
Microchip Technology - PIC16C63A-20I/SP Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 22

Program Memory Size 7KB (4K x 14)

Program Memory Type OTP

EEPROM Size -

RAM Size 192 x 8

Voltage - Supply (Vcc/Vdd) 4V ~ 5.5V

Data Converters -

Oscillator Type External

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Through Hole

Package / Case 28-DIP (0.300", 7.62mm)

Supplier Device Package 28-SPDIP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic16c63a-20i-sp

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic16c63a-20i-sp-4410970
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

DS01146B-page ii © 2009 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC, SmartShunt and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Hampshire, Linear Active Thermistor, MXDEV,
MXLAB, SEEVAL, SmartSensor and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP,
PICkit, PICDEM, PICDEM.net, PICtail, PIC32 logo, PowerCal,
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select
Mode, Total Endurance, TSHARC, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

© 2009 Microchip Technology Inc.Page ii-DS01146B

Tips ‘n Tricks Table of Contents

PIC® Microcontroller Comparator
Tips ‘n Tricks
TIP #1:	 Low Battery Detection................................. 4-2
TIP #2:	 Faster Code for Detecting Change............. 4-3
TIP #3:	 Hysteresis... 4-4
TIP #4:	 Pulse Width Measurement.......................... 4-5
TIP #5:	 Window Comparison................................... 4-6
TIP #6:	 Data Slicer... 4-7
TIP #7:	 One-Shot... 4-8
TIP #8:	 Multi-Vibrator (Square Wave Output).......... 4-9
TIP #9:	 Multi-Vibrator (Ramp Wave Output)............4-10
TIP #10:	 Capacitive Voltage Doubler.........................4-11
TIP #11:	 PWM Generator..4-12
TIP #12:	 Making an Op Amp Out of a Comparator....4-13
TIP #13:	 PWM High-Current Driver...........................4-14
TIP #14:	 Delta-Sigma ADC..4-15
TIP #15:	 Level Shifter..4-16
TIP #16:	 Logic: Inverter...4-16
TIP #17:	 Logic: AND/NAND Gate..............................4-17
TIP #18:	 Logic: OR/NOR Gate..................................4-18
TIP #19:	 Logic: XOR/XNOR Gate..............................4-19
TIP #20:	 Logic: Set/Reset Flip Flop...........................4-20

PIC® Microcontroller DC Motor Control
Tips ‘n Tricks
TIP #1:	 Brushed DC Motor Drive Circuits................ 5-2
TIP #2:	 Brushless DC Motor Drive Circuits.............. 5-3
TIP #3:	 Stepper Motor Drive Circuits....................... 5-4
TIP #4:	 Drive Software... 5-6
TIP #5:	 Writing a PWM Value to the CCP
	 Registers with a Mid-Range PIC® MCU...... 5-7
TIP #6:	 Current Sensing.. 5-8
TIP #7:	 Position/Speed Sensing.............................. 5-9
Application Note References..5-11
Motor Control Development Tools..................................5-11

LCD PIC® Microcontroller Tips ‘n Tricks
TIP #1:	 Typical Ordering Considerations and
	 Procedures for Custom Liquid Displays...... 6-2
TIP #2:	 LCD PIC® MCU Segment/Pixel Table.......... 6-2
TIP #3:	 Resistor Ladder for Low Current................. 6-3
TIP #4:	 Contrast Control with a Buck Regulator...... 6-5
TIP #5:	 Contrast Control Using a Boost
	 Regulator... 6-5
TIP #6:	 Software Controlled Contrast with
	 PWM for LCD Contrast Control................... 6-6
TIP #7:	 Driving Common Backlights........................ 6-7
TIP #8:	 In-Circuit Debug (ICD)................................. 6-8
TIP #9:	 LCD in Sleep Mode..................................... 6-8
TIP #10:	 How to Update LCD Data
	 Through Firmware....................................... 6-9
TIP #11:	 Blinking LCD... 6-9
TIP #12:	 4 x 4 Keypad Interface that Conserves
	 Pins for LCD Segment Drivers....................6-10
Application Note References..6-11

Intelligent Power Supply Design
Tips ‘n Tricks
TIP #1:	 Soft-Start Using a PIC10F200..................... 7-2
TIP #2:	 A Start-Up Sequencer................................. 7-3
TIP #3:	 A Tracking and Proportional
	 Soft-Start of Two Power Supplies................ 7-4
TIP #4:	 Creating a Dithered PWM Clock................. 7-5
TIP #5:	 Using a PIC® Microcontroller as a Clock
	 Source for a SMPS PWM Generator.......... 7-6
TIP #6:	 Current Limiting Using the MCP1630.......... 7-7
TIP #7:	 Using a PIC® Microcontroller for
	 Power Factor Correction............................. 7-8
TIP #8:	 Transformerless Power Supplies................ 7-9
TIP #9:	 An IR Remote Control Actuated AC
	 Switch for Linear Power Supply Designs....7-10
TIP #10:	 Driving High Side FETs...............................7-11
TIP #11:	 Generating a Reference Voltage with a
	 PWM Output..7-12
TIP #12:	 Using Auto-Shutdown CCP.........................7-13
TIP #13:	 Generating a Two-Phase Control Signal.....7-14
TIP #14:	 Brushless DC Fan Speed Control...............7-15
TIP #15:	 High Current Delta-Sigma Based Current
	 Measurement Using a Slotted Ferrite
	 and Hall Effect Device.................................7-16
TIP #16:	 Implementing a PID Feedback Control
	 in a PIC12F683-Based SMPS Design........7-17
TIP #17:	 An Error Detection and Restart Controller..7-18
TIP #18:	 Data-Indexed Software State Machine.......7-19
TIP #19:	 Execution Indexed Software
	 State Machine...7-20
TIP #20:	 Compensating Sensors Digitally.................7-21
TIP #21:	 Using Output Voltage Monitoring to
	 Create a Self-Calibration Function..............7-22

