consumption is mainly influenced by the clock speed. When sleeping, the most significant factor is leakage in the transistors. At lower voltages, less charge is required to switch the system clocks and transistors leak less current.

It is important to pay attention to how reducing the operating voltage reduces the maximum allowed operating frequency. Select the optimum voltage that allows the application to run at its maximum speed. Refer to the device data sheet for the maximum operating frequency of the device at the given voltage.

TIP #7 Battery Backup for PIC MCUs

For an application that can operate from either an external supply or a battery backup, it is necessary to be able to switch from one to the other without user intervention. This can be accomplished with battery backup ICs, but it is also possible to implement with a simple diode OR circuit, shown in Figure 7-1. Diode D1 prevents current from flowing into the battery from VEXT when the external power is supplied. D2 prevents current from flowing into any external components from the battery if VEXT is removed. As long as the external source is present and higher voltage than the battery. no current from the battery will be used. When VEXT is removed and the voltage drops below VBAT, the battery will start powering the MCU. Low forward voltage Schottky diodes can be used in order to minimize the voltage dropout from the diodes. Additionally, inputs can be referenced to VEXT and VBAT in order to monitor the voltage levels of the battery and the external supply. This allows the micro to enter lower power modes when the supply is removed or the battery is running low. In order to avoid glitches on VDD caused by the diode turn-on delay when switching supplies, ensure enough decoupling capacitance is used on VDD (C1).

Figure 7-1:

Dynamic Operation Tips n' Tricks

The following tips and tricks apply to methods of improving the dynamic operating current consumption of an application. This allows an application to get processing done quicker which enables it to sleep more and will help reduce the current consumed while processing.

TIP #8 Enhanced PIC16 Mid-Range Core

The Enhanced PIC16 mid-range core has a few features to assist in low power. New instructions allow many applications to execute in less time. This allows the application to spend more time asleep and less time processing and can provide considerable power savings. It is important not to overlook these new instructions when designing with devices that contain the new core. The Timer1 oscillator and WDT have also been improved, now meeting nanoWatt XLP requirements and drawing much less current than in previous devices.

TIP #19 Low Power Timer1 Oscillator Layout

Applications requiring very low power Timer1/ SOSC oscillators on nanoWatt and nanoWatt XLP devices must take PCB layout into consideration. The very low power Timer1/ SOSC oscillators on nanoWatt and nanoWatt XLP devices consume very little current, and this sometimes makes the oscillator circuit sensitive to neighboring circuits. The oscillator circuit (crystal and capacitors) should be located as close as possible to the microcontroller.

No circuits should be passing through the oscillator circuit boundaries. If it is unavoidable to have high-speed circuits near the oscillator circuit, a guard ring should be placed around the oscillator circuit and microcontroller pins similar to the figure below. Placing a ground plane under the oscillator components also helps to prevent interaction with high speed circuits.

Figure 19-1: Guard Ring Around Oscillator Circuit and MCU Pins

TIP #20 Use LVD to Detect Low Battery

The Low Voltage Detect (LVD) interrupt present in many PIC MCUs is critical in battery based systems. It is necessary for two reasons. First, many devices cannot run full speed at the minimum operating voltage. In this case, the LVD interrupt indicates when the battery voltage is dropping so that the CPU clock can be slowed down to an appropriate speed, preventing code misexecution. Second, it allows the MCU to detect when the battery is nearing the end of its life, so that a low battery indication can be provided and a lower power state can be entered to maximize battery lifetime. The LVD allows these functions to be implemented without requiring the use of extra analog channels to measure the battery level.

TIP #21 Use Peripheral FIFO and DMA

Some devices have peripherals with DMA or FIFO buffers. These features are not just useful to improve performance; they can also be used to reduce power. Peripherals with just one buffer register require the CPU to stay operating in order to read from the buffer so it doesn't overflow. However, with a FIFO or DMA, the CPU can go to sleep or idle until the FIFO fills or DMA transfer completes. This allows the device to consume a lot less average current over the life of the application.

COMPARE TIPS 'N TRICKS

In Compare mode, the 16-bit CCPRx register value is constantly compared against the TMR1 register pair values. When a match occurs, the CCPx pin is:

- Driven high
- Driven low
- · Remains unchanged, or
- Toggles based on the module's configuration

The action on the pin is determined by control bits CCPxM3:CCPxM0 (CCPxCON<3:0>). A CCP interrupt is generated when a match occurs.

