
Microchip Technology - PIC16C63A-20I/SS Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 22

Program Memory Size 7KB (4K x 14)

Program Memory Type OTP

EEPROM Size -

RAM Size 192 x 8

Voltage - Supply (Vcc/Vdd) 4V ~ 5.5V

Data Converters -

Oscillator Type External

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-SSOP (0.209", 5.30mm Width)

Supplier Device Package 28-SSOP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic16c63a-20i-ss

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic16c63a-20i-ss-4410946
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

© 2009 Microchip Technology Inc.Page 1-8 DS01146B

8-pin Flash PIC® Microcontroller Tips ‘n Tricks

Tip #13.1	Reading a Sensor With Higher
	 Accuracy – RC Timing Method

RC Timing Method:
Simple RC step response
Vc(t) = Vdd * (1 - e -t/(RC))
t = -RC ln(1 - Vth/Vdd)
Vth/Vdd is constant
R2 = (t2/t1) * R1

Figure 13-1

Time

Vc(t)

VTH

t = 0 t = t1 t = t2

R1 R2

A reference resistor can be used to improve the
accuracy of an analog sensor reading. In this
diagram, the charge time of a resistor/capacitor
combination is measured using a timer and a
port input or comparator input switches from a ‘0’
to ‘1’. The R1 curve uses a reference resistor and
the R2 curve uses the sensor. The charge time
of the R1 curve is known and can be used to
calibrate the unknown sensor reading, R2. This
reduces the affects of temperature, component
tolerance and noise while reading the sensor.

TIP #13	Reading a Sensor With
	 Higher Accuracy
Sensors can be read directly with the A/D but in
some applications, factors such as temperature,
external component accuracy, sensor non-
linearity and/or decreasing battery voltage need
to be considered. In other applications, more
than 10 bits of accuracy are needed and a
slower sensor read is acceptable. The following
tips deal with these factors and show how to get
the most out of a PIC MCU.

13.1.	 RC Timing Method (with reference resistor)
13.2.	Charge Balancing Method
13.3.	A/D Method

© 2009 Microchip Technology Inc. DS01146B-Page 1-11

8-pin Flash PIC® Microcontroller Tips ‘n Tricks

TIP #14	Delta-Sigma Converter
The charge on the capacitor on GP1 is
maintained about equal to the CVref by the
MCU monitoring Cout and switching GP2 from
Input mode or output low appropriately. A timer
is used to sample the Cout bit on a periodic
basis. Each time GP2 is driven low, a counter is
incremented. This counter value corresponds to
the input voltage.
To minimize the affects of external component
tolerances, temperature, etc., the circuit can be
calibrated. Apply a known voltage to the input
and allow the microcontroller to count samples
until the expected result is calculated. By taking
the same number of samples for subsequent
measurements, they become calibrated
measurements.

Figure 14-1

COUT

VIN

CVREF

PIC12F6XX

GP1

GP2

+

-

1.	GP1 average voltage = CVref

2.	Time base as sampling rate
3.	At the end of each time base period:
	 - If GP1 > CVref, then GP2 Output Low
	 - If GP1 < CVref, then GP2 Output High
4.	Accumulate the GP2 lows over many
	 samples
5.	Number of samples determines resolution

Tip #13.3	Reading a Sensor With Higher
	 Accuracy – A/D Method
NTC (Negative Temperature Coefficient)
sensors have a non-linear response to
temperature changes. As the temperature
drops, the amount the resistance changes
becomes less and less. Such sensors have
a limited useful range because the resolution
becomes smaller than the A/D resolution as the
temperature drops. By changing the voltage
divider of the Rsen, the temperature range can
be expanded.
To select the higher temperature range, GP1
outputs ‘1’ and GP2 is set as an input. For
the lower range, GP2 outputs ‘1’ and GP1
is configured as an input. The lower range
will increase the amount the sensor voltage
changes as the temperature drops to allow a
larger usable sensor range.

Summary:
High range: GP1 output ‘1’ and GP2 input
Low range: GP1 input and GP2 output ‘1’
1.	 10K and 100K resistors are used to set the
	 range
2.	Vref for A/D = Vdd

3.	Rth calculation is independent of Vdd

4.	Count = Rsen/(Rsen+Rref) x 255
5.	Don’t forget to allow acquisition time for the
	 A/D

Figure 13-4

PIC12F675

AN0 (A/D Input)

GP1

GP2
100K

10K

RSEN

© 2009 Microchip Technology Inc.Page 1-12 DS01146B

8-pin Flash PIC® Microcontroller Tips ‘n Tricks

TIPS ‘N TRICKS WITH SOFTWARE
To reduce costs, designers need to make
the most of the available program memory in
MCUs. Program memory is typically a large
portion of the MCU cost. Optimizing the code
helps to avoid buying more memory than
needed. Here are some ideas that can help
reduce code size.

TIP #15	Delay Techniques
• Use GOTO “next instruction” instead of two
	 NOPs.
• Use CALL Rtrn as quad, 1 instruction NOP
	 (where “Rtrn” is the exit label from existing
	 subroutine).

