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CHAPTER 1
8-Pin Flash PIC® Microcontrollers

Tips ‘n Tricks
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TIPS ‘N TRICKS INTRODUCTION
Microchip continues to provide innovative 
products that are smaller, faster, easier to 
use and more reliable. The 8-pin Flash PIC® 
microcontrollers (MCU) are used in an wide 
range of everyday products, from toothbrushes, 
hair dryers and rice cookers to industrial, 
automotive and medical products.
The PIC12F629/675 MCUs merge all the 
advantages of the PIC MCU architecture and 
the flexibility of Flash program memory into 
an 8-pin package. They provide the features 
and intelligence not previously available due 
to cost and board space limitations. Features 
include a 14-bit instruction set, small footprint 
package, a wide operating voltage of 2.0 to 
5.5 volts, an internal programmable 4 MHz 
oscillator, on-board EEPROM data memory, 
on-chip voltage reference and up to 4 channels 
of 10-bit A/D. The flexibility of Flash and an 
excellent development tool suite, including 
a low-cost In-Circuit Debugger, In-Circuit 
Serial Programming™ and MPLAB® ICE 2000 
emulation, make these devices ideal for just 
about any embedded control application.

TIPS ‘N TRICKS WITH HARDWARE
The following series of Tips ’n Tricks can be 
applied to a variety of applications to help make 
the most of the 8-pin dynamics.
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TIP #11 Vdd Self Starting Circuit
Building on the previous topic, the same charge 
pump can be used by the MCU to supply its 
own Vdd. Before the switch is pressed, Vbat 
has power and the Vdd points are connected 
together but unpowered. When the button is 
pressed, power is supplied to Vdd and the 
MCUs CLKOUT (in external RC oscillator mode) 
begins toggle. The voltage generated by the 
charge pump turns on the FET allowing Vdd 
to remain powered. To power down the MCU, 
execute a Sleep instruction. This allows the 
MCU to switch off its power source via software.

Advantages:
• PIC MCU leakage current nearly 0
• Low cost (uses n-channel FET)
• Reliable
• No additional I/O pins required

Figure 11-1

PIC12F6XX

CLKOUT

VDD

VDD

VDD

VBAT

VDD

TIP #12 Using PIC® MCU A/D For 
 Smart Current Limiter
Figure 12-1

W

PIC12F6XX

10K
AN0

RSENSE

Load or Motor

• Detect current through low side sense resistor
• Optional peak filter capacitor
• Varying levels of overcurrent response can be 
 realized in software
By adding a resistor (Rsense) in series with a 
motor, the A/D can be used to measure in-rush 
current, provide current limiting, over-current 
recovery or work as a smart circuit breaker. The 
10K resistor limits the analog channel current 
and does not violate the source impedance limit 
of the A/D.
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TIP #16 Optimizing Destinations
• Destination bit determines W for F for result
• Look at data movement and restructure

Example 16-1

Example: A + B → A

MOVF
ADDWF
MOVWF

MOVF
ADDWF

A,W
B,W
A

B,W
A,F

3 instructions 2 instructions

Careful use of the destination bits in instructions 
can save program memory. Here, register A and 
register B are summed and the result is put into 
the A register. A destination option is available 
for logic and arithmetic operations. In the first 
example, the result of the ADDWF instruction is 
placed in the working register. A MOVWF 
instruction is used to move the result from the 
working register to register A. In the second 
example, the ADDWF instruction uses the 
destination bit to place the result into the A 
register, saving an instruction.

TIP #17 Conditional Bit Set/Clear
• To move single bit of data from REGA to 
 REGB
• Precondition REGB bit
• Test REGA bit and fix REGB if necessary

Example 17-1

BTFSS
BCF
BTFSC
BSF

BCF
BTFSC
BSF

REGA,2
REGB,5
REGA,2
REGB,5

REGB,5
REGA,2
REGB,5

4 instructions 3 instructions

One technique for moving one bit from the 
REGA register to REGB is to perform bit tests. 
In the first example, the bit in REGA is tested 
using a BTFSS instruction. If the bit is clear, 
the BCF instruction is executed and clears the 
REGB bit, and if the bit is set, the instruction 
is skipped.The second bit test determines if 
the bit is set, and if so, will execute the BSF 
and set the REGB bit, otherwise the instruction 
is skipped. This sequence requires four 
instructions.
A more efficient technique is to assume the 
bit in REGA is clear, and clear the REGB bit, 
and test if the REGA bit is clear. If so, the 
assumption was correct and the BSF instruction 
is skipped, otherwise the REGB bit is set. 
The sequence in the second example uses 
three instructions because one bit test was not 
needed.
One important point is that the second example 
will create a two-cycle glitch if REGB is a port 
outputting a high. This is caused by the BCF 
and BTFSC instructions that will be executed 
regardless of the bit value in REGA.
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TIP #3 Measuring Pulse Width
Figure 3-1: Pulse Width

W

t1 t2

1. Configure control bits CCPxM3:CCPxM0 
 (CCPxCON<3:0>) to capture every rising 
 edge of the waveform.
2. Configure Timer1 prescaler so that Timer1 
 will run Wmax without overflowing.
3. Enable the CCP interrupt (CCPxIE bit).
4. When CCP interrupt occurs, save the 
 captured timer value (t1) and reconfigure 
 control bits to capture every falling edge.
5. When CCP interrupt occurs again, subtract 
 saved value (t1) from current captured value 
 (t2) – this result is the pulse width (W).
6. Reconfigure control bits to capture the next 
 rising edge and start process all over again 
 (repeat steps 3 through 6).

