
Microchip Technology - PIC16C63A-20I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 22

Program Memory Size 7KB (4K x 14)

Program Memory Type OTP

EEPROM Size -

RAM Size 192 x 8

Voltage - Supply (Vcc/Vdd) 4V ~ 5.5V

Data Converters -

Oscillator Type External

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-SOIC (0.295", 7.50mm Width)

Supplier Device Package 28-SOIC

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic16c63a-20i-so

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic16c63a-20i-so-4388281
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

© 2009 Microchip Technology Inc. DS01146B-Page 1-3

8-pin Flash PIC® Microcontroller Tips ‘n Tricks

TIP #3 Read Three States
 From One Pin
To check state Z:
• Drive output pin high
• Set to Input
• Read 1
• Drive output pin low
• Set to Input
• Read 0
To check state 0:
• Read 0 on pin

To check state 1:
• Read 1 on pin

State Link 0 Link 1
0 closed open
1 open closed

NC open open

Jumper has three possible states: not
connected, Link 1 and Link 0. The capacitor
will charge and discharge depending on
the I/O output voltage allowing the “not
connected” state. Software should check the
“not connected” state first by driving I/O high,
reading 1 and driving I/O low and reading 0. The
“Link 1” and “Link 0” states are read directly.

PIC
I/O

5V

0V

Link 0

Link 1

Figure 3-1

TIP #4 Reading DIP Switches
The input of a timer
can be used to test
which switch(s)
is closed. The
input of Timer1 is
held high with a
pull-up resistor.
Sequentially,
each switch I/O is
set to input and
Timer1 is checked
for an increment
indicating the
switch is closed.
Each bit in the DP register represents its
corresponding switch position. By setting
Timer1 to FFFFh and enabling its interrupt, an
increment will cause a rollover and generate
an interrupt. This will simplify the software by
eliminating the bit test on the TMR1L register.
Sequentially set each GPIO to an input and test
for TMR1 increment (or 0 if standard I/O pin is
used).

Figure 4-1

PIC12F6XX

GP0
GP1
GP2
GP3

GP5/T1CKI
10K

VDD

GP4Data I/O

movlw b'11111111'
movwf TRISIO
movwf DIP
movlw b'00000111'
movwf T1CON
movlw b'11111110'
movwf Mask
clrf GPIO

LOOP
clrf TMR1L
movf Mask,W
movwf TRISIO
btfsc TMR1L,0
andwf DIP,F
bsf STATUS,C
rlf Mask,F
btfsc Mask,4
goto Loop
retlw 0

Example 4-1

© 2009 Microchip Technology Inc.Page 1-4 DS01146B

8-pin Flash PIC® Microcontroller Tips ‘n Tricks

TIP #5 Scanning Many Keys With
 One Input
The time required to charge a capacitor
depends on resistance between Vdd and
capacitor. When a button is pressed, Vdd is
supplied to a different point in the resistor
ladder. The resistance between Vdd and the
capacitor is reduced, which reduces the charge
time of the capacitor. A timer is used with a
comparator or changing digital input to measure
the capacitor charge time. The charge time is
used to determine which button is pressed.
Software sequence:
1. Configure GP2 to output a low voltage to
 discharge capacitor through I/O resistor.
2. Configure GP2 as one comparator input and
 CVref as the other.
3. Use a timer to measure when the comparator
 trips. If the time measured is greater than the
 maximum allowed time, then repeat;
 otherwise determine which button is pressed.
When a key is pressed, the voltage divider
network changes the RC ramp rate.

Figure 5-1

PIC12F6XX

GP0
GP1

GP2

GP4
GP5

GP3

16
Resistors

220Ω

R

R

R

R

See AN512, “Implementing Ohmmeter/
Temperature Sensor” for code ideas.

TIP #6 Scanning Many Keys and
 Wake-up From Sleep
An additional I/O can be added to wake the
part when a button is pressed. Prior to Sleep,
configure GP1 as an input with interrupt-on-
change enabled and GP2 to output high. The
pull-down resistor holds GP1 low until a button
is pressed. GP1 is then pulled high via GP2
and Vdd generating an interrupt. After wake-up,
GP2 is configured to output low to discharge
the capacitor through the 220Ω resistor. GP1 is
set to output high and GP2 is set to an input to
measure the capacitor charge time.
• GP1 pin connected to key common
• Enable wake-up on port change
• Set GP1 as input and GP2 high prior to Sleep
• If key is pressed the PIC MCU wakes up, GP2
 must be set low to discharge capacitor
• Set GP1 high upon wake-up to scan keystroke

Figure 6-1

VDD
100R

PIC12F6XX

GP0
GP1

GP2

GP4
GP5

GP3
220Ω

R

R

R

R

16
Resistors

© 2009 Microchip Technology Inc.Page 1-10 DS01146B

8-pin Flash PIC® Microcontroller Tips ‘n Tricks

The comparator and comparator voltage
reference (CVref) on the PIC12F629/675 are
ideal for this application.
1. GP1 average voltage = CVref

2. Time base as sampling rate
3. At the end of each time base period:
 - If GP1 > CVref, then GP2 Output Low
 - If GP1 < CVref, then GP2 Input mode
4. Accumulate the GP2 lows over many samples
5. Number of samples determines resolution
6. Number of GP2 lows determine effective duty
 cycle of Rref