Example 15-1

NOP
NOP

GOTO $+1

CALL Rtrn ;1 instruction, 4 cycles

Rtrn RETURN
. . .

;2 instructions, 2 cycles

;1 instruction, 2 cycles

MCUs are commonly used to interface with the
“outside world” by means of a data bus, LEDs,
buttons, latches, etc. Because the MCU runs at
a fixed frequency, it will often need delay
routines to meet setup/hold times of other
devices, pause for a handshake or decrease the
data rate for a shared bus.

Longer delays are well-suited for the DECFSZ
and INCFSZ instructions where a variable is
decremented or incremented until it reaches
zero when a conditional jump is executed. For
shorter delays of a few cycles, here a few ideas
to decrease code size.
For a two-cycle delay, it is common to use
two NOP instructions which uses two program
memory locations. The same result can
be achieved by using “goto $+1”. The “$”
represents the current program counter value
in MPASM™ Assembler. When this instruction
is encountered, the MCU will jump to the next
memory location. This is what it would have
done if two NOP’s were used but since the
GOTO instruction uses two instruction cycles
to execute, a two-cycle delay was created.
This created a two-cycle delay using only one
location of program memory.
To create a four-cycle delay, add a label to an
existing RETURN instruction in the code. In
this example, the label “Rtrn” was added to the
RETURN of subroutine that already existed
somewhere in the code. When executing “CALL
Rtrn”, the MCU delays two instruction cycles
to execute the CALL and two more to execute
the RETURN. Instead of using four NOP
instructions to create a four-cycle delay, the
same result was achieved by adding a single
CALL instruction.

© 2009 Microchip Technology Inc. DS01146B-Page 1-13

8-pin Flash PIC® Microcontroller Tips ‘n Tricks

TIP #16	Optimizing Destinations
• Destination bit determines W for F for result
• Look at data movement and restructure

Example 16-1

Example: A + B → A

MOVF
ADDWF
MOVWF

MOVF
ADDWF

A,W
B,W
A

B,W
A,F

3 instructions 2 instructions

Careful use of the destination bits in instructions
can save program memory. Here, register A and
register B are summed and the result is put into
the A register. A destination option is available
for logic and arithmetic operations. In the first
example, the result of the ADDWF instruction is
placed in the working register. A MOVWF
instruction is used to move the result from the
working register to register A. In the second
example, the ADDWF instruction uses the
destination bit to place the result into the A
register, saving an instruction.

TIP #17	Conditional Bit Set/Clear
•	To move single bit of data from REGA to
	 REGB
•	Precondition REGB bit
•	Test REGA bit and fix REGB if necessary

Example 17-1

BTFSS
BCF
BTFSC
BSF

BCF
BTFSC
BSF

REGA,2
REGB,5
REGA,2
REGB,5

REGB,5
REGA,2
REGB,5

4 instructions 3 instructions

One technique for moving one bit from the
REGA register to REGB is to perform bit tests.
In the first example, the bit in REGA is tested
using a BTFSS instruction. If the bit is clear,
the BCF instruction is executed and clears the
REGB bit, and if the bit is set, the instruction
is skipped.The second bit test determines if
the bit is set, and if so, will execute the BSF
and set the REGB bit, otherwise the instruction
is skipped. This sequence requires four
instructions.
A more efficient technique is to assume the
bit in REGA is clear, and clear the REGB bit,
and test if the REGA bit is clear. If so, the
assumption was correct and the BSF instruction
is skipped, otherwise the REGB bit is set.
The sequence in the second example uses
three instructions because one bit test was not
needed.
One important point is that the second example
will create a two-cycle glitch if REGB is a port
outputting a high. This is caused by the BCF
and BTFSC instructions that will be executed
regardless of the bit value in REGA.

© 2009 Microchip Technology Inc. DS01146B-Page 2-5

PIC® Microcontroller Low Power Tips ‘n Tricks

TIP #6	Use an External Source for
CPU Core Voltage
Some PIC MCUs such as “J” type devices (ex.
PIC18F87J90 or PIC24FJ64GA004) use sepa-
rate power for CPU core. These devices have
an internal voltage regulator that can be used to
provide the core voltage. Alternatively, the core
voltage can be provided externally by disabling
the internal regulator. In some cases, it is more
power efficient to use an external source for
the core. This is because the internal regula-
tor powers the core at the nominal voltage that
allows full speed operation. However, if an
application doesn’t require full speed, it is ben-
eficial to use lower voltage to power the core.
Disabling the internal regulator also turns off the
BOR and LVD circuits, which saves power as
well. The following examples show two different
battery powered applications where it can be
beneficial to disable the internal regulator.
Example 1: Constant Voltage Source

When using a regulated power source or a
battery with a flat discharge curve, such as a
lithium coin cell, the regulator can be disabled
and the core powered directly from the battery
through a diode. The diode provides the
voltage drop necessary to power the core at the
correct voltage. It may be necessary to use a
zener diode with a higher forward voltage for
applications using sleep mode, as the current
consumed in sleep is too low to cause the
full forward voltage drop which can result in
applying a voltage too high for the core.