TIP #4 Measuring Duty Cycle
Figure 4-1: Duty Cycle

T

W

t1 t2 t3

The duty cycle of a waveform is the ratio 
between the width of a pulse (W) and the 
period (T). Acceleration sensors, for example, 
vary the duty cycle of their outputs based on 
the acceleration acting on a system. The CCP 
module, configured in Capture mode, can be 
used to measure the duty cycle of these types 
of sensors. Here’s how:
1. Configure control bits CCPxM3:CCPxM0 
 (CCPxCON<3:0>) to capture every rising 
 edge of the waveform.
2. Configure Timer1 prescaler so that Timer1 
 will run Tmax(1) without overflowing.
3. Enable the CCP interrupt (CCPxIE bit).
4. When CCP interrupt occurs, save the 
 captured timer value (t1) and reconfigure 
 control bits to capture every falling edge.

Note 1: Tmax is the maximum pulse period 
 that will occur.

5. When the CCP interrupt occurs again, 
 subtract saved value (t1) from current 
 captured value (t2) – this result is the pulse 
 width (W).
6. Reconfigure control bits to capture the next 
 rising edge.
7. When the CCP interrupt occurs, subtract 
 saved value (t1) from the current captured 
 value (t3) – this is the period (T) of the 
 waveform.
8. Divide T by W – this result is the Duty Cycle.
9. Repeat steps 4 through 8.
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TIP #13 Deciding on PWM Frequency
In general, PWM frequency is application 
dependent although two general rules-of-thumb 
hold regarding frequency in all applications. 
They are:
1. As frequency increases, so does current 
 requirement due to switching losses.
2. Capacitance and inductance of the load tend 
 to limit the frequency response of a circuit.
In low-power applications, it is a good idea 
to use the minimum frequency possible to 
accomplish a task in order to limit switching 
losses. In circuits where capacitance and/or 
inductance are a factor, the PWM frequency 
should be chosen based on an analysis of the 
circuit. 

Motor Control
PWM is used extensively in motor control 
due to the efficiency of switched drive 
systems as opposed to linear drives. An 
important consideration when choosing PWM 
frequency for a motor control application is 
the responsiveness of the motor to changes 
in PWM duty cycle. A motor will have a faster 
response to changes in duty cycle at higher 
frequencies. Another important consideration 
is the sound generated by the motor. Brushed 
DC motors will make an annoying whine 
when driven at frequencies within the audible 
frequency range (20 Hz-4 kHz.) In order to 
eliminate this whine, drive brushed DC motors 
at frequencies greater than 4 kHz. (Humans 
can hear frequencies at upwards of 20 kHz, 
however, the mechanics of the motor winding 
will typically attenuate motor whine above 
4 kHz).

LED and Light Bulbs
PWM is also used in LED and light dimmer 
applications. Flicker may be noticeable with 
rates below 50 Hz. Therefore, it is generally a 
good rule to pulse-width modulate LEDs and 
light bulbs at 100 Hz or higher.

TIP #14 Unidirectional Brushed DC 
 Motor Control Using CCP
Figure 14-1: Brushed DC (BDC) Motor 
 Control Circuit

PIC16F628

10 kΩ

22 pF

CCP1

VCC

EMI/RFI
Suppression

Place on
motor

22 pF
Motor

100Ω
CCP1

Figure 14-1 shows a unidirectional speed 
controller circuit for a brushed DC motor. Motor 
speed is proportional to the duty cycle of the 
PWM output on the CCP1 pin. The following 
steps show how to configure the PIC16F628 to 
generate a 20 kHz PWM with 50% duty cycle. 
The microcontroller is running on a 20 MHz 
crystal.
Step #1: Choose Timer2 Prescaler
a) Fpwm = Fosc/((PR2+1)*4*prescaler) = 
 19531 Hz for PR2 = 255 and prescaler of 1
b) This frequency is lower than 20 kHz, 
 therefore a prescaler of 1 is adequate.
Step #2: Calculate PR2
PR2 = Fosc/(Fpwm*4*prescaler) – 1 = 249
Step #3: Determine CCPR1L and 
 CCP1CON<5:4>
a) CCPR1L:CCP1CON<5:4> = 
 DutyCycle*0x3FF = 0x1FF
b) CCPR1L = 0x1FF >> 2 = 0x7F, 
 CCP1CON<5:4> = 3
Step #4: Configure CCP1CON
The CCP module is configured in PWM mode 
with the Least Significant bits of the duty cycle 
set, therefore, CCP1CON = ‘b001111000’.
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TIP #21 Dual-Slope Analog-to-Digital 
 Converter
A circuit for performing dual-slope A/D 
conversion utilizing the CCP module is shown in 
Figure 21-1.