Figure 13-3

PIC12F6XX

RSEN

GP1

GP2

T1G
RREF

VDD

+

-

CVREF

COUT

Tip #13.2 Reading a Sensor With Higher
 Accuracy – Charge Balancing
 Method
1. Sensor charges a capacitor
2. Reference resistor discharges the capacitor
3. Modulate reference resistor to maintain
 constant average charge in the capacitor
4. Use comparator to determine modulation
To improve resolution beyond 10 or 12 bits,
a technique called “Charge Balancing” can
be used. The basic concept is for the MCU
to maintain a constant voltage on a capacitor
by either allowing the charge to build through
a sensor or discharge through a reference
resistor. A timer is used to sample the
capacitor voltage on regular intervals until a
predetermined number of samples are counted.
By counting the number of times the capacitor
voltage is over an arbitrary threshold, the sensor
voltage is determined.

© 2009 Microchip Technology Inc.Page 1-14 DS01146B

8-pin Flash PIC® Microcontroller Tips ‘n Tricks

TIP #18 Swap File Register with W
Example 18-1

SWAPWF MACRO REG
XORWF REG,F
XORWF REG,W
XORWF REG,F
ENDM

The following macro swaps the contents of W
and REG without using a second register.
Needs: 0 TEMP registers
 3 Instructions
 3 TCY
An efficient way of swapping the contents of a
register with the working register is to use three
XORWF instructions. It requires no temporary
registers and three instructions. Here’s an
example:
 W REG Instruction
10101100 01011100 XORWF REG,F
10101100 11110000 XORWF REG,W
01011100 11110000 XORWF REG,F
01011100 10101100 Result

TIP #19 Bit Shifting Using Carry Bit
Rotate a byte through carry without using RAM
variable for loop count:
• Easily adapted to serial interface transmit
 routines.
• Carry bit is cleared (except last cycle) and the
 cycle repeats until the zero bit sets indicating
 the end.

Example 19-1

bsf
rlf
bcf
btfsc
bsf
bcf
rlf
movf
btfss
goto

LIST P=PIC12f629
INCLUDE P12f629.INC
buffer

 STATUS,C
 buffer,f
 GPIO,Dout
 STATUS,C
 GPIO,Dout
 STATUS,C
 buffer,f
 buffer,f
 STATUS,Z
 Send_Loop

equ 0x20

 ;Set 'end of loop' flag
 ;Place first bit into C
 ;precondition output
 ;Check data 0 or 1 ?

 ;Clear data in C
 ;Place next bit into C
 ;Force Z bit
 ;Exit?

© 2009 Microchip Technology Inc. DS01146B-Page 2-1

PIC® Microcontroller Low Power Tips ‘n Tricks

Table Of Contents

GENERAL LOW POWER TIPS ‘N TRICKS
TIP #1 Switching Off External Circuits/
 Duty Cycle .. 2-2
TIP #2 Power Budgeting 2-3
TIP #3 Configuring Port Pins 2-4
TIP #4 Use High-Value Pull-Up Resistors 2-4
TIP #5 Reduce Operating Voltage 2-4
TIP #6 Use an External Source for
 CPU Core Voltage 2-5
TIP #7 Battery Backup for PIC MCUs 2-6

DYNAMIC OPERATION TIPS ‘N TRICKS
TIP #8 Enhanced PIC16 Mid-Range Core 2-6
TIP #9 Two-Speed Start-Up 2-7
TIP #10 Clock Switching 2-7
TIP #11 Use Internal RC Oscillators 2-7
TIP #12 Internal Oscillator Calibration 2-8
TIP #13 Idle and Doze Modes 2-8
TIP #14 Use NOP and Idle Mode 2-9
TIP #15 Peripheral Module Disable
 (PMD) Bits .. 2-9

STATIC POWER REDUCTION TIPS ‘N TRICKS
TIP #16 Deep Sleep Mode 2-10
TIP #17 Extended WDT and Deep
 Sleep WDT ... 2-10
TIP #18 Low Power Timer1 Oscillator
 and RTCC... 2-10
TIP #19 Low Power Timer1 Oscillator Layout .. 2-11
TIP #20 Use LVD to Detect Low Battery 2-11
TIP #21 Use Peripheral FIFO and DMA 2-11
TIP #22 Ultra Low-Power
 Wake-Up Peripheral 2-12

TIPS ‘N TRICKS INTRODUCTION
Microchip continues to provide innovative
products that are smaller, faster, easier to
use and more reliable. The Flash-based PIC®
microcontrollers (MCUs) are used in an wide
range of everyday products, from smoke
detectors, hospital ID tags and pet containment
systems, to industrial, automotive and medical
products.
PIC MCUs featuring nanoWatt technology
implement a variety of important features which
have become standard in PIC microcontrollers.
Since the release of nanoWatt technology,
changes in MCU process technology and
improvements in performance have resulted in
new requirements for lower power. PIC MCUs
with nanoWatt eXtreme Low Power (nanoWatt
XLP™) improve upon the original nanoWatt
technology by dramatically reducing static
power consumption and providing new flexibility
for dynamic power management.
The following series of Tips n’ Tricks can be
applied to many applications to make the most
of PIC MCU nanoWatt and nanoWatt XLP
devices.