Special Event Trigger

Timer1 is normally not cleared during a CCP interrupt when the CCP module is configured in Compare mode. The only exception to this is when the CCP module is configured in Special Event Trigger mode. In this mode, when Timer1 and CCPRx are equal, the CCPx interrupt is generated, Timer1 is cleared, and an A/D conversion is started (if the A/D module is enabled.)

"Why Would I Use Compare Mode?"

Compare mode works much like the timer function on a stopwatch. In the case of a stopwatch, a predetermined time is loaded into the watch and it counts down from that time until zero is reached.

Compare works in the same way with one exception – it counts from zero to the predetermined time. This mode is useful for generating specific actions at precise intervals. A timer could be used to perform the same functionality, however, it would mean preloading the timer each time. Compare mode also has the added benefit of automatically altering the state of the CCPx pin based on the way the module is set up. NOTES:

CHAPTER 4 PIC[®] Microcontroller Comparator Tips 'n Tricks

Table Of Contents

TIPS 'N TRICKS INTRODUCTION

TIP #1:	Low Battery Detection	4-2
TIP #2:	Faster Code for Detecting Change	4-3
TIP #3:	Hysteresis	4-4
TIP #4:	Pulse Width Measurement	4-5
TIP #5:	Window Comparison	4-6
TIP #6:	Data Slicer	4-7
TIP #7:	One-Shot	4-8
TIP #8:	Multi-Vibrator (Square Wave Output).	4-9
TIP #9:	Multi-Vibrator (Ramp Wave Output)	4-10
TIP #10:	Capacitive Voltage Doubler	4-11
TIP #11:	PWM Generator	4-12
TIP #12:	Making an Op Amp Out of a	
	Comparator	4-13
TIP #13:	PWM High-Current Driver	4-14
TIP #14:	Delta-Sigma ADC	4-15
TIP #15:	Level Shifter	4-16
TIP #16:	Logic: Inverter	4-16
TIP #17:	Logic: AND/NAND Gate	4-17
TIP #18:	Logic: OR/NOR Gate	4-18
TIP #19:	Logic: XOR/XNOR Gate	4-19
TIP #20:	Logic: Set/Reset Flip Flop	4-20

TIPS 'N TRICKS INTRODUCTION

Microchip continues to provide innovative products that are smaller, faster, easier to use and more reliable. The Flash-based PIC[®] microcontrollers (MCUs) are used in a wide range of everyday products from smoke detectors to industrial, automotive and medical products.

The PIC12F/16F Family of devices with on-chip voltage comparators merge all the advantages of the PIC MCU architecture and the flexibility of Flash program memory with the mixed signal nature of a voltage comparator. Together they form a low-cost hybrid digital/analog building block with the power and flexibility to work in an analog world.

The flexibility of Flash and an excellent development tool suite, including a lowcost In-Circuit Debugger, In-Circuit Serial Programming[™] (ICSP[™]) and MPLAB[®] ICE 2000 emulation, make these devices ideal for just about any embedded control application.

The following series of Tips 'n Tricks can be applied to a variety of applications to help make the most of discrete voltage comparators or microcontrollers with on-chip voltage comparators.

TIP #3 Hysteresis

When the voltages on a comparator's input are nearly equal, external noise and switching noise from inside the microcontroller can cause the comparator output to oscillate or "chatter." To prevent chatter, some of the comparator output voltage is fed back to the non-inverting input of the comparator to form hysteresis (see Figure 3-1). Hysteresis moves the comparator threshold up when the input is below the threshold, and down when the input is above the threshold. The result is that the input must overshoot the threshold to cause a change in the comparator output. If the overshoot is greater than the noise present on the input, the comparator output will not chatter.

Figure 3-1: Comparator with Hysteresis

To calculate the resistor values required, first determine the high and low threshold values which will prevent chatter (VTH and VTL). Using VTH and VTL, the average threshold voltage can be calculated using the equation.