Figure 21-1: Dual-Slope Analog-to-Digital 
 Converter

VIN
Comparator
(on-board PIC16F684)

+

-

+

-

Integrator

-VREF

CCP1

PIC
16F684

Dual-slope A/D conversion works by integrating 
the input signal (Vin) for a fixed time (T1). The 
input is then switched to a negative reference 
(-Vref) and integrated until the integrator output 
is zero (T2). Vin is a function of Vref and the 
ratio of T2 to T1. 

Figure 21-2: V vs. Time

Time

VIN

Integrator output
with VIN inputV

VIN

Integrator output
with VREF input

T1

T1 T2

T2

The components of this conversion type are 
the fixed time and the timing of the falling edge. 
The CCP module can accomplish both of these 
components via Compare mode and Capture 
mode respectively. Here’s how:
1. Configure the CCP module in Compare 
 mode, Special Event Trigger.
2. Switch the analog input into the integrator 
 from Vref to Vin.
3. Use the CCP module to wait T1 (T1 chosen 
 based on capacitor value).
4. When the CCP interrupt occurs, switch the 
 analog input into the regulator from Vin to 
 Vref and reconfigure the module in Capture 
 mode; wait for falling edge.
5. When the next CCP interrupt occurs, the time 
 captured by the module is T2.
6. Calculate Vin using Equation 21-1.

Equation 21-1

Vin  =  Vref    T2  
                       T1
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Figure 1-2: Unregulated Supply
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-

R1

Low Battery

Enable

R2

R3

D1

VBATT

Comparator

Comparator will trip when Vbatt = 3V: R1 = 33k, 
R2 = 10k and R3 = 470Ω.
In Figure 1-2, resistor R3 is chosen to bias 
diode D1 above its forward voltage when Vbatt 
is equal to the minimum battery voltage for the 
system. Resistors R1 and R2 are chosen to set 
the inverting input voltage equal to the forward 
voltage of D1.

TIP #1 Low Battery Detection
When operating from a battery power supply, it 
is important for a circuit to be able to determine 
when the battery charge is insufficient for 
normal operation of the circuit. Typically, this 
is a comparator-based circuit similar to the 
Programmable Low Voltage Detect (PLVD) 
peripheral. If the PLVD peripheral is not 
available in the microcontroller, a similar circuit 
can be constructed using a comparator and a 
few external components (see Figure 1-1 and 
Figure 1-2). The circuit in Figure 1-1 assumes 
that the microcontroller is operating from a 
regulated supply voltage. The circuit in Figure 
1-2 assumes that the microcontroller supply is 
unregulated.

Figure 1-1: Regulated Supply

+

-

R1

Low Battery

Enable

R2

R3

R4

VDD

VBATT

The comparator will trip when the battery 
voltage, Vbatt = 5.7V: R1 = 33k, R2 = 10k, 
R3 = 39k, R4 = 10k, Vdd = 5V.
In Figure 1-1, resistors R1 and R2 are chosen 
to place the voltage at the non-inverting input 
at approximately 25% of Vdd. R3 and R4 
are chosen to set the inverting input voltage 
equal to the non-inverting input voltage when 
the battery voltage is equal to the minimum 
operating voltage for the system. 
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TIP #2 Faster Code for Detecting 
 Change
When using a comparator to monitor a sensor, 
it is often just as important to know when 
a change occurs as it is to know what the 
change is. To detect a change in the output of 
a comparator, the traditional method has been 
to store a copy of the output and periodically 
compare the held value to the actual output to 
determine the change. An example of this type 
of routine is shown below.

Example 2-1

Test
 MOVF hold,w ;get old Cout
 XORWF CMCON,w ;compare to new Cout
 ANDLW COUTMASK
 BTFSC STATUS,Z
 RETLW 0 ;if = return "no change"
 MOVF CMCON,w ;if not =, get new Cout
 ANDLW COUTMASK ;remove all other bits
 MOVWF hold ;store in holding var.
 IORLW CHNGBIT ;add change flag
 RETURN

This routine requires 5 instructions for each test, 
9 instructions if a change occurs, and 1 RAM 
location for storage of the old output state.
A faster method for microcontrollers with a 
single comparator is to use the comparator 
interrupt flag to determine when a change has 
occurred.

Example 2-2

Test
 BTFSS PIR1,CMIF ;test comparator flag
 RETLW 0 ;if clear, return a 0
 BTFSS CMCON,COUT ;test Cout
 RETLW CHNGBIT ;if clear return 
   ;CHNGFLAG
 RETLW COUTMASK + CHNGBIT;if set,
   ;return both

This routine requires 2 instructions for each test, 
3 instructions if a change occurs, and no RAM 
storage. 
If the interrupt flag can not be used, or if two 
comparators share an interrupt flag, an alternate 
method that uses the comparator output polarity 
bit can be used.