GENERAL LOW POWER TIPS ‘N
TRICKS
The following tips can be used with all PIC
MCUs to reduce the power consumption of
almost any application.

CHAPTER 2
PIC® Microcontroller Low Power

Tips ‘n Tricks

© 2009 Microchip Technology Inc.Page 2-8-DS01146B

PIC® Microcontroller Low Power Tips ‘n Tricks

TIP #12 Internal Oscillator Calibration
An internal RC oscillator calibrated from the
factory may require further calibration as the
temperature or Vdd change. Timer1/SOSC can
be used to calibrate the internal oscillator by
connecting a 32.768 kHz clock crystal. Refer
to AN244, “Internal RC Oscillator Calibration”
for the complete application details. Calibrating
the internal oscillator can help save power by
allowing for use of the internal RC oscillator
in applications which normally require higher
accuracy crystals

Figure 12-1: Timer1 Used to Calibrate an
 Internal Oscillator

PIC16F818/819

T1OSI

T1OSO
C2

33 pF

C1
33 pF

XTAL
32.768 kHz

The calibration is based on the measured
frequency of the internal RC oscillator. For
example, if the frequency selected is 4 MHz,
we know that the instruction time is 1 µs
(Fosc/4) and Timer1 has a period of 30.5 µs
(1/32.768 kHz). This means within one Timer1
period, the core can execute 30.5 instructions.
If the Timer1 registers are preloaded with a
known value, we can calculate the number of
instructions that will be executed upon a Timer1
overflow.
This calculated number is then compared
against the number of instructions executed by
the core. With the result, we can determine if
re-calibration is necessary, and if the frequency
must be increased or decreased. Tuning uses
the OSCTUNE register, which has a ±12%
tuning range in 0.8% steps.

TIP #13 Idle and Doze Modes
nanoWatt and nanoWatt XLP devices have
an Idle mode where the clock to the CPU is
disconnected and only the peripherals are
clocked. In PIC16 and PIC18 devices, Idle
mode can be entered by setting the Idle bit in
the OSCON register to ‘1’ and executing the
SLEEP instruction. In PIC24, dsPIC® DSCs,
and PIC32 devices, Idle mode can be entered
by executing the instruction “PWRSAV #1”. Idle
mode is best used whenever the CPU needs to
wait for an event from a peripheral that cannot
operate in Sleep mode. Idle mode can reduce
power consumption by as much as 96% in
many devices.
Doze mode is another low power mode
available in PIC24, dsPIC DSCs, and PIC32
devices. In Doze mode, the system clock to
the CPU is postscaled so that the CPU runs at
a lower speed than the peripherals. If the CPU
is not tasked heavily and peripherals need to
run at high speed, then Doze mode can be
used to scale down the CPU clock to a slower
frequency. The CPU clock can be scaled down
from 1:1 to 1:128. Doze mode is best used in
similar situations to Idle mode, when peripheral
operation is critical, but the CPU only requires
minimal functionality.

© 2009 Microchip Technology Inc.Page 2-10-DS01146B

PIC® Microcontroller Low Power Tips ‘n Tricks

Static Power Reduction Tips n’ Tricks
The following tips and tricks will help reduce
the power consumption of a device while it is
asleep. These tips allow an application to stay
asleep longer and to consume less current
while sleeping.

TIP #16 Deep Sleep Mode
In Deep Sleep mode, the CPU and all
peripherals except RTCC, DSWDT and
LCD (on LCD devices) are not powered.
Additionally, Deep Sleep powers down the
Flash, SRAM, and voltage supervisory circuits.
This allows Deep Sleep mode to have lower
power consumption than any other operating
mode. Typical Deep Sleep current is less than
50 nA on most devices. Four bytes of data are
retained in the DSGPRx registers that can be
used to save some critical data required for the
application. While in Deep Sleep mode, the
states of I/O pins and 32 kHz crystal oscillator
(Timer1/SOSC) are maintained so that Deep
Sleep mode does not interrupt the operation of
the application. The RTCC interrupt, Ultra Low
Power Wake-up, DSWDT time-out, External
Interrupt 0 (INT0), MCLR or POR can wake-up
the device from Deep Sleep. Upon wake-up the
device resumes operation at the reset vector.
Deep Sleep allows for the lowest possible
static power in a device. The trade-off is that
the firmware must re-initialize after wake-
up. Therefore, Deep Sleep is best used in
applications that require long battery life and
have long sleep times. Refer to the device
datasheets and Family Reference Manuals for
more information on Deep Sleep and how it is
used.