3V Tips ‘n Tricks
TIP #1:	 Powering 3.3V Systems From 5V
	 Using an LDO Regulator............................. 8-3
TIP #2:	 Low-Cost Alternative Power System
	 Using a Zener Diode................................... 8-4
TIP #3:	 Lower Cost Alternative Power System
	 Using 3 Rectifier Diodes.............................. 8-4
TIP #4:	 Powering 3.3V Systems From 5V
	 Using Switching Regulators........................ 8-5
TIP #5:	 3.3V → 5V Direct Connect.......................... 8-6
TIP #6:	 3.3V → 5V Using a MOSFET Translator..... 8-6
TIP #7:	 3.3V → 5V Using A Diode Offset................. 8-7
TIP #8:	 3.3V → 5V Using A Voltage Comparator..... 8-8
TIP #9:	 5V → 3.3V Direct Connect.......................... 8-9
TIP #10:	 5V → 3.3V With Diode Clamp..................... 8-9
TIP #11:	 5V → 3.3V Active Clamp.............................8-10
TIP #12:	 5V → 3.3V Resistor Divider........................8-10
TIP #13:	 3.3V → 5V Level Translators......................8-12
TIP #14:	 3.3V → 5V Analog Gain Block....................8-13
TIP #15:	 3.3V → 5V Analog Offset Block...................8-13
TIP #16:	 5V → 3.3V Active Analog Attenuator...........8-14
TIP #17:	 5V → 3V Analog Limiter..............................8-15
TIP #18:	 Driving Bipolar Transistors..........................8-16
TIP #19:	 Driving N-Channel MOSFET Transistors....8-18

© 2009 Microchip Technology Inc. DS01146B-Page 1-1

8-pin Flash PIC® Microcontroller Tips ‘n Tricks

CHAPTER 1
8-Pin Flash PIC® Microcontrollers

Tips ‘n Tricks

Table Of Contents

TIPS ‘N TRICKS WITH HARDWARE
TIP #1:	 Dual Speed RC Oscillator................. 1-2
TIP #2:	 Input/Output Multiplexing................... 1-2
TIP #3:	 Read Three States From One Pin..... 1-3
TIP #4:	 Reading DIP Switches....................... 1-3
TIP #5:	 Scanning Many Keys With
	 One Input... 1-4
TIP #6:	 Scanning Many Keys and Wake-up
	 From Sleep.. 1-4
TIP #7:	 8x8 Keyboard with 1 Input................. 1-5
TIP #8:	 One Pin Power/Data.......................... 1-5
TIP #9:	 Decode Keys and ID Settings........... 1-6
TIP #10:	 Generating High Voltages................. 1-6
TIP #11:	 Vdd Self Starting Circuit.................... 1-7
TIP #12:	 Using PIC® MCU A/D For Smart
	 Current Limiter................................... 1-7
TIP #13:	 Reading A Sensor With Higher
	 Accuracy.. 1-8
TIP #13.1:	 Reading A Sensor With Higher
	 Accuracy – RC Timing Method.......... 1-8
TIP #13.2:	 Reading A Sensor With Higher
	 Accuracy – Charge Balancing
	 Method.. 1-10
TIP #13.3:	 Reading A Sensor With Higher
	 Accuracy – A/D Method..................... 1-11
TIP #14:	 Delta Sigma Converter...................... 1-11

TIPS ‘N TRICKS WITH SOFTWARE
TIP #15:	 Delay Techniques.............................. 1-12
TIP #16:	 Optimizing Destinations..................... 1-13
TIP #17:	 Conditional Bit Set/Clear................... 1-13
TIP #18:	 Swap File Register with W................ 1-14
TIP #19:	 Bit Shifting Using Carry Bit................ 1-14

TIPS ‘N TRICKS INTRODUCTION
Microchip continues to provide innovative
products that are smaller, faster, easier to
use and more reliable. The 8-pin Flash PIC®
microcontrollers (MCU) are used in an wide
range of everyday products, from toothbrushes,
hair dryers and rice cookers to industrial,
automotive and medical products.
The PIC12F629/675 MCUs merge all the
advantages of the PIC MCU architecture and
the flexibility of Flash program memory into
an 8-pin package. They provide the features
and intelligence not previously available due
to cost and board space limitations. Features
include a 14-bit instruction set, small footprint
package, a wide operating voltage of 2.0 to
5.5 volts, an internal programmable 4 MHz
oscillator, on-board EEPROM data memory,
on-chip voltage reference and up to 4 channels
of 10-bit A/D. The flexibility of Flash and an
excellent development tool suite, including
a low-cost In-Circuit Debugger, In-Circuit
Serial Programming™ and MPLAB® ICE 2000
emulation, make these devices ideal for just
about any embedded control application.

TIPS ‘N TRICKS WITH HARDWARE
The following series of Tips ’n Tricks can be
applied to a variety of applications to help make
the most of the 8-pin dynamics.