Example 2-3

Test
 BTFSS CMCON,COUT ;test Cout
 RETLW 0 ;if clear, return 0
 MOVLW CINVBIT ;if set, invert Cout
 XORWF CMCON,f ;forces Cout to 0
 BTFSS CMCON,CINV ;test Cout polarity
 RETLW CHNGFLAG ;if clear, return
   ;CHNGFLAG
 RETLW COUTMASK + CHNGFLAG;if set,
   ;return both 

This routine requires 2 instructions for each test, 
5 instructions if a change occurs, and no GPR 
storage.
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TIP #3 Hysteresis
When the voltages on a comparator’s input are 
nearly equal, external noise and switching noise 
from inside the microcontroller can cause the 
comparator output to oscillate or “chatter.” To 
prevent chatter, some of the comparator output 
voltage is fed back to the non-inverting input of 
the comparator to form hysteresis (see Figure 
3-1). Hysteresis moves the comparator 
threshold up when the input is below the 
threshold, and down when the input is above 
the threshold. The result is that the input must 
overshoot the threshold to cause a change 
in the comparator output. If the overshoot is 
greater than the noise present on the input, the 
comparator output will not chatter. 

Figure 3-1: Comparator with Hysteresis

Input

VDD

+

-

R2

R3R1

Output

To calculate the resistor values required, first 
determine the high and low threshold values 
which will prevent chatter (Vth and Vtl). Using 
Vth and Vtl, the average threshold voltage can 
be calculated using the equation.

Equation 3-1

Next, choose resistor values that satisfy 
Equation 3-2 and calculate the equivalent 
resistance using Equation 3-3.

Note: A continuous current will flow through 
 R1 and R2. To limit the power 
 dissipation in R1 and R2 the total 
 resistance of R1 and R2 should be at 
 least 1k. The total resistance of R1 
 and R2 should also be kept below 
 10K to keep the size of R3 small. 
 Large values for R3, 100k-10 MW, 
 can produce voltage offsets at the 
 non-inverting input due to the 
 comparator’s input bias current.

Equation 3-2

Equation 3-3

Then, determine the feedback divider ratio Dr, 
using Equation 3-4.

Equation 3-4

Finally, calculate the feedback resistor R3 using 
Equation 3-5.

Equation 3-5

Example:
• A Vdd = 5.0V, Vh = 3.0V and Vl = 2.5V
• Vavg = 2.77V
• R = 8.2k and R2 = 10k, gives a Vavg = 2.75V
• Req = 4.5k
• Dr = .1
• R3 = 39k (40.5 calculated)
• Vhact = 2.98V
• Vlact = 2.46V

R3 = Req [ (    1     ) - 1]
           Dr

Vavg  =   Vdd * R2 
               R1 + R2

Req  =   R1 * R2 
              R1 + R2

Dr  =   (Vth - Vtl) 
            Vdd

Vavg  =         Vdd * Vtl       
                     Vdd -  Vth + Vtl



© 2009 Microchip Technology Inc. DS01146B-Page 4-7

PIC® Microcontroller Comparator Tips ‘n Tricks

TIP #6 Data Slicer
In both wired and wireless data transmission, 
the data signal may be subject to DC offset 
shifts due to temperature shifts, ground 
currents or other factors in the system. When 
this happens, using a simple level comparison 
to recover the data is not possible because 
the DC offset may exceed the peak-to-peak 
amplitude of the signal. The circuit typically 
used to recover the signal in this situation is a 
data slicer.
The data slicer shown in Figure 6-1 operates 
by comparing the incoming signal with a sliding 
reference derived from the average DC value 
of the incoming signal. The DC average value 
is found using a simple RC low-pass filter (R1 
and C1). The corner frequency of the RC filter 
should be high enough to ignore the shifts in 
the DC level while low enough to pass the data 
being transferred.
Resistors R2 and R3 are optional. They provide 
a slight bias to the reference, either high or low, 
to give a preference to the state of the output 
when no data is being received. R2 will bias the 
output low and R3 will bias the output high. Only 
one resistor should be used at a time, and its 
value should be at least 50 to 100 times larger 
than R1.

Figure 6-1: Data Slicer

+

-

R2

R3

Input

VDD

Output

Comparator

C1

R1

Example:
Data rate of 10 kbits/second. A low pass filter 
frequency of 500 Hz: R1 = 10k, C1 = 33 mF. R2 
or R3 should be 500k to 1 MB.
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TIP #20 Logic: Set/Reset Flip Flop
This tip shows the use of the comparator to 
implement a Set/Reset Flip Flop. 
The inverting and non-inverting inputs are 
biases at Vdd/2 by resistors R1 through R4. 
The non-inverting input also receives positive 
feedback from the output through R5. The 
common bias voltages and the positive 
feedback configure the comparator as a bistable 
latch. If the output Q is high, the non-inverting 
input is also pulled high, which reinforces the 
high output. If Q is low, the non-inverting input is 
also pulled low, which reinforces the low output. 
To change state, the appropriate input must be 
pulled low to overcome the positive feedback. 
The diodes prevent a positive state on either 
input from pulling the bias of either input above 
Vdd/2.

Note: Typical propagation delay for the 
 circuit is 250-350 ns using the typical 
 on-chip comparator peripheral of a 
 microcontroller. Delay measurements 
 were made with 10k resistance 
 values. 

While the circuit is fairly simple, there are a few 
requirements for correct operation:
1. The inputs Set and Reset must be driven 
 near ground for the circuit to operate 
 properly.
2. The combination of R1/R2 and R3/R4 will 
 draw current constantly, so they must be kept 
 large to minimize current draw.
3. R1 through R4 must be equal for a Vdd/2 trip 
 level.
4. R5 must be greater or equal to R3.
5. R1 through R4 will react with the input 
 capacitance of the comparator, so larger 
 values will limit the minimum input pulse 
 width.