Equation 3-1

$$V_{AVG} = \frac{V_{DD} * V_{TL}}{V_{DD} - V_{TH} + V_{TL}}$$

Next, choose resistor values that satisfy Equation 3-2 and calculate the equivalent resistance using Equation 3-3.

Note: A continuous current will flow through R1 and R2. To limit the power dissipation in R1 and R2 the total resistance of R1 and R2 should be at least 1k. The total resistance of R1 and R2 should also be kept below 10K to keep the size of R3 small. Large values for R3, 100k-10 M, can produce voltage offsets at the non-inverting input due to the comparator's input bias current.

Equation 3-2

$$V_{AVG} = \frac{V_{DD} * R2}{R1 + R2}$$

Equation 3-3

$$R_{EQ} = \frac{R1 * R2}{R1 + R2}$$

Then, determine the feedback divider ratio DR, using Equation 3-4.

Equation 3-4

$$D_{R} = \frac{(V_{TH} - V_{TL})}{V_{DD}}$$

Finally, calculate the feedback resistor R3 using Equation 3-5.

Equation 3-5

Example:

- A V_DD = 5.0V, V_H = 3.0V and V_L = 2.5V
- VAVG = 2.77V
- R = 8.2k and R2 = 10k, gives a VAVG = 2.75V
- REQ = 4.5k
- DR = .1
- R3 = 39k (40.5 calculated)
- VHACT = 2.98V
- VLACT = 2.46V

Figure 2-3: Quadrature Decoder (Sensor Motor)

Application notes describing Brushless DC Motor Control are listed below and can be found on the Microchip web site at: www.microchip.com.

- AN857, "Brushless DC Motor Control Made Easy" (DS00857)
- AN885, "Brushless DC Motor Fundamentals" (DS00885)
- AN899, "Brushless DC Motor Control Using PIC18FXX31" (DS00899)
- AN901, "Using the dsPIC30F for Sensorless BLDC Control" (DS00901)
- AN957, "Sensored BLDC Motor Control Using dsPIC30F2010" (DS00957)
- AN992, "Sensorless BLDC Motor Control Using dsPIC30F2010" (DS00992)
- AN1017, "Sinusoidal Control of PMSM with dsPIC30F DSC" (DS01017)
- GS005, "Using the dsPIC30F Sensorless Motor Tuning Interface" (DS93005)

TIP #3 Stepper Motor Drive Circuits

Stepper motors are similar to Brushless DC motors in that the control system must commutate the motor through the entire rotation cycle. Unlike the brushless motor, the position and speed of a stepping motor is predictable and does not require the use of sensors.

There are two basic types of stepper motors, although some motors are built to be used in either mode. The simplest stepper motor is the unipolar motor. This motor has four drive connections and one or two center tap wires that are tied to ground or Vsupply, depending on the implementation. Other motor types are the bipolar stepper and various combinations of unipolar and bipolar, as shown in Figure 3-1 and Figure 3-2. When each drive connection is energized, one coil is driven and the motor rotates one step. The process is repeated until all the windings have been energized. To increase the step rate, often the voltage is increased beyond the motors rated voltage. If the voltage is increased, some method of preventing an over current situation is required.

There are many ways to control the winding current, but the most popular is a chopper system that turns off current when it reaches an upper limit and enables the current flow a short time later. Current sensor systems are discussed in Tip #6. Some systems are built with a current chopper, but they do not detect the current, rather the system is designed to begin a fixed period chopping cycle after the motor has stepped to the next position. These are simpler systems to build, as they only require a change in the software.

TIP #6 Current Sensing

The torgue of an electric motor can be monitored and controlled by keeping track of the current flowing through the motor. Torque is directly proportional to the current. Current can be sensed by measuring the voltage drop through a known value resistor or by measuring the magnetic field strength of a known value inductor. Current is generally sensed at one of two places, the supply side of the drive circuit (high side current sense) or the sink side of the drive circuit (low side current sense). Low side sensing is much simpler but the motor will no longer be grounded, causing a safety issue in some applications. High side current sensing generally requires a differential amplifier with a common mode voltage range within the voltage of the supply.

Figure 6-1: Resistive High Side Current Sensing

Figure 6-2: Resistive Low Side Current Sensing

Current measurement can also be accomplished using a Hall effect sensor to measure the magnetic field surrounding a current carrying wire. Naturally, this Hall effect sensor can be located on the high side or the low side of the load. The actual location of the sensor does not matter because the sensor does not rely upon the voltage on the wire. This is a non-intrusive method that can be used to measure motor current.