© 2009 Microchip Technology Inc. DS01146B-Page 1-3

8-pin Flash PIC® Microcontroller Tips ‘n Tricks

TIP #3	Read Three States
	 From One Pin
To check state Z:
•	Drive output pin high
•	Set to Input
•	Read 1
•	Drive output pin low
•	Set to Input
•	Read 0
To check state 0:
•	Read 0 on pin

To check state 1:
•	Read 1 on pin

State Link 0 Link 1
0 closed open
1 open closed

NC open open

Jumper has three possible states: not
connected, Link 1 and Link 0. The capacitor
will charge and discharge depending on
the I/O output voltage allowing the “not
connected” state. Software should check the
“not connected” state first by driving I/O high,
reading 1 and driving I/O low and reading 0. The
“Link 1” and “Link 0” states are read directly.

PIC
I/O

5V

0V

Link 0

Link 1

Figure 3-1

TIP #4	Reading DIP Switches
The input of a timer
can be used to test
which switch(s)
is closed. The
input of Timer1 is
held high with a
pull-up resistor.
Sequentially,
each switch I/O is
set to input and
Timer1 is checked
for an increment
indicating the
switch is closed.
Each bit in the DP register represents its
corresponding switch position. By setting
Timer1 to FFFFh and enabling its interrupt, an
increment will cause a rollover and generate
an interrupt. This will simplify the software by
eliminating the bit test on the TMR1L register.
Sequentially set each GPIO to an input and test
for TMR1 increment (or 0 if standard I/O pin is
used).

Figure 4-1

PIC12F6XX

GP0
GP1
GP2
GP3

GP5/T1CKI
10K

VDD

GP4Data I/O

movlw b'11111111'
movwf TRISIO
movwf DIP
movlw b'00000111'
movwf T1CON
movlw b'11111110'
movwf Mask
clrf GPIO

LOOP
clrf TMR1L
movf Mask,W
movwf TRISIO
btfsc TMR1L,0
andwf DIP,F
bsf STATUS,C
rlf Mask,F
btfsc Mask,4
goto Loop
retlw 0

Example 4-1

© 2009 Microchip Technology Inc.Page 1-12 DS01146B

8-pin Flash PIC® Microcontroller Tips ‘n Tricks

TIPS ‘N TRICKS WITH SOFTWARE
To reduce costs, designers need to make
the most of the available program memory in
MCUs. Program memory is typically a large
portion of the MCU cost. Optimizing the code
helps to avoid buying more memory than
needed. Here are some ideas that can help
reduce code size.

TIP #15	Delay Techniques
• Use GOTO “next instruction” instead of two
	 NOPs.
• Use CALL Rtrn as quad, 1 instruction NOP
	 (where “Rtrn” is the exit label from existing
	 subroutine).

Example 15-1

NOP
NOP

GOTO $+1

CALL Rtrn ;1 instruction, 4 cycles

Rtrn RETURN
. . .

;2 instructions, 2 cycles

;1 instruction, 2 cycles

MCUs are commonly used to interface with the
“outside world” by means of a data bus, LEDs,
buttons, latches, etc. Because the MCU runs at
a fixed frequency, it will often need delay
routines to meet setup/hold times of other
devices, pause for a handshake or decrease the
data rate for a shared bus.

Longer delays are well-suited for the DECFSZ
and INCFSZ instructions where a variable is
decremented or incremented until it reaches
zero when a conditional jump is executed. For
shorter delays of a few cycles, here a few ideas
to decrease code size.
For a two-cycle delay, it is common to use
two NOP instructions which uses two program
memory locations. The same result can
be achieved by using “goto $+1”. The “$”
represents the current program counter value
in MPASM™ Assembler. When this instruction
is encountered, the MCU will jump to the next
memory location. This is what it would have
done if two NOP’s were used but since the
GOTO instruction uses two instruction cycles
to execute, a two-cycle delay was created.
This created a two-cycle delay using only one
location of program memory.
To create a four-cycle delay, add a label to an
existing RETURN instruction in the code. In
this example, the label “Rtrn” was added to the
RETURN of subroutine that already existed
somewhere in the code. When executing “CALL
Rtrn”, the MCU delays two instruction cycles
to execute the CALL and two more to execute
the RETURN. Instead of using four NOP
instructions to create a four-cycle delay, the
same result was achieved by adding a single
CALL instruction.

© 2009 Microchip Technology Inc.Page 2-4-DS01146B

PIC® Microcontroller Low Power Tips ‘n Tricks

TIP #3	Configuring Port Pins
All PIC MCUs have bidirectional I/O pins. Some
of these pins have analog input capabilities. It
is very important to pay attention to the signals
applied to these pins so the least amount of
power will be consumed.

Unused Port Pins
If a port pin is unused, it may be left
unconnected but configured as an output pin
driving to either state (high or low), or it may
be configured as an input with an external
resistor (about 10 kΩ) pulling it to Vdd or Vss.
If configured as an input, only the pin input
leakage current will be drawn through the
pin (the same current would flow if the pin
was connected directly to Vdd or Vss). Both
options allow the pin to be used later for either
input or output without significant hardware
modifications.
Digital Inputs
A digital input pin consumes the least amount
of power when the input voltage is near Vdd
or Vss. If the input voltage is near the midpoint
between Vdd and Vss, the transistors inside the
digital input buffer are biased in a linear region
and they will consume a significant amount
of current. If such a pin can be configured as
an analog input, the digital buffer is turned off,
reducing both the pin current as well as the total
controller current.
Analog Inputs
Analog inputs have a very high-impedance
so they consume very little current. They
will consume less current than a digital input
if the applied voltage would normally be
centered between Vdd and Vss. Sometimes it
is appropriate and possible to configure digital
inputs as analog inputs when the digital input
must go to a low power state.