Figure 6-1:

®

Example 2: Non-Constant Voltage Source
If the source for Vdd is not constant, a regulator
will be required. It can be beneficial to use an
external low quiescent current regulator, which
can be selected to provide lower voltage to the
core than the internal regulator. Additionally,
devices such as the MCP1700, which
consumes 1 uA quiescent current while asleep,
require less power than the internal regulator.
Figure 6-2:

®

© 2009 Microchip Technology Inc.Page 2-12-DS01146B

PIC® Microcontroller Low Power Tips ‘n Tricks

TIP #22	Ultra Low-Power Wake-Up
Peripheral
Newer devices have a modification to PORTA
that creates an Ultra Low-Power Wake-Up
(ULPWU) peripheral. A small current sink and
a comparator have been added that allows
an external capacitor to be used as a wake-
up timer. This feature provides a low-power
periodic wake-up source which is dependent on
the discharge time of the external RC circuit.

Figure 22-1: Ultra Low-Power Wake-Up
	 Peripheral

VREF
I

Pin Wake-on-Change
InterruptC

If the accuracy of the Watchdog Timer is not
required, this peripheral can save a lot of
current.
Visit the low power design center at:
www.microchip.com/lowpower for
additional design resources.

© 2009 Microchip Technology Inc.Page 3-8-DS01146B

PIC® Microcontroller CCP and ECCP Tips ‘n Tricks

Step #2: Calculate CCPR1 (CCPR1L and
	 CCPR1H) to shorten the time-out to
	 exactly 0.2 seconds
a)	CCPR1 = Interval Time/(Tosc*4*prescaler) =
	 0.2/(125 ns*4*8) = 5000 = 0xC350
b)	Therefore, CCPR1L = 0x50, and
	 CCPR1H = 0xC3
Step #3: Configuring CCP1CON
The CCP module should be configured in
Trigger Special Event mode. This mode
generates an interrupt when the Timer1 equals
the value specified in CCPR1L and Timer1
is automatically cleared(1). For this mode,
CCP1CON = ‘b00001011’.

Note 1:	Trigger Special Event mode also
	 starts an A/D conversion if the
	 A/D module is enabled. If this
 	 functionality is not desired, the CCP
	 module should be configured in
	 “generate software interrupt-on-
	 match only” mode (i.e., CCP1CON =
	 b‘00001010’). Timer 1 must also
	 be cleared manually during the
	 CCP interrupt.

TIP #7	Periodic Interrupts
Generating interrupts at periodic intervals
is a useful technique implemented in many
applications. This technique allows the main
loop code to run continuously, and then, at
periodic intervals, jump to the interrupt service
routine to execute specific tasks (i.e., read the
ADC). Normally, a timer overflow interrupt is
adequate for generating the periodic interrupt.
However, sometimes it is necessary to interrupt
at intervals that can not be achieved with a
timer overflow interrupt. The CCP configured
in Compare mode makes this possible by
shortening the full 16-bit time period.

Example Problem:
A PIC16F684 running on its 8 MHz internal
oscillator needs to be configured so that it
updates a LCD exactly 5 times every second.
Step #1: Determine a Timer1 prescaler
	 that allows an overflow at greater
	 than 0.2 seconds
a)	Timer1 overflows at: Tosc*4*65536*
	 prescaler
b)	For a prescaler of 1:1, Timer1 overflows in
	 32.8 ms.
c)	A prescaler of 8 will cause an overflow at a
	 time greater than 0.2 seconds.
	 8 x 32.8 ms = 0.25s

© 2009 Microchip Technology Inc. DS01146B-Page 3-11

PIC® Microcontroller CCP and ECCP Tips ‘n Tricks

TIP #11	Sequential ADC Reader
Figure 11-1: Timeline

Time

Read AN0 Read AN1 Read AN2 Read AN0

Trigger Special Event mode (a sub-mode in
Compare mode) generates a periodic interrupt
in addition to automatically starting an A/D
conversion when Timer1 matches CCPRxL and
CCPRxH. The following example problem
demonstrates how to sequentially read the A/D
channels at a periodic interval.

Example
Given the PIC16F684 running on its 8 MHz
internal oscillator, configure the microcontroller
to sequentially read analog pins AN0, AN1 and
AN2 at 30 ms intervals.
Step #1: Determine Timer1 Prescaler
a) Timer1 overflows at: Tosc*4*65536*
	 prescaler.
b) For a prescaler of 1:1, the Timer1 overflow
	 occurs in 32.8 ms.
c) This is greater than 30 ms, so a prescaler of
	 1 is adequate.

Step #2: Calculate CCPR1 (CCPR1L and
	 CCPR1H)
a) CCPR1 = Interval Time/(Tosc*4*prescaler) =
	 0.030/(125 ns*4*1) = 6000 = 0xEA60
b) Therefore, CCPR1L = 0x60, and CCPR1H =
	 0xEA
Step #3: Configuring CCP1CON
The ECCP module should be configured
in Trigger Special Event mode. This mode
generates an interrupt when Timer1 equals
the value specified in CCPR1. Timer1 is
automatically cleared and the GO bit in
ADCON0 is automatically set. For this mode,
CCP1CON = ‘b00001011’.
Step #4: Add Interrupt Service Routine Logic
When the ECCP interrupt is generated, select
the next A/D pin for reading by altering the
ADCON0 register.