Figure 6-3: Magnetic Current Sensing

NOTES:

TIP #1 Typical Ordering Considerations and Procedures for Custom Liquid Displays

- 1. Consider what useful information needs to be displayed on the custom LCD and the combination of alphanumeric and custom icons that will be necessary.
- 2. Understand the environment in which the LCD will be required to operate. Operating voltage and temperature can heavily influence the contrast of the LCD and potentially limit the type of LCD that can be used.
- 3. Determine the number of segments necessary to achieve the desired display on the LCD and reference the PIC Microcontroller LCD matrix for the appropriate LCD PIC microcontroller.
- 4. Create a sketch/mechanical print and written description of the custom LCD and understand the pinout of the LCD. (Pinout definition is best left to the glass manufacturer due to the constraints of routing the common and segment electrodes in two dimensions.)
- Send the proposed LCD sketch and description for a written quotation to at least 3 vendors to determine pricing, scheduling and quality concerns.
 - a) Take into account total NRE cost, price per unit, as well as any setup fees.
 - b) Allow a minimum of two weeks for formal mechanical drawings and pin assignments and revised counter drawings.

- 6. Request a minimal initial prototype LCD build to ensure proper LCD development and ensure proper functionality within the target application.
 - Allow typically 4-6 weeks for initial LCD prototype delivery upon final approval of mechanical drawings and pin assignments.
- Upon receipt of prototype LCD, confirm functionality before giving final approval and beginning production of LCD.
 - Note: Be sure to maintain good records by keeping copies of all materials transferred between both parties, such as initial sketches, drawings, pinouts, etc.

TIP #2 LCD PIC[®] MCU Segment/ Pixel Table

Malfalas	Maximum Number of Segments/Pixels					
Commons	PIC16F913/ 916	PIC16F914/ 917	PIC16F946	PIC18F6X90 (PIC18F6XJ90)	PIC18F8X90 (PIC18F8XJ90)	Bias
Static (COM0)	15	24	42	32/ (33)	48	Static
1/2 (COM1: COM0)	30	48	84	64/ (66)	96	1/2 or 1/3
1/3 (COM2: COM0)	45	72	126	96/ (99)	144	1/2 or 1/3
1/4 (COM3: COM0)	60	96	168	128/ (132)	192	1/3

Table 2-1: Segment Matrix Table

This Segment Matrix table shows that Microchip's 80-pin LCD devices can drive up to 4 commons and 48 segments (192 pixels), 64-pin devices can drive up to 33 segments (132 pixels), 40/44 pin devices can drive up to 24 segments (96 pixels) and 28-pin devices can drive 15 segments (60 segments).

Application Note References

- AN220, "Watt-Hour Meter Using PIC16C923 and CS5460" (DS00220)
- AN582, "Low-Power Real-Time Clock" (DS00582)
- AN587, "Interfacing PIC[®] MCUs to an LCD Module" (DS00587)
- AN649, "Yet Another Clock Featuring the PIC16C924" (DS00649)
- AN658, "LCD Fundamentals Using PIC16C92X Microcontrollers" (DS00658)
- TB084, "Contrast Control Circuits for the *PIC16F91X*" (DS91084)

Application notes can be found on the Microchip web site at www.microchip.com.

TIP #2 A Start-Up Sequencer

Some new devices have multiple voltage requirements (e.g., core voltages, I/O voltages, etc.). The sequence in which these voltages rise and fall may be important.

By expanding on the previous tip, a start-up sequencer can be created to control two output voltages. Two PWM outputs are generated to control the shutdown pins of two SMPS controllers. Again, this type of control only works on controllers that respond quickly to changes on the shutdown pin (such as those that do cycle-by-cycle limiting).

Figure 2-1: Multiple PWM Output Soft-Start Controller

This design uses the PIC MCU comparator to implement an under-voltage lockout. The input on the GP0/CIN+ pin must be above the internal 0.6V reference for soft-start to begin, as shown in Figure 2-2.