Digital Outputs
There is no additional current consumed by a
digital output pin other than the current going
through the pin to power the external circuit.
Pay close attention to the external circuits to
minimize their current consumption.

TIP #4	Use High-Value Pull-Up
Resistors
It is more power efficient to use larger pull-up
resistors on I/O pins such as MCLR, I2C™
signals, switches and for resistor dividers. For
example, a typical I2C pull-up is 4.7k. However,
when the I2C is transmitting and pulling a line
low, this consumes nearly 700 uA of current for
each bus at 3.3V. By increasing the size of the
I2C pull-ups to 10k, this current can be halved.
The tradeoff is a lower maximum I2C bus
speed, but this can be a worthwhile trade in for
many low power applications. This technique is
especially useful in cases where the pull-up can
be increased to a very high resistance such as
100k or 1M.
TIP #5	Reduce Operating Voltage
Reducing the operating voltage of the device,
Vdd, is a useful step to reduce the overall
power consumption. When running, power
consumption is mainly influenced by the clock
speed. When sleeping, the most significant
factor is leakage in the transistors. At lower
voltages, less charge is required to switch the
system clocks and transistors leak less current.
It is important to pay attention to how reducing
the operating voltage reduces the maximum
allowed operating frequency. Select the
optimum voltage that allows the application
to run at its maximum speed. Refer to the
device data sheet for the maximum operating
frequency of the device at the given voltage.

© 2009 Microchip Technology Inc.Page 2-12-DS01146B

PIC® Microcontroller Low Power Tips ‘n Tricks

TIP #22	Ultra Low-Power Wake-Up
Peripheral
Newer devices have a modification to PORTA
that creates an Ultra Low-Power Wake-Up
(ULPWU) peripheral. A small current sink and
a comparator have been added that allows
an external capacitor to be used as a wake-
up timer. This feature provides a low-power
periodic wake-up source which is dependent on
the discharge time of the external RC circuit.

Figure 22-1: Ultra Low-Power Wake-Up
	 Peripheral

VREF
I

Pin Wake-on-Change
InterruptC

If the accuracy of the Watchdog Timer is not
required, this peripheral can save a lot of
current.
Visit the low power design center at:
www.microchip.com/lowpower for
additional design resources.

© 2009 Microchip Technology Inc.Page 3-2-DS01146B

PIC® Microcontroller CCP and ECCP Tips ‘n Tricks

ECCP/CCP Register Listing
Capture

Mode
Compare

Mode PWM Mode

CCPxCON Select mode Select mode Select mode,
LSB of duty
cycle

CCPRxL Timer1
capture
(LSB)

Timer1
compare
(LSB)

MSB of duty
cycle

CCPRxH Timer1
capture
(MSB)

Timer1
compare
(MSB)

N/A

TRISx Set CCPx
pin to input

Set CCPx pin
to output

Set CCPx pin(s)
to output(s)

T1CON Timer1 on,
prescaler

Timer1 on,
prescaler

N/A

T2CON N/A N/A Timer2 on,
prescaler

PR2 N/A N/A Timer2 period
PIE1 Timer1

interrupt
enable

Timer1
interrupt
enable

Timer2 interrupt
enable

PIR1 Timer1
interrupt flag

Timer1
interrupt flag

Timer2 interrupt
flag

INTCON Global/
peripheral
interrupt
enable

Global/
peripheral
interrupt
enable

Global/
peripheral
interrupt enable

PWM1CON(1) N/A N/A Set dead band,
auto-restart
control

ECCPAS(1) N/A N/A Auto-shutdown
control

Note 1: Only on ECCP module.

CAPTURE TIPS ‘N TRICKS
In Capture mode, the 16-bit value of Timer1
is captured in CCPRxH:CCPRxL when an
event occurs on pin CCPx. An event is defined
as one of the following and is configured by
CCPxCON<3:0>:
•	Every falling edge
•	Every rising edge
•	Every 4th rising edge
•	Every 16th rising edge

“When Would I Use Capture Mode?”
Capture mode is used to measure the length of
time elapsed between two events. An event, in
general, is either the rising or falling edge of a
signal (see Figure 1 “Defining Events”).
An example of an application where Capture
mode is useful is reading an accelerometer.
Accelerometers typically vary the duty
cycle of a square wave in proportion to the
acceleration acting on a system. By configuring
the CCP module in Capture mode, the PIC
microcontroller can measure the duty cycle of
the accelerometer with little intervention on the
part of the microcontroller firmware. Tip #4 goes
into more detail about measuring duty cycle by
configuring the CCP module in Capture mode.