TIP #17 Extended WDT and Deep
Sleep WDT
A commonly used source to wake-up from
Sleep or Deep Sleep is the Watchdog Timer
(WDT) or Deep Sleep Watchdog Timer
(DSWDT). The longer the PIC MCU stays
in Sleep or Deep Sleep, the less power
consumed. Therefore, it is appropriate to use
as long a timeout period for the WDT as the
application will allow.
The WDT runs in all modes except for Deep
Sleep. In Deep Sleep, the DSWDT is used
instead. The DSWDT uses less current and
has a longer timeout period than the WDT. The
timeout period for the WDT varies by device,
but typically can vary from a few milliseconds to
up to 2 minutes. The DSWDT time-out period
can be programmed from 2.1ms to 25.7days

TIP #18 Low Power Timer1 Oscillator
and RTCC
nanoWatt XLP microcontrollers all have a
robust Timer1 oscillator (SOSC on PIC24)
which draws less than 800 nA. nanoWatt
technology devices offer a low power Timer1
oscillator which draws 2-3 uA. Some devices
offer a selectable oscillator which can be used
in either a low-power or high-drive strength
mode to suit both low power or higher noise
applications. The Timer1 counter and oscillator
can be used to generate interrupts for periodic
wakes from Sleep and other power managed
modes, and can be used as the basis for a real-
time clock. Timer1/SOSC wake-up options vary
by device. Many nanoWatt XLP devices have a
built-in hardware Real-Time Clock and Calendar
(RTCC), which can be configured for wake-up
periods from 1 second to many years.
Some nanoWatt devices and all nanoWatt
XLP devices can also use the Timer1/SOSC
oscillator as the system clock source in place
of the main oscillator on the OSC1/OSC2 pins.
By reducing execution speed, total current
consumption can be reduced.

© 2009 Microchip Technology Inc.Page 3-8-DS01146B

PIC® Microcontroller CCP and ECCP Tips ‘n Tricks

Step #2: Calculate CCPR1 (CCPR1L and
 CCPR1H) to shorten the time-out to
 exactly 0.2 seconds
a) CCPR1 = Interval Time/(Tosc*4*prescaler) =
 0.2/(125 ns*4*8) = 5000 = 0xC350
b) Therefore, CCPR1L = 0x50, and
 CCPR1H = 0xC3
Step #3: Configuring CCP1CON
The CCP module should be configured in
Trigger Special Event mode. This mode
generates an interrupt when the Timer1 equals
the value specified in CCPR1L and Timer1
is automatically cleared(1). For this mode,
CCP1CON = ‘b00001011’.

Note 1: Trigger Special Event mode also
 starts an A/D conversion if the
 A/D module is enabled. If this
 functionality is not desired, the CCP
 module should be configured in
 “generate software interrupt-on-
 match only” mode (i.e., CCP1CON =
 b‘00001010’). Timer 1 must also
 be cleared manually during the
 CCP interrupt.

TIP #7 Periodic Interrupts
Generating interrupts at periodic intervals
is a useful technique implemented in many
applications. This technique allows the main
loop code to run continuously, and then, at
periodic intervals, jump to the interrupt service
routine to execute specific tasks (i.e., read the
ADC). Normally, a timer overflow interrupt is
adequate for generating the periodic interrupt.
However, sometimes it is necessary to interrupt
at intervals that can not be achieved with a
timer overflow interrupt. The CCP configured
in Compare mode makes this possible by
shortening the full 16-bit time period.

Example Problem:
A PIC16F684 running on its 8 MHz internal
oscillator needs to be configured so that it
updates a LCD exactly 5 times every second.
Step #1: Determine a Timer1 prescaler
 that allows an overflow at greater
 than 0.2 seconds
a) Timer1 overflows at: Tosc*4*65536*
 prescaler
b) For a prescaler of 1:1, Timer1 overflows in
 32.8 ms.
c) A prescaler of 8 will cause an overflow at a
 time greater than 0.2 seconds.
 8 x 32.8 ms = 0.25s

© 2009 Microchip Technology Inc.Page 3-12-DS01146B

PIC® Microcontroller CCP and ECCP Tips ‘n Tricks

TIP #12 Repetitive Phase Shifted
 Sampling
Repetitive phase shifted sampling is a technique
to artificially increase the sampling rate of an
A/D converter when sampling waveforms that
are both periodic and constant from period
to period. The technique works by capturing
regularly spaced samples of the waveform
from the start to finish of the waveform’s
period. Sampling of the next waveform is then
performed in the same manner, except that
the start of the sample sequence is delayed a
percentage of the sampling period. Subsequent
waveforms are also sampled, with each sample
sequence slightly delayed from the last, until
the delayed start of the sample sequence is
equal to one sample period. Interleaving the
sample sets then produces a sample set of
the waveform at a higher sample rate. Figure
12-1 shows an example of a high frequency
waveform.

Figure 12-1: High Frequency Periodic
 Waveform

IA

As indicated in the key, the finely dotted lines
show where the A/D readings are taken during
the first period of the waveform. The medium
sized dashed lines show when the A/D readings
are taken during the second period, and so on.
Figure 12-2 shows these readings transposed
onto one period.

Figure 12-2: Transposed Waveform

IV

Time

First Pass
Second Pass
Third Pass
Fourth Pass

Key

Volts

The CCP module is configured in Compare
Special Event Trigger mode to accomplish this
task. The phase shift is implemented by picking
values of CCPRxL and CCPRxH that are not
synchronous with the period of the sampling
waveform. For instance, if the period of a
waveform is 100 ms, then sampling at a rate of
once every 22 µs will give the following set of
sample times over 11 periods (all values in µs).

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

0 10 20 8 18 6 16 4 14 2 12

22 32 42 30 40 28 38 26 36 24 34

44 54 64 52 62 50 60 48 58 46 56

66 76 86 74 84 72 82 70 80 68 78

88 98 96 94 92 90

When these numbers are placed in sequential
order, they reveal a virtual sampling interval (Iv)
of 2 ms from 0 ms to 100 ms, although the actual
sampling interval (Ia) is 22 ms.