Figure 20-1: Set/Reset Flip Flop

SET

R5

VDD

Q

R3

R4

VDD

R1

R2

+

-RESET

Example:
• Diodes = 1N4148
• R1 = R2 = R3 = R4 = 10k
• R5 = 10k
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TIP #2 Brushless DC Motor Drive 
 Circuits
A Brushless DC motor is a good example of 
simplified	hardware	increasing	the	control	
complexity. The motor cannot commutate 
the	windings	(switch	the	current	flow),	so	the	
control circuit and software must control the 
current	flow	correctly	to	keep	the	motor	turning	
smoothly. The circuit is a simple half-bridge on 
each of the three motor windings.
There are two basic commutation methods 
for Brushless DC motors; sensored and 
sensorless. Because it is critical to know the 
position of the motor so the correct winding can 
be energized, some method of detecting the 
rotor position is required. A motor with sensors 
will directly report the current position to the 
controller. Driving a sensored motor requires 
a look-up table. The current sensor position 
directly correlates to a commutation pattern for 
the bridge circuits.
Without sensors, another property of the 
motor	must	be	sensed	to	find	the	position.	A	
popular method for sensorless applications 
is to measure the back EMF voltage that is 
naturally generated by the motor magnets and 
windings. The induced voltage in the un-driven 
winding can be sensed and used to determine 
the current speed of the motor. Then, the next 
commutation pattern can be determined by a 
time delay from the previous pattern.
Sensorless motors are lower cost due to 
the lack of the sensors, but they are more 
complicated to drive. A sensorless motor 
performs very well in applications that don’t 
require the motor to start and stop. A sensor 
motor would be a better choice in applications 
that must periodically stop the motor.

Figure 2-1: 3 Phase Brushless DC Motor 
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6. Request a minimal initial prototype LCD build 
to ensure proper LCD development and 
ensure proper functionality within the target 
application.

 a) Allow typically 4-6 weeks for initial LCD 
  prototype delivery upon final approval of 
  mechanical drawings and pin 
  assignments.
7. Upon receipt of prototype LCD, confirm 

functionality before giving final approval and 
beginning production of LCD.

Note: Be sure to maintain good records by 
 keeping copies of all materials 
 transferred between both parties, 
 such as initial sketches, drawings, 
 pinouts, etc.

TIP #2 LCD PIC® MCU Segment/ 
 Pixel Table
Table 2-1: Segment Matrix Table

Multiplex 
Commons

Maximum Number of Segments/Pixels
BiasPIC16F913/ 

916
PIC16F914/ 

917 PIC16F946 PIC18F6X90 
(PIC18F6XJ90)

PIC18F8X90 
(PIC18F8XJ90)

Static 
(COM0)

15 24 42 32/ 
(33)

48 Static

1/2 (COM1: 
COM0)

30 48 84 64/ 
(66)

96 1/2 or 
1/3

1/3 (COM2: 
COM0)

45 72 126 96/ 
(99)

144 1/2 or 
1/3

1/4 (COM3: 
COM0)

60 96 168 128/ 
(132)

192 1/3

This Segment Matrix table shows that 
Microchip’s 80-pin LCD devices can drive up 
to 4 commons and 48 segments (192 pixels), 
64-pin devices can drive up to 33 segments 
(132 pixels), 40/44 pin devices can drive up to 
24 segments (96 pixels) and 28-pin devices can 
drive 15 segments (60 segments).

TIP #1 Typical Ordering 
 Considerations and Procedures 
 for Custom Liquid Displays
1. Consider what useful information needs to 

be displayed on the custom LCD and the 
combination of alphanumeric and custom 
icons that will be necessary.

2. Understand the environment in which the 
LCD will be required to operate. Operating 
voltage and temperature can heavily 
influence the contrast of the LCD and 
potentially limit the type of LCD that can be 
used.

3. Determine the number of segments 
necessary to achieve the desired 
display on the LCD and reference the 
PIC Microcontroller LCD matrix for the 
appropriate LCD PIC microcontroller.

4. Create a sketch/mechanical print and 
written description of the custom LCD 
and understand the pinout of the LCD. 
(Pinout definition is best left to the glass 
manufacturer due to the constraints of 
routing the common and segment electrodes 
in two dimensions.)

5. Send the proposed LCD sketch and 
description for a written quotation to at least 
3 vendors to determine pricing, scheduling 
and quality concerns.

 a) Take into account total NRE cost, price 
  per unit, as well as any setup fees.
 b) Allow a minimum of two weeks for formal 
  mechanical drawings and pin assignments 
  and revised counter drawings.
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TIP #3 Resistor Ladder for Low 
 Current 
Bias voltages are generated by using an 
external resistor ladder. Since the resistor 
ladder is connected between Vdd and Vss, 
there will be current flow through the resistor 
ladder in inverse proportion to the resistance. In 
other words, the higher the resistance, the less 
current will flow through the resistor ladder. If 
we use 10K resistors and Vdd = 5V, the resistor 
ladder will continuously draw 166 mA. That 
is a lot of current for some battery-powered 
applications.