Two conditions must be met in order for the soft-start sequence to begin:

- 1. The shutdown pin must be held at VDD (logic high).
- 2. The voltage on GP0 must be above 0.6V.

Once both start-up conditions are met, the sequences will delay and PWM #1 will ramp from 0% to 100%. A second delay allows the first voltage to stabilize before the sequencer ramps PWM #2 from 0% to 100%. All delays and ramp times are under software control and can be customized for specific applications. If either soft-start condition becomes invalid, the circuit will shutdown the SMPS controllers.

Figure 2-2: Timing Diagram

Example software is provided for the PIC10F200 which was taken from TB093, *"Multiple PWM Output Soft-Start Controller for Switching Power Supplies"* (DS91093).

TIP #14 Brushless DC Fan Speed Control

There are several methods to control the speed of a DC brushless fan. The type of fan, allowable power consumption and the type of control desired are all factors in choosing the appropriate type.

Figure 14-1: Low-Side PWM Drive

Figure 14-2: High-Side PWM Drive

Method 1 – Pulse-Width Modulation

As shown in Figure 14-1 and Figure 14-2, a simple PWM drive may be used to switch a two-wire fan on and off. While it is possible to use the circuit in Figure 14-1 without a high-side MOSFET driver, some manufacturers state that switching on the low side of the fan will void the warranty.

Because of this, it is necessary to switch the high side of the fan in order to control the speed. The simplest type of speed control is 'on' or 'off'. However, if a higher degree of control is desired, PWM can be used to vary the speed of the fan.

For 3-wire fans, the tachometer output will not be accurate if PWM is used. The sensor providing the tachometer output on 3-wire fans is powered from the same supply as the fan coils, thus using a PWM to control fan speed will render the fan's tachometer inaccurate.

One solution is to use a 4-wire fan which includes both the tachometer output and a drive input. Figure 14-3 shows a diagram of a 4-wire fan.

Figure 14-3: Typical 4-Wire Fan

A 4-wire fan allows speed to be controlled using PWM via the Drive line. Since power to the tachometer sensor is not interrupted, it will continue to output the correct speed. The A/D converter is used to sense the output voltage for this particular application, V_{DD} is used as the reference to the A/D converter. If desired, a more accurate reference could be used. The output voltage is subtracted from the desired value, creating an error value.

This error becomes the input to the PID routine. The PID routine uses the error voltage to determine the appropriate duty cycle for the output drive. The PID constants are weighted so that the main portion of the control is proportional and integral. The differential component is not essential to this system and is not used. Furthermore, the PID constants could be optimized if a particular type of transient response was desired, or if a predictable transient load was to be connected.

Finally, the CCP module is used to create a PWM signal at the chosen frequency with the proper duty cycle.

Example software is provided for the PIC12F683 using the schematic in Figure 16-1.

The following application notes are related to PID control algorithms and all include example software:

- AN258, "Low Cost USB Microcontroller Programmer The Building of the PICkit[®] 1 Flash Starter Kit" (DS00258)
- AN937, "Implementing a PID Controller Using a PIC18 MCU" (DS00937)
- AN964, "Software PID Control of an Inverted Pendulum Using the PIC16F684" (DS00937)

TIP #17 An Error Detection and Restart Controller

An error detection and restart controller can be created by combining Tip #18 and Tip #19. The controller uses the PIC microcontroller (MCU) Analog-to-Digital Converter (ADC) for making voltage and current measurements. Input voltage, input current, output voltage, output current, temperature and more can all be measured using the A/D converter. The on-board comparators are used for monitoring faster signals, such as output current, ensuring that they do not exceed maximum allowable levels. Many PIC MCUs have internal programmable comparator references, simplifying the circuit.

Figure 17-1: Block Diagram

Using a PIC MCU as a controller allows for a greater level of intelligence in system monitoring. Rather than a single event causing a shutdown, a combination of events can cause a shutdown. A certain number of events in a certain time frame or possibly a certain sequence of events could be responsible for a shutdown.

The PIC MCU has the ability to restart the supply based on the shutdown event. Some events (such as overcurrent) may call for immediate restart, while other events (such as overtemperature) may require a delay before restarting, perhaps monitoring other parameters and using those to determine when to restart.

It is also possible to build this type of error detection and restart controller into many of the tips listed within this guide.