© 2009 Microchip Technology Inc. DS01146B-Page 3-17

PIC® Microcontroller CCP and ECCP Tips ‘n Tricks

TIP #17 Boost Power Supply
Figure 17-1: Boost Power Supply Circuit

D1VIN

PIC16F684

CCP1

Feedback

C2
47 µF

VCC

C1
10 µF

R1
4.7 kΩ

L1
680 µH

Q1R3

10 kΩ

VOUT

RL

AN0

Hardware
Pulse-width modulation plays a key role in
boost power supply design. Figure 17-1 shows
a typical boost circuit. The circuit works by Q1
grounding the inductor (L1) during the high
phase of the PWM signal generated by CCP1.
This causes an increasing current to flow
through L1 while Vcc is applied. During the low
phase of the PWM signal, the energy stored in
L1 flows through D1 to the storage capacitor
(C2) and the load. Vout is related to Vin by
Equation 17-1.

Note: Technical Brief TB053 “Generating
 High Voltage Using the PIC16C781/
 782” provides details on boost power
 supply design.

The first parameter to determine is the duty
cycle based upon the input and output voltages.
See Equation 17-1.

Equation 17-1

Next, the value of the inductor is chosen based
on the maximum current required by the load,
the switching frequency and the duty cycle. A
function for inductance in terms of load current
is given by Equation 17-2, where T is the PWM
period, D is the duty cycle, and Iout is the
maximum load current.

Equation 17-2

The value for L is chosen arbitrarily to satisfy
this equation given Iout, a maximum duty cycle
of 75% and a PWM frequency in the 10 kHz to
100 kHz range.
Using the value chosen for L, the ripple current
is calculated using Equation 17-3.

Equation 17-3

Iripple can not exceed the saturation current for
the inductor. If the value for L does produce a
ripple current greater than Isat, a bigger inductor
is needed.

Note: All equations above assume a
 discontinuous current mode.

Firmware
The PWM duty cycle is varied by the
microcontroller in order to maintain a stable
output voltage over fluctuating load conditions.
A firmware implemented PID control loop is
used to regulate the duty cycle. Feedback from
the boost power supply circuit provides the input
to the PID control.

Note: Application Note AN258 “Low Cost
 USB Microcontroller Programmer”
 provides details on firmware-based
 PID control.

Iripple = Vin DT
 L

L = Vin (1 - D) Dt
 2 Iout

 Vout = 1
 Vin 1 - D

© 2009 Microchip Technology Inc.Page 4-4-DS01146B

PIC® Microcontroller Comparator Tips ‘n Tricks

TIP #3 Hysteresis
When the voltages on a comparator’s input are
nearly equal, external noise and switching noise
from inside the microcontroller can cause the
comparator output to oscillate or “chatter.” To
prevent chatter, some of the comparator output
voltage is fed back to the non-inverting input of
the comparator to form hysteresis (see Figure
3-1). Hysteresis moves the comparator
threshold up when the input is below the
threshold, and down when the input is above
the threshold. The result is that the input must
overshoot the threshold to cause a change
in the comparator output. If the overshoot is
greater than the noise present on the input, the
comparator output will not chatter.

Figure 3-1: Comparator with Hysteresis

Input

VDD

+

-

R2

R3R1

Output

To calculate the resistor values required, first
determine the high and low threshold values
which will prevent chatter (Vth and Vtl). Using
Vth and Vtl, the average threshold voltage can
be calculated using the equation.

Equation 3-1

Next, choose resistor values that satisfy
Equation 3-2 and calculate the equivalent
resistance using Equation 3-3.

Note: A continuous current will flow through
 R1 and R2. To limit the power
 dissipation in R1 and R2 the total
 resistance of R1 and R2 should be at
 least 1k. The total resistance of R1
 and R2 should also be kept below
 10K to keep the size of R3 small.
 Large values for R3, 100k-10 MW,
 can produce voltage offsets at the
 non-inverting input due to the
 comparator’s input bias current.

Equation 3-2

Equation 3-3

Then, determine the feedback divider ratio Dr,
using Equation 3-4.

Equation 3-4

Finally, calculate the feedback resistor R3 using
Equation 3-5.

Equation 3-5

Example:
• A Vdd = 5.0V, Vh = 3.0V and Vl = 2.5V
• Vavg = 2.77V
• R = 8.2k and R2 = 10k, gives a Vavg = 2.75V
• Req = 4.5k
• Dr = .1
• R3 = 39k (40.5 calculated)
• Vhact = 2.98V
• Vlact = 2.46V

R3 = Req [(1) - 1]
 Dr

Vavg = Vdd * R2
 R1 + R2

Req = R1 * R2
 R1 + R2

Dr = (Vth - Vtl)
 Vdd

Vavg = Vdd * Vtl
 Vdd - Vth + Vtl

© 2009 Microchip Technology Inc.Page 5-4-DS01146B

DC Motor Control Tips ‘n Tricks

Figure 2-3: Quadrature Decoder (Sensor Motor)

Digital
Outputs

A B C

PIC® MCU or dsPIC® DSC

Digital
Inputs

Hall
Effect
Motor
Position
Sensor

Drive
Circuit

Motor
Sensor
Outputs

Application notes describing Brushless DC Motor
Control are listed below and can be found on the
Microchip web site at: www.microchip.com.
•	AN857,	“Brushless DC Motor Control Made