Figure 3-1: Resistor Ladder

LCD PIC® MCU

COMm

VDD

R

CPIXEL (n x m)

VSS

VLCD3

VLCD2

VLCD1

VLCD0

SEGn

R

R

How do we maximize the resistance without 
adversely effecting the quality of the display? 
Some basic circuit analysis helps us determine 
how much we can increase the size of the 
resistors in the ladder.
The LCD module is basically an analog 
multiplexer that alternately connects the LCD 
voltages to the various segment and common 
pins that connect across the LCD pixels. The 
LCD pixels can be modeled as a capacitor. 
Each tap point on the resistor ladder can be 
modeled as a Thevenin equivalent circuit. The 
Thevenin resistance is 0 for Vlcd3 and Vlcd0, 
so we look at the two cases where it is non-
zero, Vlcd2 and Vlcd1.

The circuit can be simplified as shown in Figure 
3-2. Rsw is the resistance of the segment 
multiplex switch; Rcom is the resistance of the 
common multiplex switch.

Figure 3-2: Simplified LCD Circuit

CPIXEL
+
-

RTH RSW

RCOM

VTH

The Thevenin voltage is equal to either 2/3 Vdd, 
or 1/3 Vdd, for the cases where the Thevenin 
resistance is non-zero. The Thevenin resistance 
is equal to the parallel resistance of the upper 
and lower parts of the resistor ladder.

Figure 3-3: LCD Circuit Resistance Estimate

CPIXEL
+
-

VTH

RTOTAL = RTH + RSW + RCOM

RTH = (2R * R)/(2R + R)
RTH = 2R2/3R
RTH = 2R/3

RSW = 4.7K
RCOM = 0.4K

As you can see, we can model the drive of a 
single pixel as an RC circuit, where the voltage 
switches from 0V to Vlcd2, for example. For 
LCD PIC microcontrollers, we can estimate the 
resistance of the segment and common 
switching circuits as about 4.7K and 0.4K, 
respectively.
We can see that the time for the voltage 
across the pixel to change from 0 to Vth will 
depend on the capacitance of the pixel and the 
total resistance, of which the resistor ladder 
Thevenin resistance forms the most significant 
part.
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TIP #4: Contrast Control with a 
 Buck Regulator
Contrast control in any of the LCD PIC MCUs is 
accomplished by controlling the voltages applied 
to the Vlcd voltage inputs. The simplest contrast 
voltage generator is to place a resistor divider 
across the three pins. This circuit is shown in 
the data sheet. The resistor ladder method is 
good for many applications, but the resistor 
ladder does not work in an application where the 
contrast must remain constant over a range of 
Vdds. The solution is to use a voltage regulator. 
The voltage regulator can be external to the 
device, or it can be built using a comparator 
internal to the LCD PIC microcontroller.

Figure 4-1: Voltage Generator with 
 Resistor Divider
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The PIC16F946/917/916/914/913 devices have 
a special Comparator mode that provides a 
fixed 0.6V reference. The circuit shown in Figure 
4-1 makes use of this reference to provide a 
regulated contrast voltage. In this circuit, R1, R2 
and R3 provide the contrast control voltages. 
The voltage on Vlcd3 is compared to the internal 
voltage reference by dividing the voltage at 
Vlcd3 at R4 and R5 and applying the reduced 
voltage to the internal comparator. When the 
voltage at Vlcd3 is close to the desired voltage, 
the output of the comparator will begin to 
oscillate. The oscillations are filtered into a DC 
voltage by R6 and C1. C2 and C3 are simply 
small bypass capacitors to ensure that the 
voltages at Vlcd1 and Vlcd2 are steady.

TIP #5: Contrast Control Using a 
 Boost Regulator
In LCD Tip #4, a buck converter was created 
using a comparator. This circuit works great 
when Vdd is greater than the LCD voltage. The 
PIC microcontroller can operate all the way 
down to 2.0V, whereas most low-voltage LCD 
glass only operates down to 3V. In a battery 
application, it is important to stay operational as 
long as possible. Therefore, a boost converter is 
required to boost 2.0V up to 3.0V for the LCD.
The figure below shows one circuit for doing 
this. 

Figure 5-1: Boost Converter
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VDD
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In this circuit, both comparators are used. The 
voltage setpoint is determined by the value of 
Zenier diode D3 and the voltage at R6:R7. The 
rest of the circuit creates a simple multivibrator 
to stimulate a boost circuit. The boost circuit 
can be inductor or capacitor-based. When 
the output voltage is too low, the multivibrator 
oscillates and causes charge to build up in C2. 
As the voltage at C2 increases, the multivibrator 
will begin to operate sporadically to maintain the 
desired voltage at C2.
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TIP #6: Software Controlled Contrast 
 with PWM for LCD Contrast 
 Control
In the previous contrast control circuits, the 
voltage output was set by a fixed reference. In 
some cases, the contrast must be variable to 
account for different operating conditions. The 
CCP module, available in the LCD controller 
devices, allows a PWM signal to be used for 
contrast control. In Figure 6-1, you see the 
buck contrast circuit modified by connecting 
the input to RA6 to a CCP pin. The resistor 
divider created by R4 and R5 in the previous 
design are no longer required. An input to the 
ADC is used to provide feedback but this can 
be considered optional. If the ADC feedback 
is used, notice that it is used to monitor the 
Vdd supply. The PWM will then be used to 
compensate for variations in the supply voltage.