Figure 1: Defining Events

Volts

Event: Rising Edge

Event: Falling Edge

Time

© 2009 Microchip Technology Inc. DS01146B-Page 3-3

PIC® Microcontroller CCP and ECCP Tips ‘n Tricks

TIP #1	Measuring the Period of a
	 Square Wave
Figure 1-1: Period

T

t1 t2

1.	Configure control bits CCPxM3:CCPxM0
	 (CCPxCON<3:0>) to capture every rising
	 edge of the waveform.
2.	Configure the Timer1 prescaler so Timer1
	 with run Tmax(1) without overflowing.
3.	Enable the CCP interrupt (CCPxIE bit).
4.	When a CCP interrupt occurs:
	 a)	 Subtract saved captured time (t1) from
		 captured time (t2) and store (use Timer1
		 interrupt flag as overflow indicator).
	 b)	 Save captured time (t2).
	 c)	 Clear Timer1 flag if set.
The result obtained in step 4.a is the period (T).

Note 1:	Tmax is the maximum pulse period
	 that will occur.

TIP #2	Measuring the Period of a
	 Square Wave with Averaging
Figure 2-1: Period Measurement

Tt1 t2

16 x T

1.	Configure control bits CCPxM3:CCPxM0
	 (CCPxCON<3:0>) to capture every 16th
	 rising edge of the waveform.
2.	Configure the Timer1 prescaler so Timer1 will
	 run 16 Tmax(1) without overflowing.
3.	Enable the CCP interrupt (CCPxIE bit).
4.	When a CCP interrupt occurs:
	 a)	 Subtract saved captured time (t1) from
		 captured time (t2) and store (use Timer1
		 interrupt flag as overflow indicator).
	 b)	 Save captured time (t2).
	 c)	 Clear Timer1 flag if set.
	 d)	 Shift value obtained in step 4.a right four
		 times to divide by 16 – this result is the
		 period (T).

Note 1:	Tmax is the maximum pulse period
	 that will occur.

The following are the advantages of this
method as opposed to measuring the periods
individually.
•	Fewer CCP interrupts to disrupt program flow
•	Averaging provides excellent noise immunity

© 2009 Microchip Technology Inc. DS01146B-Page 3-7

PIC® Microcontroller CCP and ECCP Tips ‘n Tricks

COMPARE TIPS ‘N TRICKS
In Compare mode, the 16-bit CCPRx register
value is constantly compared against the TMR1
register pair values. When a match occurs, the
CCPx pin is:
•	Driven high
•	Driven low
•	Remains unchanged, or
•	Toggles based on the module’s configuration
The action on the pin is determined by control
bits CCPxM3:CCPxM0 (CCPxCON<3:0>).
A CCP interrupt is generated when a match
occurs.

Special Event Trigger
Timer1 is normally not cleared during a CCP
interrupt when the CCP module is configured
in Compare mode. The only exception to this is
when the CCP module is configured in Special
Event Trigger mode. In this mode, when Timer1
and CCPRx are equal, the CCPx interrupt
is generated, Timer1 is cleared, and an A/D
conversion is started (if the A/D module is
enabled.)

“Why Would I Use Compare Mode?”
Compare mode works much like the timer
function on a stopwatch. In the case of a
stopwatch, a predetermined time is loaded into
the watch and it counts down from that time
until zero is reached.
Compare works in the same way with
one exception – it counts from zero to the
predetermined time. This mode is useful for
generating specific actions at precise intervals.
A timer could be used to perform the same
functionality, however, it would mean preloading
the timer each time. Compare mode also has
the added benefit of automatically altering the
state of the CCPx pin based on the way the
module is set up.

© 2009 Microchip Technology Inc. DS01146B-Page 4-3

PIC® Microcontroller Comparator Tips ‘n Tricks

TIP #2	Faster Code for Detecting
	 Change
When using a comparator to monitor a sensor,
it is often just as important to know when
a change occurs as it is to know what the
change is. To detect a change in the output of
a comparator, the traditional method has been
to store a copy of the output and periodically
compare the held value to the actual output to
determine the change. An example of this type
of routine is shown below.

Example 2-1

Test
 MOVF hold,w ;get old Cout
 XORWF CMCON,w ;compare to new Cout
 ANDLW COUTMASK
 BTFSC STATUS,Z
 RETLW 0 ;if = return "no change"
 MOVF CMCON,w ;if not =, get new Cout
 ANDLW COUTMASK ;remove all other bits
 MOVWF hold ;store in holding var.
 IORLW CHNGBIT ;add change flag
 RETURN

This routine requires 5 instructions for each test,
9 instructions if a change occurs, and 1 RAM
location for storage of the old output state.
A faster method for microcontrollers with a
single comparator is to use the comparator
interrupt flag to determine when a change has
occurred.

Example 2-2

Test
 BTFSS PIR1,CMIF ;test comparator flag
 RETLW 0 ;if clear, return a 0
 BTFSS CMCON,COUT ;test Cout
 RETLW CHNGBIT ;if clear return
 ;CHNGFLAG
 RETLW COUTMASK + CHNGBIT;if set,
 ;return both

This routine requires 2 instructions for each test,
3 instructions if a change occurs, and no RAM
storage.
If the interrupt flag can not be used, or if two
comparators share an interrupt flag, an alternate
method that uses the comparator output polarity
bit can be used.

Example 2-3

Test
 BTFSS CMCON,COUT ;test Cout
 RETLW 0 ;if clear, return 0
 MOVLW CINVBIT ;if set, invert Cout
 XORWF CMCON,f ;forces Cout to 0
 BTFSS CMCON,CINV ;test Cout polarity
 RETLW CHNGFLAG ;if clear, return
 ;CHNGFLAG
 RETLW COUTMASK + CHNGFLAG;if set,
 ;return both

This routine requires 2 instructions for each test,
5 instructions if a change occurs, and no GPR
storage.