© 2009 Microchip Technology Inc.Page 3-14-DS01146B

PIC® Microcontroller CCP and ECCP Tips ‘n Tricks

TIP #13	Deciding on PWM Frequency
In general, PWM frequency is application
dependent although two general rules-of-thumb
hold regarding frequency in all applications.
They are:
1.	As frequency increases, so does current
	 requirement due to switching losses.
2.	Capacitance and inductance of the load tend
	 to limit the frequency response of a circuit.
In low-power applications, it is a good idea
to use the minimum frequency possible to
accomplish a task in order to limit switching
losses. In circuits where capacitance and/or
inductance are a factor, the PWM frequency
should be chosen based on an analysis of the
circuit.

Motor Control
PWM is used extensively in motor control
due to the efficiency of switched drive
systems as opposed to linear drives. An
important consideration when choosing PWM
frequency for a motor control application is
the responsiveness of the motor to changes
in PWM duty cycle. A motor will have a faster
response to changes in duty cycle at higher
frequencies. Another important consideration
is the sound generated by the motor. Brushed
DC motors will make an annoying whine
when driven at frequencies within the audible
frequency range (20 Hz-4 kHz.) In order to
eliminate this whine, drive brushed DC motors
at frequencies greater than 4 kHz. (Humans
can hear frequencies at upwards of 20 kHz,
however, the mechanics of the motor winding
will typically attenuate motor whine above
4 kHz).

LED and Light Bulbs
PWM is also used in LED and light dimmer
applications. Flicker may be noticeable with
rates below 50 Hz. Therefore, it is generally a
good rule to pulse-width modulate LEDs and
light bulbs at 100 Hz or higher.

TIP #14	Unidirectional Brushed DC
	 Motor Control Using CCP
Figure 14-1: Brushed DC (BDC) Motor
	 Control Circuit

PIC16F628

10 kΩ

22 pF

CCP1

VCC

EMI/RFI
Suppression

Place on
motor

22 pF
Motor

100Ω
CCP1

Figure 14-1 shows a unidirectional speed
controller circuit for a brushed DC motor. Motor
speed is proportional to the duty cycle of the
PWM output on the CCP1 pin. The following
steps show how to configure the PIC16F628 to
generate a 20 kHz PWM with 50% duty cycle.
The microcontroller is running on a 20 MHz
crystal.
Step #1: Choose Timer2 Prescaler
a)	Fpwm = Fosc/((PR2+1)*4*prescaler) =
	 19531 Hz for PR2 = 255 and prescaler of 1
b)	This frequency is lower than 20 kHz,
	 therefore a prescaler of 1 is adequate.
Step #2: Calculate PR2
PR2 = Fosc/(Fpwm*4*prescaler) – 1 = 249
Step #3: Determine CCPR1L and
	 CCP1CON<5:4>
a)	CCPR1L:CCP1CON<5:4> =
	 DutyCycle*0x3FF = 0x1FF
b)	CCPR1L = 0x1FF >> 2 = 0x7F,
	 CCP1CON<5:4> = 3
Step #4: Configure CCP1CON
The CCP module is configured in PWM mode
with the Least Significant bits of the duty cycle
set, therefore, CCP1CON = ‘b001111000’.

© 2009 Microchip Technology Inc. DS01146B-Page 3-17

PIC® Microcontroller CCP and ECCP Tips ‘n Tricks

TIP #17	Boost Power Supply
Figure 17-1: Boost Power Supply Circuit

D1VIN

PIC16F684

CCP1

Feedback

C2
47 µF

VCC

C1
10 µF

R1
4.7 kΩ

L1
680 µH

Q1R3

10 kΩ

VOUT

RL

AN0

Hardware
Pulse-width modulation plays a key role in
boost power supply design. Figure 17-1 shows
a typical boost circuit. The circuit works by Q1
grounding the inductor (L1) during the high
phase of the PWM signal generated by CCP1.
This causes an increasing current to flow
through L1 while Vcc is applied. During the low
phase of the PWM signal, the energy stored in
L1 flows through D1 to the storage capacitor
(C2) and the load. Vout is related to Vin by
Equation 17-1.

Note:	Technical Brief TB053 “Generating
	 High Voltage Using the PIC16C781/
	 782” provides details on boost power
	 supply design.

The first parameter to determine is the duty
cycle based upon the input and output voltages.
See Equation 17-1.

Equation 17-1

Next, the value of the inductor is chosen based
on the maximum current required by the load,
the switching frequency and the duty cycle. A
function for inductance in terms of load current
is given by Equation 17-2, where T is the PWM
period, D is the duty cycle, and Iout is the
maximum load current.

Equation 17-2

The value for L is chosen arbitrarily to satisfy
this equation given Iout, a maximum duty cycle
of 75% and a PWM frequency in the 10 kHz to
100 kHz range.
Using the value chosen for L, the ripple current
is calculated using Equation 17-3.