Figure 6-1: Software Controlled Voltage 
 Generator
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Figure 5-2: Two Types of Boost Converter
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The two methods of producing a boost 
converter are shown above. The first circuit is 
simply a switched capacitor type circuit. The 
second circuit is a standard inductor boost 
circuit. These circuits work by raising Vdd. This 
allows the voltage at Vlcd to exceed Vdd. 
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TIP #9 LCD in Sleep Mode
If you have a power-sensitive application that 
must display data continuously, the LCD PIC 
microcontroller can be put to Sleep while the 
LCD driver module continues to drive the 
display.
To operate the LCD in Sleep, only two steps 
are required. First, a time source other than the 
main oscillator must be selected as the LCD 
clock source, because during Sleep, the main 
oscillator is Halted. Options are shown for the 
various LCD PIC MCUs.

Table 9-1: Options for LCD in Sleep Mode

Part LCD Clock Source Use in 
Sleep?

PIC16C925/926
Fosc/256 No
T1OSC Yes

Internal RC Oscillator Yes

PIC16F946/917/ 
916/914/913

Fosc/8192 No
T1OSC/32 Yes

LFINTOSC/32 Yes
PIC18F6X90 (Fosc/4)/8192 No
PIC18F8X90 T1OSC Yes
PIC18F6XJ90

INTRC/32 Yes
PIC18F8XJ90

Second, the Sleep Enable bit (SLPEN) must be 
cleared. The LCD will then continue to display 
data while the part is in Sleep. It’s that easy!
When should you select the internal RC 
oscillator (or LFINTOSC) over the Timer1 
oscillator? It depends on whether your 
application is time-sensitive enough to require 
the accuracy of a crystal on the Timer1 oscillator 
or not. If you have a timekeeping application, 
then you will probably have a 32 kHz crystal 
oscillator connected to Timer1.
Since Timer1 continues to operate during 
Sleep, there is no penalty in using Timer1 as the 
LCD clock source. If you don’t need to use an 
external oscillator on Timer1, then the internal 
RC oscillator (INTRC or LFINTOSC) is more 
than sufficient to use as the clock source for the 
LCD and it requires no external components.

TIP #8 In-Circuit Debug (ICD)
There are two potential issues with using the 
ICD to debug LCD applications. First, the LCD 
controller can freeze while the device is Halted. 
Second, the ICD pins are shared with segments 
on the PIC16F946/917/916/914/913 MCUs.
When debugging, the device is Halted at 
breakpoints and by the user pressing the 
pause button. If the ICD is configured to Halt 
the peripherals with the device, the LCD 
controller will Halt and apply DC voltages to 
the LCD glass. Over time, these DC levels 
can cause damage to the glass; however, for 
most debugging situations, this will not be a 
consideration. The PIC18F LCD MCUs have a 
feature that allows the LCD module to continue 
operating while the device has been Halted 
during debugging. This is useful for checking 
the image of the display while the device is 
Halted and for preventing glass damage if the 
device will be Halted for a long period of time.
The PIC16F946/917/916/914/913 multiplex the 
ICSP™ and ICD pins onto pins shared with 
LCD segments 6 and 7. If an LCD is attached 
to these pins, the device can be debugged with 
ICD; however, all the segments driven by those 
two pins will flicker and be uncontrolled. As 
soon as debugging is finished and the device is 
programmed with Debug mode disabled, these 
segments will be controlled correctly.
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It is possible to implement the current limiting 
by using a single sense resistor. In this case, 
the maximum current would be given by 
Equation 6-1.

Equation 6-1

For high current applications, this method may 
be acceptable. When lower current limits are 
required, the size of the sense resistor, Rsense, 
must be increased. This will cause additional 
power dissipation. An alternative method for 
lower current limits is shown in Figure 6-2.

Figure 6-2: Low Current Limits
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L1

RSENSE

VDD

R2

+

R1

In this case, the Current Sense (CS) input of the 
MCP1630 is biased upward using the R1/R2 
resistor divider. The equations for the new 
current limit are shown in Equation 6-2.

Equation 6-2

 

Equation 6-2 can be solved to determine the 
values of R1 and R2 that provide the desired 
current limit.

TIP #6 Current Limiting Using the 
 MCP1630
Figure 6-1: MCP1630 High-Speed PWM
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The block diagram for the MCP1630 high-speed 
PWM driver is shown in Figure 6-1. One of the 
features of the MCP1630 is the ability to 
perform current limiting. As shown in the bottom 
left corner of the diagram, the output of the 
Error Amplifier (EA) is limited by a 2.7V clamp. 
Therefore, regardless of the actual error, the 
input to the negative terminal of the comparator 
(labeled Comp) is limited to 2.7V ÷ 3 or 0.9V.