© 2009 Microchip Technology Inc. DS01146B-Page 4-7

PIC® Microcontroller Comparator Tips ‘n Tricks

TIP #6	Data Slicer
In both wired and wireless data transmission,
the data signal may be subject to DC offset
shifts due to temperature shifts, ground
currents or other factors in the system. When
this happens, using a simple level comparison
to recover the data is not possible because
the DC offset may exceed the peak-to-peak
amplitude of the signal. The circuit typically
used to recover the signal in this situation is a
data slicer.
The data slicer shown in Figure 6-1 operates
by comparing the incoming signal with a sliding
reference derived from the average DC value
of the incoming signal. The DC average value
is found using a simple RC low-pass filter (R1
and C1). The corner frequency of the RC filter
should be high enough to ignore the shifts in
the DC level while low enough to pass the data
being transferred.
Resistors R2 and R3 are optional. They provide
a slight bias to the reference, either high or low,
to give a preference to the state of the output
when no data is being received. R2 will bias the
output low and R3 will bias the output high. Only
one resistor should be used at a time, and its
value should be at least 50 to 100 times larger
than R1.

Figure 6-1: Data Slicer

+

-

R2

R3

Input

VDD

Output

Comparator

C1

R1

Example:
Data rate of 10 kbits/second. A low pass filter
frequency of 500 Hz: R1 = 10k, C1 = 33 mF. R2
or R3 should be 500k to 1 MB.

© 2009 Microchip Technology Inc. DS01146B-Page 4-15

PIC® Microcontroller Comparator Tips ‘n Tricks

TIP #14	Delta-Sigma ADC
This tip describes the creation of a hardware/
software-based Delta-Sigma ADC. A Delta-
Sigma ADC is based on a Delta-Sigma
modulator composed of an integrator, a
comparator, a clock sampler and a 1-bit DAC
output. In this example, the integrator is formed
by R1 and C1. The comparator is an on-chip
voltage comparator. The clock sampler is
implemented in software and the 1-bit DAC
output is a single I/O pin. The DAC output feeds
back into the integrator through R2.
Resistors R3 and R4 form a Vdd/2 reference for
the circuit (see Figure 14-1).

Figure 14-1: Delta-Sigma Modulator

+

- Comparator

R3

R1 R2Input

C1

VDD
R4

Software Data

In operation, the feedback output from the
software is a time sampled copy of the
comparator output. In normal operation, the
modulator output generates a PWM signal
which is inversely proportional to the input
voltage. As the input voltage increases,
the PWM signal will drop in duty cycle to
compensate. As the input decreases, the duty
cycle rises.

To perform an A-to-D conversion, the duty
cycle must be integrated over time, digitally, to
integrate the duty cycle to a binary value. The
software starts two counters. The first counts
the total number of samples in the conversion
and the second counts the number of samples
that were low. The ratio of the two counts is
equal to the ratio of the input voltage over Vdd.

Note:	This assumes that R1 and R2 are
	 equal and R3 is equal to R4. If
	 R1 and R2 are not equal, then the
	 input voltage is also scaled by the
	 ratio of R2 over R1, and R3 must still
	 be equal to R4.

For a more complete description of the
operation of a Delta-Sigma ADC and example
firmware, see Application Note AN700 “Make A
Delta-Sigma Converter Using a Microcontroller’s
Analog Comparator Module.”

Example:
•	R3 = R4 = 10 kHz
•	R1 = R2 = 5.1k
•	C1 = 1000 pF

© 2009 Microchip Technology Inc. DS01146B-Page 5-3

DC Motor Control Tips ‘n Tricks

TIP #2	Brushless DC Motor Drive
	 Circuits
A Brushless DC motor is a good example of
simplified hardware increasing the control
complexity. The motor cannot commutate
the windings (switch the current flow), so the
control circuit and software must control the
current flow correctly to keep the motor turning
smoothly. The circuit is a simple half-bridge on
each of the three motor windings.
There are two basic commutation methods
for Brushless DC motors; sensored and
sensorless. Because it is critical to know the
position of the motor so the correct winding can
be energized, some method of detecting the
rotor position is required. A motor with sensors
will directly report the current position to the
controller. Driving a sensored motor requires
a look-up table. The current sensor position
directly correlates to a commutation pattern for
the bridge circuits.
Without sensors, another property of the
motor must be sensed to find the position. A
popular method for sensorless applications
is to measure the back EMF voltage that is
naturally generated by the motor magnets and
windings. The induced voltage in the un-driven
winding can be sensed and used to determine
the current speed of the motor. Then, the next
commutation pattern can be determined by a
time delay from the previous pattern.
Sensorless motors are lower cost due to
the lack of the sensors, but they are more
complicated to drive. A sensorless motor
performs very well in applications that don’t
require the motor to start and stop. A sensor
motor would be a better choice in applications
that must periodically stop the motor.

Figure 2-1: 3 Phase Brushless DC Motor
	 Control

OA-OF are digital outputs from a PIC® MCU.