Easy” (DS00857)
•	AN885,	“Brushless DC Motor Fundamentals”

(DS00885)
•	AN899,	“Brushless DC Motor Control Using

PIC18FXX31” (DS00899)
•	AN901,	“Using the dsPIC30F for Sensorless

BLDC Control” (DS00901)
•	AN957,	“Sensored BLDC Motor Control Using

dsPIC30F2010” (DS00957)
•	AN992,	“Sensorless BLDC Motor Control

Using dsPIC30F2010” (DS00992)
•	AN1017,	“Sinusoidal Control of PMSM with

dsPIC30F DSC” (DS01017)
•	GS005,	“Using the dsPIC30F Sensorless

Motor Tuning Interface” (DS93005)

TIP #3 Stepper Motor Drive Circuits
Stepper motors are similar to Brushless
DC motors in that the control system must
commutate the motor through the entire rotation
cycle. Unlike the brushless motor, the position
and speed of a stepping motor is predictable
and does not require the use of sensors.
There are two basic types of stepper motors,
although some motors are built to be used in
either mode. The simplest stepper motor is
the unipolar motor. This motor has four drive
connections and one or two center tap wires
that are tied to ground or Vsupply, depending
on the implementation. Other motor types are
the bipolar stepper and various combinations
of unipolar and bipolar, as shown in Figure 3-1
and Figure 3-2. When each drive connection
is energized, one coil is driven and the motor
rotates one step. The process is repeated
until all the windings have been energized.
To increase the step rate, often the voltage is
increased beyond the motors rated voltage.
If the voltage is increased, some method of
preventing an over current situation is required.
There are many ways to control the winding
current, but the most popular is a chopper
system that turns off current when it reaches
an	upper	limit	and	enables	the	current	flow	a	
short time later. Current sensor systems are
discussed in Tip #6. Some systems are built
with a current chopper, but they do not detect
the current, rather the system is designed to
begin	a	fixed	period	chopping	cycle	after	the	
motor has stepped to the next position. These
are simpler systems to build, as they only
require a change in the software.

© 2009 Microchip Technology Inc. DS01146B-Page 5-5

DC Motor Control Tips ‘n Tricks

Figure 3-1: 4 and 5 Wire Stepper Motors

Unipolar 5 Wire Bipolar 4 Wire

Figure 3-2: 6 and 8 Wire Stepper Motors

Unipolar and Bipolar
6 Wire

Individual coils
wire anyway
appropriate

8 Wire

Short for
Unipolar

Figure 3-3: Unipolar Motor (4 Low Side
 Switches)

01

V+

01-04 are outputs from a PIC® MCU or dsPIC® DSC.

Motor

02

04

03

Figure 3-4: Bipolar Motor (4 Half-Bridges)

A-H are digital outputs from a PIC® MCU
or dsPIC® DSC.

V

A

B

C

D

V

MotorV

E

F

G

H

V

© 2009 Microchip Technology Inc.Page 5-12-DS01146B

DC Motor Control Tips ‘n Tricks

NOTES:

© 2009 Microchip Technology Inc. DS01146B-Page 6-1

LCD PIC® Microcontroller Tips ‘n Tricks

Table Of Contents

TIPS ‘N TRICKS INTRODUCTION
TIP #1: Typical Ordering Considerations and
 Procedures for Custom Liquid
 Displays .. 6-2
TIP #2: LCD PIC® MCU Segment/Pixel
 Table ... 6-2
TIP #3: Resistor Ladder for Low Current 6-3
TIP #4: Contrast Control with a
 Buck Regulator 6-5
TIP #5: Contrast Control Using a
 Boost Regulator 6-5
TIP #6: Software Controlled Contrast with
 PWM for LCD Contrast Control 6-6
TIP #7: Driving Common Backlights 6-7
TIP #8: In-Circuit Debug (ICD) 6-8
TIP #9: LCD in Sleep Mode 6-8
TIP #10: How to Update LCD Data
 Through Firmware 6-9
TIP #11: Blinking LCD 6-9
TIP #12: 4 x 4 Keypad Interface that
 Conserves Pins for LCD Segment
 Drivers .. 6-10
Application Note References 6-11

TIPS ‘N TRICKS INTRODUCTION
Using an LCD PIC® MCU for any embedded
application can provide the benefits of system
control and human interface via an LCD. Design
practices for LCD applications can be further
enhanced through the implementation of these
suggested “Tips ‘n Tricks”.
This booklet describes many basic circuits and
software building blocks commonly used for
driving LCD displays. The booklet also provides
references to Microchip application notes that
describe many LCD concepts in more detail.

CHAPTER 6
LCD PIC® Microcontroller

Tips ‘n Tricks

© 2009 Microchip Technology Inc.Page 6-4-DS01146B

LCD PIC® Microcontroller Tips ‘n Tricks

We want the time constant to be much smaller
than the period of the LCD waveform, so that
rounding of the LCD waveform will be minimized.
If we want the RC to be equal to 100 mS, then
the total resistance can be calculated as shown:

Equation 3-3

The resistance of the switching circuits within
the LCD module is very small compared to
this resistance, so the Thevenin resistance
of the resistor ladder at Vlcd2 and Vlcd1 can
be treated the same as Rtotal. We can then
calculate the value for R that will give us the
correct Thevenin resistance.