Equation 17-3

Iripple can not exceed the saturation current for
the inductor. If the value for L does produce a
ripple current greater than Isat, a bigger inductor
is needed.

Note:	All equations above assume a
	 discontinuous current mode.

Firmware
The PWM duty cycle is varied by the
microcontroller in order to maintain a stable
output voltage over fluctuating load conditions.
A firmware implemented PID control loop is
used to regulate the duty cycle. Feedback from
the boost power supply circuit provides the input
to the PID control.

Note:	Application Note AN258 “Low Cost
	 USB Microcontroller Programmer”
	 provides details on firmware-based
	 PID control.

Iripple = Vin DT
 L

L = Vin (1 - D) DT
 2 Iout

 Vout = 1
 Vin 1 - D

© 2009 Microchip Technology Inc.Page 3-20-DS01146B

PIC® Microcontroller CCP and ECCP Tips ‘n Tricks

Example 20-1: Transmit Routine
TxRountine

MOVLW 8 ;preload bit counter
;with 8

MOVWF counter
BCF TxLine ;line initially high,

;toggle low for START
;bit

TxLoop
CALL DelayTb ;wait Tb (bit period)
RRF RxByte,f ;rotate LSB first into

;the Carry flag
BTFSS STATUS,C ;Tx line state equals

;state of Carry flag
BCF TxLine
BTFSC STATUS,C
BSF TxLine
DECFSZ Counter,f ;Repeat 8 times
GOTO TxLoop
CALL Delay Tb ;Delay Tb before

;sending STOP bit
BSF TxLine ;send STOP bit

Example 20-2: Receive Routine

RxRoutine
BTFSC RxLine ;wait for receive

;line to go low
GOTO RxRoutine
MOVLW 8 ;initialize bit

;counter to 8
MOVWF Counter
CALL Delay1HalfTb;delay 1/2 Tb here

 ;plus Tb in RxLoop
;in order to sample
;at the right time

RxLoop
CALL DelayTb ;wait Tb (bit

;period)
BTFSS RxLine ;Carry flag state

;equals Rx line
;state

BCF STATUS,C
BTFSC RxLine
BSF STATUS,C
BTFSC RxLine
BSF STATUS,C
RRF RxByte,f ;Rotate LSB first

;into receive type
DECFSZ Counter,f ;Repeat 8 times
GOTO RxLoop

© 2009 Microchip Technology Inc. DS01146B-Page 4-7

PIC® Microcontroller Comparator Tips ‘n Tricks

TIP #6	Data Slicer
In both wired and wireless data transmission,
the data signal may be subject to DC offset
shifts due to temperature shifts, ground
currents or other factors in the system. When
this happens, using a simple level comparison
to recover the data is not possible because
the DC offset may exceed the peak-to-peak
amplitude of the signal. The circuit typically
used to recover the signal in this situation is a
data slicer.
The data slicer shown in Figure 6-1 operates
by comparing the incoming signal with a sliding
reference derived from the average DC value
of the incoming signal. The DC average value
is found using a simple RC low-pass filter (R1
and C1). The corner frequency of the RC filter
should be high enough to ignore the shifts in
the DC level while low enough to pass the data
being transferred.
Resistors R2 and R3 are optional. They provide
a slight bias to the reference, either high or low,
to give a preference to the state of the output
when no data is being received. R2 will bias the
output low and R3 will bias the output high. Only
one resistor should be used at a time, and its
value should be at least 50 to 100 times larger
than R1.

Figure 6-1: Data Slicer

+

-

R2

R3

Input

VDD

Output

Comparator

C1

R1

Example:
Data rate of 10 kbits/second. A low pass filter
frequency of 500 Hz: R1 = 10k, C1 = 33 mF. R2
or R3 should be 500k to 1 MB.

© 2009 Microchip Technology Inc.Page 4-8-DS01146B

PIC® Microcontroller Comparator Tips ‘n Tricks

When the voltage across C1 exceeds the high
threshold voltage, the output of the comparator
goes low, C1 is discharged to just above the
0.7V limit, the non-inverting input is pulled below
0.7V, and the circuit is reset for the next pulse
input, waiting for the next trigger input.

Figure 7-1: One-Shot Circuit

R3

Input

D1

C2

V2

R2

VDD

V1

VDD Output
+

-

R1

Comparator

R5
R4

C1

To design the one-shot, first create the
hysteresis feedback using the techniques from
Tip #3. Remember to set the low threshold
below 0.7V. Next, choose values for R2 and C1
using Equation 7-1.

Equation 7-1

D1 can be any low voltage switching diode. R1
should be 1% to 2% of R2 and C2 should be
between 100 and 220 pF.