C

A

Motor

B

V

OA

OB

A

V

OC

OD

B

V

OE

OF

C

Figure 2-2: Back EMF Sensing (Sensorless
	 Motor)

PIC® MCU or dsPIC® DSC

ADC

Analog
MUX

Low Pass
Filter

A

B

C

© 2009 Microchip Technology Inc. DS01146B-Page 5-5

DC Motor Control Tips ‘n Tricks

Figure 3-1: 4 and 5 Wire Stepper Motors

Unipolar 5 Wire Bipolar 4 Wire

Figure 3-2: 6 and 8 Wire Stepper Motors

Unipolar and Bipolar
6 Wire

Individual coils
wire anyway
appropriate

8 Wire

Short for
Unipolar

Figure 3-3: Unipolar Motor (4 Low Side
	 Switches)

01

V+

01-04 are outputs from a PIC® MCU or dsPIC® DSC.

Motor

02

04

03

Figure 3-4: Bipolar Motor (4 Half-Bridges)

A-H are digital outputs from a PIC® MCU
or dsPIC® DSC.

V

A

B

C

D

V

MotorV

E

F

G

H

V

© 2009 Microchip Technology Inc.Page 6-10-DS01146B

LCD PIC® Microcontroller Tips ‘n Tricks

TIP #12	4 x 4 Keypad Interface that
	 Conserves Pins for LCD
	 Segment Drivers
A typical digital interface to a 4 x 4 keypad uses
8 digital I/O pins. But using eight pins as digital
I/Os can take away from the number of segment
driver pins available to interface to an LCD.
By using 2 digital I/O pins and 2 analog input
pins, it is possible to add a 4 x 4 keypad to the
PIC microcontroller without sacrificing any of its
LCD segment driver pins.
The schematic for keypad hook-up is shown
in Figure 12-1. This example uses the
PIC18F8490, but the technique could be used
on any of the LCD PIC MCUs.

Figure 12-1: Keypad Hook-up Schematic

Figure 11-1: Common Clock Application

Fortunately, blinking is quite easy to implement.
There are many ways to implement a blinking
effect in software. Any regular event can be
used to update a blink period counter. A blink
flag can be toggled each time the blink period
elapses. Each character or display element
that you want to blink can be assigned a
corresponding blink enable flag. The flowchart
for updating the display would look like:

Figure 11-2: Updating Display Flowchart

NN

YY

Character 1
Blink

Enable

Blink Flag

Start

Finish

Is Blink
flag
set?

Update
Character 1

Pixels

Clear
Character 1

Pixels

Is
Character 1
Blink enable

set?

LCDDATA
Pixel Bits

Update Character 1

Character 1
Buffer

© 2009 Microchip Technology Inc. DS01146B-Page 8-7

3V Tips ‘n Tricks

TIP #7	 3.3V → 5V Using a Diode Offset
The inputs voltage thresholds for 5V CMOS and
the output drive voltage for 3.3V LVTTL and
LVCMOS are listed in Table 7-1.

Table 7-1: Input/Output Thresholds
5V CMOS

Input
3.3V LVTTL

Output
3.3V LVCMOS

Output
High
Threshold > 3.5V > 2.4V > 3.0V

Low
Threshold < 1.5V < 0.4V < 0.5V

Note that both the high and low threshold input
voltages for the 5V CMOS inputs are about a
volt higher than the 3.3V outputs. So, even if
the output from the 3.3V system could be offset,
there would be little or no margin for noise or
component tolerance. What is needed is a
circuit that offsets the outputs and increases
the difference between the high and low output
voltages.

Figure 7-1: Diode Offset

3.3V Output

R1

D2

5V Input

D1

3.3V 5V

When output voltage specifications are
determined, it is done assuming that the output
is driving a load between the output and ground
for the high output, and a load between 3.3V
and the output for the low output. If the load for
the high threshold is actually between the output
and 3.3V, then the output voltage is actually
much higher as the load resistor is the
mechanism that is pulling the output up, instead
of the output transistor.

If we create a diode offset circuit (see Figure
7-1), the output low voltage is increased by
the forward voltage of the diode D1, typically
0.7V, creating a low voltage at the 5V CMOS
input of 1.1V to 1.2V. This is well within the
low threshold input voltage for the 5V CMOS
input. The output high voltage is set by the
pull-up resistor and diode D2, tied to the 3.3V
supply. This puts the output high voltage at
approximately 0.7V above the 3.3V supply,
or 4.0 to 4.1V, which is well above the 3.5V
threshold for the 5V CMOS input.

Note:	For the circuit to work properly, the
	 pull-up resistor must be significantly
	 smaller than the input resistance of
	 the 5V CMOS input, to prevent a
	 reduction in the output voltage due
	 to a resistor divider effect at the
	 input. The pull-up resistor must also
	 be large enough to keep the output
	 current loading on the 3.3V output
	 within the specification of the device.

© 2009 Microchip Technology Inc.Page 8-8-DS01146B

3V Tips ‘n Tricks

TIP #8	3.3V → 5V Using a Voltage
	 Comparator
The basic operation of the comparator is as
follows:
•	When the voltage at the inverting (-) input is

greater than that at the non-inverting (+) input,
the output of the comparator swings to Vss.

•	When the voltage at the non-inverting (+) input
is greater than that at the non-inverting (-)
input, the output of the comparator is in a high
state.

To preserve the polarity of the 3.3V output,
the 3.3V output must be connected to the
non-inverting input of the comparator. The
inverting input of the comparator is connected to
a reference voltage determined by R1 and R2,
as shown in Figure 8-1.