Equation 3-4

Now we can calculate the current through the
resistor ladder if we used 3.3 mΩ resistors.

Equation 3-5

Use this process to estimate maximum resistor
sizes for your resistor ladder and you will
drastically reduce power consumption for your
LCD application. Don’t forget to observe the
display over the operating conditions of your
product (such as temperature, voltage and
even, humidity) to ensure that contrast and
display quality is good.

Figure 3-4: Voltage Change Across Pixel

CPIXEL
+
-

VTH

RTOTAL
VPIXEL

The step response of the voltage across a pixel
is subject to the following equation:

Equation 3-1

By manipulating the equation, we can see that it
will take a time equal to 4 time constants for the
pixel voltage to reach 98% of the bias voltage.

Figure 3-5: Step Response Diagram

0

VPIXEL/VTH = 1 - e -t/RC

98% = 1 - e -t/RC

2% = e -t/RC

In (.02) = -t/RC
t = ~ 4 RC

t

VTH

0.98 VTH

VPIXEL

t = 4 RC

Now we need to estimate the capacitance.
Capacitance is proportional to the area of a
pixel. We can measure the area of a pixel and
estimate the capacitance as shown. Obviously,
a bigger display, such as a digital wall clock, will
have bigger pixels and higher capacitance.

Equation 3-2

Vpixel = Vth (1 - e-t/rc)

Cpixel = 1500 pF/cm2
AREApixel = 1 mm * 3 mm = .03 cm2

Cpixel = 45 pF

Rtotal = 100 mS/45 pF = 2.22 mΩ
Rth = 2.2M - 5.1K = 2.2M

R = 3 Rth/2 = 3.3M

Rladder = 9.9M,
Iladder = 5V/9.9M = 0.5 mA

© 2009 Microchip Technology Inc.Page 6-8-DS01146B

LCD PIC® Microcontroller Tips ‘n Tricks

TIP #9 LCD in Sleep Mode
If you have a power-sensitive application that
must display data continuously, the LCD PIC
microcontroller can be put to Sleep while the
LCD driver module continues to drive the
display.
To operate the LCD in Sleep, only two steps
are required. First, a time source other than the
main oscillator must be selected as the LCD
clock source, because during Sleep, the main
oscillator is Halted. Options are shown for the
various LCD PIC MCUs.

Table 9-1: Options for LCD in Sleep Mode

Part LCD Clock Source Use in
Sleep?

PIC16C925/926
Fosc/256 No
T1OSC Yes

Internal RC Oscillator Yes

PIC16F946/917/
916/914/913

Fosc/8192 No
T1OSC/32 Yes

LFINTOSC/32 Yes
PIC18F6X90 (Fosc/4)/8192 No
PIC18F8X90 T1OSC Yes
PIC18F6XJ90

INTRC/32 Yes
PIC18F8XJ90

Second, the Sleep Enable bit (SLPEN) must be
cleared. The LCD will then continue to display
data while the part is in Sleep. It’s that easy!
When should you select the internal RC
oscillator (or LFINTOSC) over the Timer1
oscillator? It depends on whether your
application is time-sensitive enough to require
the accuracy of a crystal on the Timer1 oscillator
or not. If you have a timekeeping application,
then you will probably have a 32 kHz crystal
oscillator connected to Timer1.
Since Timer1 continues to operate during
Sleep, there is no penalty in using Timer1 as the
LCD clock source. If you don’t need to use an
external oscillator on Timer1, then the internal
RC oscillator (INTRC or LFINTOSC) is more
than sufficient to use as the clock source for the
LCD and it requires no external components.

TIP #8 In-Circuit Debug (ICD)
There are two potential issues with using the
ICD to debug LCD applications. First, the LCD
controller can freeze while the device is Halted.
Second, the ICD pins are shared with segments
on the PIC16F946/917/916/914/913 MCUs.
When debugging, the device is Halted at
breakpoints and by the user pressing the
pause button. If the ICD is configured to Halt
the peripherals with the device, the LCD
controller will Halt and apply DC voltages to
the LCD glass. Over time, these DC levels
can cause damage to the glass; however, for
most debugging situations, this will not be a
consideration. The PIC18F LCD MCUs have a
feature that allows the LCD module to continue
operating while the device has been Halted
during debugging. This is useful for checking
the image of the display while the device is
Halted and for preventing glass damage if the
device will be Halted for a long period of time.
The PIC16F946/917/916/914/913 multiplex the
ICSP™ and ICD pins onto pins shared with
LCD segments 6 and 7. If an LCD is attached
to these pins, the device can be debugged with
ICD; however, all the segments driven by those
two pins will flicker and be uncontrolled. As
soon as debugging is finished and the device is
programmed with Debug mode disabled, these
segments will be controlled correctly.