Example:
•	Vdd = 5V, Vth = 3.0V, Vtl = 2.5V
•	From Tip #3, R4 = 1k, R5 = 1.5k and R3 = 12k
•	Tpulse = Ims, C1 = .1 mF and R2 = 15k
•	D1 is a 1N4148, R1 = 220W and C2 = 150 pF

TIP #7	 One-Shot
When dealing with short duration signals or
glitches, it is often convenient to stretch out the
event using a mono-stable, multi-vibrator or
one-shot. Whenever the input pulses, the
one-shot fires holding its output for a preset
period of time. This stretches the short
trigger input into a long output which the
microcontroller can capture.
The circuit is designed with two feedback paths
around a comparator. The first is a positive
hysteresis feedback which sets a two level
threshold, Vhi and Vlo, based on the state of
the comparator output. The second feedback
path is an RC time circuit.
The one-shot circuit presented in Figure 7-1 is
triggered by a low-high transition on its input
and generates a high output pulse. Using
the component values from the example, the
circuit’s operation is as follows.
Prior to triggering, C1 will have charged to
a voltage slightly above 0.7V due to resistor
R2 and D1 (R1 << R2 and will have only a
minimal effect on the voltage). The comparator
output will be low, holding the non-inverting
input slightly below 0.7V due to the hysteresis
feedback through R3, R4 and R5 (the hysteresis
lower limit is designed to be less than 0.7V).
With the non-inverting input held low, C2 will
charge up to the difference between the
circuit input and the voltage present at the
non-inverting input.
When the circuit input is pulsed high, the
voltage present at the non-inverting input is
pulled above 0.7V due to the charge in C2.
This causes the output of the comparator to go
high, the hysteresis voltage at the non-inverting
input goes to the high threshold voltage, and C1
begins charging through R2.

Tpulse = R2 * C1 * In(Vth/Vtl)
 4

© 2009 Microchip Technology Inc.Page 4-14-DS01146B

PIC® Microcontroller Comparator Tips ‘n Tricks

TIP #13	PWM High-Current Driver
This tip combines a comparator with a MOSFET
transistor and an inductor to create a switch mode
high-current driver circuit. (See Figure 13-1).
The operation of the circuit begins with the
MOSFET off and no current flowing in the
inductor and load. With the sense voltage across
R1 equal to zero and a DC voltage present at
the drive level input, the output of the comparator
goes low. The low output turns on the MOSFET
and a ramping current builds through the
MOSFET, inductor, load and R1.

Figure 13-1: High Current Driver

VDD

Drive
Level

+

-

Comparator
R3

R1C1

R2

P ch
MOSFET

Load

When the current ramps high enough to generate
a voltage across R1 equal to the drive level, the
comparator output goes high turning off the
MOSFET. The voltage at the junction of the
MOSFET and the inductor then drops until D1
forward biases. The current continues ramping
down from its peak level toward zero. When the
voltage across the sense resistor R1 drops below
the drive level, the comparator output goes low,
the MOSFET turns on, and the cycle starts over.
R2 and C1 form a time delay network that limits
the switching speed of the driver and causes it
to slightly overshoot and undershoot the drive
level when operating. The limit is necessary to
keep the switching speed low, so the MOSFET
switches efficiently. If R2 and C1 were not
present, the system would run at a speed set
by the comparator propagation delay and the
switching speed of the MOSFET. At that speed,
the switching time of the MOSFET would be a
significant portion of the switching time and the
switching efficiency of the MOSFET would be too
low.

Figure 13-1: Current Through the Load

Time

Drive Level Ripple Current

Load Current

To design a PWM high current driver, first
determine a switching speed (Fswx) that is
appropriate for the system. Next, choose a
MOSFET and D1 capable of handling the load
current requirements. Then choose values for
R2 and C1 using Equation 13-1.

Equation 13-1

Next determine the maximum ripple current that
the load will tolerate, and calculate the required
inductance value for L1 using Equation 13-2.

Equation 13-2

Finally, choose a value for R1 that will produce
a feedback ripple voltage of 100 mV for the
maximum ripple current Iripple.

Example:
•	Fswx = 10 kHz, R2 = 22k, C1 = .01 mF
•	Iripple = 100 mA, Vdd = 12V, Vl = 3.5V
•	L = 4.25 mH

Fswx = 2
 R2 * C1

L = Vdd - Vload
 Iripple * Fswx * 2

© 2009 Microchip Technology Inc. DS01146B-Page 6-9

LCD PIC® Microcontroller Tips ‘n Tricks

TIP #11	Blinking LCD
Information can be displayed in more than one
way with an LCD panel. For example, how can
the user’s attention be drawn to a particular
portion of the LCD panel? One way that does
not require any additional segments is to create
a blinking effect.
Look at a common clock application. The “:”
between the hours and minutes is commonly
made to blink once a second (on for half a
second, off for half a second). This shows that
the clock is counting in absence of the ticking
sound or second hand that accompanies the
usual analog face clock. It serves an important
purpose of letting the user know that the clock is
operating.
If there is a power outage, then it is common for
the entire clock display to blink. This gives the
user of the clock an immediate indication that
the clock is no longer showing the correct time.
When the user sets the time, then blinking is
commonly used to show that a new mode has
been entered, such as blinking the hours to
identify that the hours are being set, or blinking
the minutes to show that the minutes are
being set. In a simple clock, blinking is used
for several different purposes. Without blinking
effects, the common digital clock would not be
nearly as user friendly.