TIP #21 Using Output Voltage Monitoring to Create a Self-Calibration Function

A PIC microcontroller can be used to create a switching power supply controlled by a PID loop (as described in Tip #16). This type of power supply senses its output voltage digitally, compares that voltage to the desired reference voltage and makes duty cycle changes accordingly. Without calibration, it is sensitive to component tolerances.

Figure 21-1: Typical Power Supply Output Stage

The output stage of many power supplies is similar to Figure 21-1. R1 and R2 are used to set the ratio of the voltage that is sensed and compared to the reference.

A simple means of calibrating this type of power supply is as follows:

- 1. Supply a known reference voltage to the output of the supply.
- 2. Place the supply in Calibration mode and allow it to sense that reference voltage.

By providing the supply with the output voltage that it is to produce, it can then sense the voltage across the resistor divider and store the sensed value. Regardless of resistor tolerances, the sensed value will always correspond to the proper output value for that particular supply.

Futhermore, this setup could be combined with Tip #20 to calibrate at several temperatures.

This setup could also be used to create a programmable power supply by changing the supplied reference and the resistor divider for voltage feedback.

TIP #11 5V \rightarrow 3.3V Active Clamp

One problem with using a diode clamp is that it injects current onto the 3.3V power supply. In designs with a high current 5V outputs, and lightly loaded 3.3V power supply rails, this injected current can float the 3.3V supply voltage above 3.3V. To prevent this problem, a transistor can be substituted which routes the excess output drive current to ground instead of the 3.3V supply. Figure 11-1 shows the resulting circuit.

Figure 11-1: Transistor Clamp

The base-emitter junction of Q1 performs the same function as the diode in a diode clamp circuit. The difference is that only a small percentage of the emitter current flows out of the base of the transistor to the 3.3V rail, the bulk of the current is routed to the collector where it passes harmlessly to ground. The ratio of base current to collector current is dictated by the current gain of the transistor, typically 10-400, depending upon which transistor is used.

TIP #12 5V \rightarrow 3.3V Resistor Divider

A simple resistor divider can be used to reduce the output of a 5V device to levels appropriate for a 3.3V device input. An equivalent circuit of this interface is shown in Figure 12-1.

Figure 12-1: Resistive Interface Equivalent Circuit

Typically, the source resistance, Rs, is very small (less than 10Ω) so its affect on R1 will be negligible provided that R1 is chosen to be much larger than Rs. At the receive end, the load resistance, RL, is very large (greater than 500 k Ω) so its affect on R2 will be negligible provided that R2 is chosen to be much less than RL.

There is a trade-off between power dissipation and transition times. To keep the power requirements of the interface circuit at a minimum, the series resistance of R1 and R2 should be as large as possible. However, the load capacitance, which is the combination of the stray capacitance, Cs, and the 3.3V device input capacitance, CL, can adversely affect the rise and fall times of the input signal. Rise and fall times can be unacceptably long if R1 and R2 are too large.

TIP #16 5V \rightarrow 3.3V Active Analog Attenuator

Reducing a signal's amplitude from a 5V to 3.3V system using an op amp.

The simplest method of converting a 5V analog signal to a 3.3V analog signal is to use a resistor divider with a ratio R1:R2 of 1.7:3.3. However, there are a few problems with this.

- 1. The attenuator may be feeding a capacitive load, creating an unintentional low pass filter.
- 2. The attenuator circuit may need to drive a low-impedance load from a high-impedance source.

Under either of these conditions, an op amp becomes necessary to buffer the signals.

The op amp circuit necessary is a unity gain follower (see Figure 16-1).

Figure 16-1: Unity Gain

This circuit will output the same voltage that is applied to the input.

To convert the 5V signal down to a 3V signal, we simply add the resistor attenuator.

Figure 16-2: Op Amp Attenuators

If the resistor divider is before the unity gain follower, then the lowest possible impedance is provided for the 3.3V circuits. Also, the op amp can be powered from 3.3V, saving some power. If the X is made very large, then power consumed by the 5V side can be minimized.

If the attenuator is added after the unity gain follower, then the highest possible impedance is presented to the 5V source. The op amp must be powered from 5V and the impedance at the 3V side will depend upon the value of R1||R2.