© 2009 Microchip Inc. DS01146B-Page 7-5

Intelligent Power Supply Design Tips ‘n Tricks

TIP #4 Creating a Dithered PWM
 Clock
In order to meet emissions requirements as
mandated by the FCC and other regulatory
organizations, the switching frequency of a
power supply can be varied. Switching at a fixed
frequency produces energy at that frequency.
By varying the switching frequency, the energy
is spread out over a wider range and the
resulting magnitude of the emitted energy at
each individual frequency is lower.
The PIC10F200 has an internal 4 MHz
oscillator. A scaled version of oscillator can be
output on a pin (Fosc/4). The scaled output
is 1/4 of the oscillator frequency (1 MHz) and
will always have a 50% duty cycle. Figure 4-1
shows a spectrum analyzer shot of the output of
the Fosc/4 output.

Figure 4-1: Spectrum of Clock Output
 Before Dithering

10 dB/REF 20 dBm

Center 1.0 MHz Span 1.8 MHz

The PIC10F200 provides an Oscillator
Calibration (OSCCAL) register that is used
to calibrate the frequency of the oscillator. By
varying the value of the OSCCAL setting, the
frequency of the clock output can be varied.
A pseudo-random sequence was used to vary
the OSCCAL setting, allowing frequencies
from approximately 600 kHz to 1.2 MHz. The
resulting spectrum is shown in Figure 4-2.

Figure 4-2: Spectrum of Clock Output
 After Dithering

10 dB/REF 20 dBm

Center 1.0 MHz Span 1.8 MHz

By spreading the energy over a wider range of
frequencies, a drop of more than 20 dB is
achieved.
Example software is provided for the
PIC10F200 that performs the pseudo-random
sequence generation and loads the OSCCAL
register.

© 2009 Microchip Inc. DS01146B-Page 7-11

Intelligent Power Supply Design Tips ‘n Tricks

TIP #10 Driving High Side FETs
In applications where high side N channel FETs
are to be driven, there are several means for
generating an elevated driving voltage. One
very simple method is to use a voltage doubling
charge pump as shown in Figure 10-1.

Method 1

Figure 10-1: Typical Change Pump

VDD

D1

CFILTER
CPUMP D2

VOUT max =
2 * VDD - 2 * VDIODE

CLKOUT

The PIC MCUs CLKOUT pin toggles at 1/4 of
the oscillator frequency. When CLKOUT is low,
D1 is forward biased and conducts current,
thereby charging Cpump. After CLKOUT is high,
D2 is forward biased, moving the charge to
Cfilter. The result is a voltage equal to twice
the Vdd minus two diode drops. This can be
used with a PWM or any other I/O pin that
toggles.

In Figure 10-2, a standard FET driver is used to
drive both the high and low side FETs by using
the diode and capacitor arrangement.

Method 2

Figure 10-2: Schematic

+5V

D1 D2

C2

FET Driver

M1

C1

PWM1

PWM2

M2

L1U1A

U1B

+12V

The +5V is used for powering the microcontroller.
Using this arrangement, the FET driver would
have approximately 12 + (5 - Vdiode) - Vdiode
volts as a supply and is able to drive both the
high and low side FETs.
The circuit above works by charging C1 through
D1 to (5V - Vdiode) while M2 is on, effectively
connecting C1 to ground. When M2 turns off
and M1 turns on, one side of C1 is now at 12V
and the other side is at 12V + (5V - Vdiode). The
D2 turns on and the voltage supplied to the FET
driver is 12V + (5V - Vdiode) - Vdiode.

© 2009 Microchip Inc.Page 7-20-DS01146B

Intelligent Power Supply Design Tips ‘n Tricks

TIP #19 Execution-Indexed Software
 State Machine
Another common type of state machine is the
execution-indexed state machine. This type of
state machine uses a state variable in order to
determine what is executed. In C, this can be
thought of as the switch statement structure as
shown in Example 19-1.

Example 19-1: Example Using Switch
 Statement
SWITCH (State)
{
 CASE 0: IF (in_key()==5) THEN state = 1;
 Break;
 CASE 1: IF (in_key()==8) THEN State = 2;
 Else State = 0;
 Break;
 CASE 2: IF (in_key()==3) THEN State = 3;
 Else State = 0;
 Break;
 CASE 3: IF (in_key()==2) THEN UNLOCK();
 Else State = 0;
 Break;
}

Each time the software runs through the loop,
the action taken by the state machine changes
with the value in the state variable. By allowing
the state machine to control its own state
variable, it adds memory, or history, because
the current state will be based on previous
states. The microcontroller is able to make
current decisions based on previous inputs and
data.
In assembly, an execution-indexed state
machine can be implemented using a jump
table.

Example 19-2: Example Using a Jump Table

MOVFW state ;load state into w
ADDWF PCL,f ;jump to state
 ;number
GOTO state0 ;state 0
GOTO state1 ;state 1
GOTO state2 ;state 2
GOTO state3 ;state 3
GOTO state4 ;state 4
GOTO state5 ;state 5

In Example 19-2, the program will jump to a
GOTO statement based on the state variable.
The GOTO statement will send the program to
the proper branch. Caution must be taken to
ensure that the variable will never be larger than
intended. For example, six states (000 to 101)
require a three-bit state variable. Should the
state variable be set to an undefined state (110
to 111), program behavior would become
unpredictable.
Means for safeguarding this problem include:
• Mask off any unused bits of the variable. In

the above example, ANDLW b’00000111’ will
ensure that only the lower 3 bits of the number
contain a value.

• Add extra cases to ensure that there will
always be a known jump. For example in this
case, two extra states must be added and
used as error or Reset states.