Imax = (0.9V) / Rsense

0.9V  =    (Vdd - Imax • Rsense) • R2   
                R1 + R2
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The A/D converter is used to sense the output 
voltage for this particular application, Vdd is 
used as the reference to the A/D converter. If 
desired, a more accurate reference could be 
used. The output voltage is subtracted from the 
desired value, creating an error value. 
This error becomes the input to the PID routine. 
The PID routine uses the error voltage to 
determine the appropriate duty cycle for the 
output drive. The PID constants are weighted 
so that the main portion of the control is 
proportional and integral. The differential 
component is not essential to this system and is 
not used. Furthermore, the PID constants could 
be optimized if a particular type of transient 
response was desired, or if a predictable 
transient load was to be connected. 
Finally, the CCP module is used to create a 
PWM signal at the chosen frequency with the 
proper duty cycle.
Example software is provided for the 
PIC12F683 using the schematic in Figure 16-1.
The following application notes are related to 
PID control algorithms and all include example 
software:
• AN258, “Low Cost USB Microcontroller 

Programmer The Building of the PICkit® 1 
Flash Starter Kit” (DS00258)

• AN937, “Implementing a PID Controller Using 
a PIC18 MCU” (DS00937)

• AN964, “Software PID Control of an Inverted 
Pendulum Using the PIC16F684” (DS00937)

TIP #17 An Error Detection and 
 Restart Controller
An error detection and restart controller can 
be created by combining Tip #18 and Tip #19. 
The controller uses the PIC microcontroller 
(MCU) Analog-to-Digital Converter (ADC) for 
making voltage and current measurements. 
Input voltage, input current, output voltage, 
output current, temperature and more can all 
be measured using the A/D converter. The 
on-board comparators are used for monitoring 
faster signals, such as output current, 
ensuring that they do not exceed maximum 
allowable levels. Many PIC MCUs have 
internal programmable comparator references, 
simplifying the circuit.

Figure 17-1: Block Diagram
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Using a PIC MCU as a controller allows 
for a greater level of intelligence in system 
monitoring. Rather than a single event causing 
a shutdown, a combination of events can 
cause a shutdown. A certain number of events 
in a certain time frame or possibly a certain 
sequence of events could be responsible for a 
shutdown.
The PIC MCU has the ability to restart the 
supply based on the shutdown event. Some 
events (such as overcurrent) may call for 
immediate restart, while other events (such as 
overtemperature) may require a delay before 
restarting, perhaps monitoring other parameters 
and using those to determine when to restart. 
It is also possible to build this type of error 
detection and restart controller into many of the 
tips listed within this guide. 
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TIP	#5	3.3V	→	5V	Direct	Connect
The simplest and most desired way to connect 
a 3.3V output to a 5V input is by a direct 
connection.	This	can	be	done	only	if	the	
following	2	requirements	are	met:
•	The	Voh	of	the	3.3V	output	is	greater	than	the 
 Vih	of	the	5V	input
•	The	Vol	of	the	3.3V	output	is	less	than	the	Vil 
 of	the	5V	input
An	example	of	when	this	technique	can	be	
used	is	interfacing	a	3.3V	LVCMOS	output	to	
a 5V TTL input. From the values given in Table 
4-1,	it	can	clearly	be	seen	that	both	of	these	
requirements are met.
3.3V LVCMOS Voh	of	3.0	volts	is	greater	than	
5V TTL Vih	of	2.0	volts,	and
3.3V LVCMOS Vol	of	0.5	volts	is	less	than	5V	
TTL Vil	of	0.8	volts.
When	both	of	these	requirements	are	not	met,	
some additional circuitry will be needed to 
interface	the	two	parts.	See	Tips	6,	7,	8	and	13	
for	possible	solutions.

TIP	#6	3.3V	→	5V	Using	a	MOSFET 
 Translator
In order to drive any 5V input that has a higher 
Vih than the Voh	of	a	3.3V	CMOS	part,	some	
additional circuitry is needed. A low-cost two 
component solution is shown in Figure 6-1.
When	selecting	the	value	for	R1,	there	are	two	
parameters that need to be considered; the 
switching	speed	of	the	input	and	the	current	
consumption	through	R1.	When	switching	the	
input	from	a	‘0’	to	a	‘1’,	you	will	have	to	account	
for	the	time	the	input	takes	to	rise	because	of	
the	RC	time	constant	formed	by	R1,	and	the	
input	capacitance	of	the	5V	input	plus	any	
stray capacitance on the board. The speed at 
which you can switch the input is given by the 
following	equation:

Equation 6-1

Since	the	input	and	stray	capacitance	of	the	
board	are	fixed,	the	only	way	to	speed	up	the	
switching	of	the	input	is	to	lower	the	resistance	
of	R1.	The	trade-off	of	lowering	the	resistance	of	
R1	to	get	faster	switching	times	is	the	increase	
in current draw when the 5V input remains low. 
The	switching	to	a	‘0’	will	typically	be	much	
faster	than	switching	to	a	‘1’	because	the	ON	
resistance	of	the	N-channel	MOSFET	will	be	
much smaller than R1. Also, when selecting the 
N-channel	FET,	select	a	FET	that	has	a	lower	
Vgs threshold voltage than the Voh	of	3.3V	
output.

Figure 6-1: MOSFET Translator
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Tsw =	3	x	R1	x	(Cin + Cs)