Figure 8-1: Comparator Translator

3.3V Output

R1

R2

+

-
5V (VDD)

VSS

RO

VSS

5V Input

Calculating R1 and R2
The ratio of R1 and R2 depends on the logic
levels of the input signal. The inverting input
should be set to a voltage halfway between Vol
and Voh for the 3.3V output. For an LVCMOS
output, this voltage is:

Equation 8-1:

Given that R1 and R2 are related by the logic
levels:
Equation 8-2:

assuming a value of 1K for R2, R1 is 1.8K.
An op amp wired up as a comparator can be
used to convert a 3.3V input signal to a 5V
output signal. This is done using the property
of the comparator that forces the output to
swing high (Vdd) or low (Vss), depending on the
magnitude of difference in voltage between its
‘inverting’ input and ‘non-inverting’ input.

Note:	For the op amp to work properly
	 when powered by 5V, the output
	 must be capable of rail-to-rail drive.

Figure 8-2: Op Amp as a Comparator

3.3V Output

R1

R2

+

-

5V (VDD)

VSS

VSS

5V Input

1.75V = (3.0V +.5V)
 2

R1 = R2 (5V -1)
 1.75V

© 2009 Microchip Technology Inc.Page 8-14-DS01146B

3V Tips ‘n Tricks

Figure 16-2: Op Amp Attenuators

R2

R1

3.3 x

1.7 x

5

6
7

+

-

5

6
7

+

-

R2

R1 1.7 x

3.3 x

(OR)

If the resistor divider is before the unity gain
follower, then the lowest possible impedance is
provided for the 3.3V circuits. Also, the op amp
can be powered from 3.3V, saving some power.
If the X is made very large, then power
consumed by the 5V side can be minimized.
If the attenuator is added after the unity gain
follower, then the highest possible impedance is
presented to the 5V source. The op amp must
be powered from 5V and the impedance at the
3V side will depend upon the value of R1||R2.

TIP #16	5V → 3.3V Active Analog
	 Attenuator
Reducing a signal’s amplitude from a 5V to 3.3V
system using an op amp.
The simplest method of converting a 5V analog
signal to a 3.3V analog signal is to use a
resistor divider with a ratio R1:R2 of 1.7:3.3.
However, there are a few problems with this.
1.	The attenuator may be feeding a capacitive
	 load, creating an unintentional low pass filter.
2.	The attenuator circuit may need to drive a
	 low-impedance load from a high-impedance
	 source.
Under either of these conditions, an op amp
becomes necessary to buffer the signals.
The op amp circuit necessary is a unity gain
follower (see Figure 16-1).

Figure 16-1: Unity Gain

+

-6

5
7

This circuit will output the same voltage that is
applied to the input.
To convert the 5V signal down to a 3V signal,
we simply add the resistor attenuator.

© 2009 Microchip Technology Inc.Page 8-18-DS01146B

3V Tips ‘n Tricks

TIP #19	Driving N-Channel MOSFET
	 Transistors
Care must be taken when selecting an external
N-Channel MOSFET for use with a 3.3V
microcontroller. The MOSFET gate threshold
voltage is an indication of the device’s capability
to completely saturate. For 3.3V applications,
select MOSFETs that have an ON resistance
rating for gate drive of 3V or less. For example,
a FET that is rated for 250 µA of drain current
with 1V applied from gate-to-source is not
necessarily going to deliver satisfactory results
for 100 mA load with a 3.3V drive. When
switching from 5V to 3V technology, review the
gate-to-source threshold and ON resistance
characteristics very carefully as shown in Figure
19-1. A small decrease in gate drive voltage can
significantly reduce drain current.

Figure 19-1: Drain Current Capability Versus
	 Gate to Source Voltage

ID

VGS
VT

0
0

3.3V 5V

Low threshold devices commonly exist for
MOSFETs with drain-to-source voltages rated
below 30V. MOSFETs with drain-to-source
voltages above 30V typically have higher gate
thresholds (VT).

Table 19-1:	Rds(ON) and Vgs(th)
	 Specifications for IRF7467

Rds(on)

Static Drain-
to-Source
On-Resistance

– 9.4 12

mΩ

Vgs = 10V,
Id = 11A

– 10.6 13.5 Vgs = 4.5V,
Id = 9.0A

– 17 35 Vgs = 2.8V,
Id = 5.5A

Vgs(th)
Gate
Threshold
Voltage

0.6 – 2.0 V Vds = Vgs,
Id = 250 µA

As shown in Table 19-1, the threshold voltage
for this 30V, N-Channel MOSFET switch is 0.6V.
The resistance rating for this MOSFET is 35 mΩ
with 2.8V applied gate, as a result, this device is
well suited for 3.3V applications.

Table 19-2:	Rds(ON) and Vgs(th)
	 Specifications for IRF7201

Rds(on)

Static Drain-
to-Source
On-Resistance

– – 0.030
Ω

Vgs = 10V,
Id = 7.3A

– – 0.050 Vgs = 4.5V,
Id = 3.7A

Vgs(th)
Gate
Threshold
Voltage

1.0 – – V Vds = Vgs,
Id = 250 µA

For the IRF7201 data sheet specifications,
the gate threshold voltage is specified as a
1.0V minimum. This does not mean the device
can be used to switch current with a 1.0V
gate-to-source voltage as there is no RDS(ON)
specification for Vgs(th) values below 4.5V.
This device is not recommended for 3.3V drive
applications that require low switch resistance
but can be used for 5V drive applications.