TIP #10	How to Update LCD
	 Data Through Firmware
To update the LCD, the content of the LCDDATA
registers is modified to turn on, or off, each pixel
on the LCD display. The application firmware
will usually modify buffer variables that are
created to correspond with elements on the
display, such as character positions, bar graph,
battery display, etc.
When the application calls for a display update,
the values stored in the buffer variables must be
converted to the correct setting of the pixel bits,
located in the LCDDATA registers.
For Type-A waveforms, the LCD Data registers
may be written any time without ill effect.
However, for Type-B waveforms, the LCD Data
registers can only be written every other LCD
frame in order to ensure that the two frames of
the Type-B waveform are compliments of one
another. Otherwise, a DC bias can be presented
to the LCD.
The LCD Data registers should only be written
when a write is allowed, which is indicated by
the WA bit in the LCDCON register being set.
On the PIC16C926 parts, there is no WA bit.
The writing of the pixel data can be coordinated
on an LCD interrupt. The LCD interrupt is only
generated when a multiplexed (not static)
Type-B waveform is selected.

© 2009 Microchip Inc.Page 7-2-DS01146B

Intelligent Power Supply Design Tips ‘n Tricks

TIP #1	Soft-Start Using a PIC10F200
Almost all power supply controllers are
equipped with shutdown inputs that can be used
to disable the MOSFET driver outputs. Using
Pulse-Width Modulation (PWM), the amount
of time the power supply is allowed to operate
can be slowly incremented to allow the output
voltage to slowly rise from 0% to 100%.

Figure 1-1: Soft-Start Circuit Schematic

N.C.N.C. X X

V

On/Off
Control

Input

VDD

Shutdown
PWM Output

0.1 µF

5

3GP0 GP1

GP2GP3
6

1

2

4
10 kΩ

Note: Assumes SOT-23 packaging.

This technique is called soft-start and is used to
prevent the large inrush currents that are
associated with the start-up of a switching
power supply.
GP0 on the PIC MCU is used to enable or
disable the soft-start. Once enabled, the on-time
of the PWM signal driving the shutdown output
will increase each cycle until the power supply
is fully on.

During the PIC MCU Power-on Reset, the PWM
output (GP1) is initially in a high-impedance
state. A pull-down resistor on the PWM output
ensures the power supply will not unexpectedly
begin operating.

Figure 1-2: Timing Diagram

Output Voltage

PWM

100%

0%

It is important to note that this type of soft-start
controller can only be used for switching
regulators that respond very quickly to changes
on their shutdown pins (such as those that do
cycle-by-cycle limiting). Some linear regulators
have active-low shutdown inputs, however,
these regulators do not respond fast enough to
changes on their shutdown pins in order to
perform soft-start.
Example software is provided for the
PIC10F200 which was taken from TB081.
Please refer to TB081, “Soft-Start Controller For
Switching Power Supplies” (DS91081) for more
information.

© 2009 Microchip Inc. DS01146B-Page 7-3

Intelligent Power Supply Design Tips ‘n Tricks

TIP #2	A Start-Up Sequencer
Some new devices have multiple voltage
requirements (e.g., core voltages, I/O voltages,
etc.). The sequence in which these voltages rise
and fall may be important.
By expanding on the previous tip, a start-up
sequencer can be created to control two output
voltages. Two PWM outputs are generated
to control the shutdown pins of two SMPS
controllers. Again, this type of control only works
on controllers that respond quickly to changes
on the shutdown pin (such as those that do
cycle-by-cycle limiting).

Figure 2-1: Multiple PWM Output Soft-Start
	 Controller

10 kΩ

Note: Assumes SOT-23 packaging.

0.1 µF

Shutdown

VDD

5
3GP0/CIN+ GP1

GP2GP3
6

1

2

4

10 kΩ
PWM Output #1

PWM Output #2

Under-
Voltage
Lockout

This design uses the PIC MCU comparator to
implement an under-voltage lockout. The input
on the GP0/Cin+ pin must be above the internal
0.6V reference for soft-start to begin, as shown
in Figure 2-2.

Two conditions must be met in order for the
soft-start sequence to begin:
1.	The shutdown pin must be held at Vdd
	 (logic high).
2.	The voltage on GP0 must be above 0.6V.
Once both start-up conditions are met, the
sequences will delay and PWM #1 will ramp
from 0% to 100%. A second delay allows the
first voltage to stabilize before the sequencer
ramps PWM #2 from 0% to 100%. All delays
and ramp times are under software control and
can be customized for specific applications. If
either soft-start condition becomes invalid, the
circuit will shutdown the SMPS controllers.

Figure 2-2: Timing Diagram

V1

PWM1

1. Start-up conditions met
2. Initial delay
3. PWM Ramp #1 complete
4. Between PWM delay
5. PWM #2 complete

1 2

PWM2

3 4 5

V2

Example software is provided for the
PIC10F200 which was taken from TB093,
“Multiple PWM Output Soft-Start Controller for
Switching Power Supplies” (DS91093).

© 2009 Microchip Inc.Page 7-4-DS01146B

Intelligent Power Supply Design Tips ‘n Tricks

TIP #3	A Tracking and Proportional
	 Soft-Start of Two Power
	 Supplies
Expanding on the previous tip, we can also
use a PIC MCU to ensure that two voltages in
a system rise together or rise proportionally to
one another, as shown in Figure 3-1. This type
of start-up is often used in applications with
devices that require multiple voltages (such as
I/O and core voltages).
Like the previous two, this tip is designed to
control the shutdown pin of the SMPS controller
and will only work with controllers that respond
quickly to changes on the shutdown pin.

Figure 3-1: Timing Diagram

Time

VA

VB

Vo
lta

ge

Figure 3-2: Example Schematic

Control
Software

Shutdown

0.1 µF

PIC12F629

+

-

VDD

Resistor
Divider 2

VB

VA

Resistor
Divider 1

Shutdown A

Shutdown B

R1

R2

The comparator of the PIC MCU is used to
determine which voltage is higher and increases
the on-time of the other output accordingly. The
logic for the shutdown pins is as shown in Table
3-1.

Table 3-1: Shutdown Pin Logic

Case Shutdown
A

Shutdown
B

Va > Vb Low High

Vb > Va High Low

Vb > Internal Reference High High

To determine if it has reached full voltage, Vb is
compared to the internal voltage reference. If Vb
is higher, both shutdown outputs are held high.
Resistor Divider 1 should be designed so that
the potentiometer output is slightly higher than
the comparator voltage reference when Vb is at
full voltage.
The ratio of resistors in Resistor Divider 2 can
be varied to change the slope at which Va rises.
Pull-down resistors ensure the power supplies
will not operate unexpectedly when the PIC
MCU is being reset.

© 2009 Microchip Inc. DS01146B-Page 7-15

Intelligent Power Supply Design Tips ‘n Tricks

TIP #14	Brushless DC Fan Speed
	 Control
There are several methods to control the
speed of a DC brushless fan. The type of fan,
allowable power consumption and the type of
control desired are all factors in choosing the
appropriate type.

Figure 14-1: Low-Side PWM Drive

PWM Drive

12V

Figure 14-2: High-Side PWM Drive

PWM Drive

12V12V

Method 1 – Pulse-Width Modulation
As shown in Figure 14-1 and Figure 14-2, a
simple PWM drive may be used to switch a
two-wire fan on and off. While it is possible to
use the circuit in Figure 14-1 without a high-side
MOSFET driver, some manufacturers state that
switching on the low side of the fan will void the
warranty.

Because of this, it is necessary to switch the
high side of the fan in order to control the
speed. The simplest type of speed control is ‘on’
or ‘off’. However, if a higher degree of control is
desired, PWM can be used to vary the speed of
the fan.
For 3-wire fans, the tachometer output will
not be accurate if PWM is used. The sensor
providing the tachometer output on 3-wire fans
is powered from the same supply as the fan
coils, thus using a PWM to control fan speed
will render the fan’s tachometer inaccurate.
One solution is to use a 4-wire fan which
includes both the tachometer output and a drive
input. Figure 14-3 shows a diagram of a 4-wire
fan.

Figure 14-3: Typical 4-Wire Fan

V+

GND

TACH

Drive

TACH

A 4-wire fan allows speed to be controlled
using PWM via the Drive line. Since power to
the tachometer sensor is not interrupted, it will
continue to output the correct speed.

© 2009 Microchip Inc. DS01146B-Page 7-21

Intelligent Power Supply Design Tips ‘n Tricks

TIP #20	Compensating Sensors
	 Digitally
Many sensors and references tend to drift
with temperature. For example, the MCP9700
specification states that its typical is ±0.5°C and
its max error is ±4°C.

Figure 20-1: MCP9700 Accuracy

6.0

4.0

2.0

0.0

-2.0

-4.0

A
cc

ur
ac

y
(°

C
)

-55 -35 -15 5 25 45 65 85 105 125
Temperature (°C)

+σ

-σ

Spec. Limit

Average

Figure 20-1 shows the accuracy of a 100
sample lot of MCP9700 temperature sensors.
Despite the fact that the sensor’s error is
nonlinear, a PIC microcontroller (MCU) can be
used to compensate the sensor’s reading.
Polynomials can be fitted to the average error of
the sensor. Each time a temperature reading is
received, the PIC MCU can use the measured
result and the error compensation polynomials
to determine what the true temperature is.

Figure 20-2: MCP9700 Average Accuracy
	 After Compensation

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

Ac
cu

ra
cy

 (°
C)

-55 -35 -15 5 25 45 65 85 105 125
Temperature (°C)

Average

Figure 20-2 shows the average accuracy for the
100 sample lot of MCP9700 temperature
sensors after compensation. The average error
has been decreased over the full temperature
range.
It is also possible to compensate for error from
voltage references using this method.
For more information on compensating
a temperature sensor digitally, refer to
AN1001, “IC Temperature Sensor Accuracy
Compensation with a PIC Microcontroller”
(DS01001).

