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TIPS ‘N TRICKS INTRODUCTION
Microchip continues to provide innovative 
products that are smaller, faster, easier to 
use and more reliable. The 8-pin Flash PIC® 
microcontrollers (MCU) are used in an wide 
range of everyday products, from toothbrushes, 
hair dryers and rice cookers to industrial, 
automotive and medical products.
The PIC12F629/675 MCUs merge all the 
advantages of the PIC MCU architecture and 
the flexibility of Flash program memory into 
an 8-pin package. They provide the features 
and intelligence not previously available due 
to cost and board space limitations. Features 
include a 14-bit instruction set, small footprint 
package, a wide operating voltage of 2.0 to 
5.5 volts, an internal programmable 4 MHz 
oscillator, on-board EEPROM data memory, 
on-chip voltage reference and up to 4 channels 
of 10-bit A/D. The flexibility of Flash and an 
excellent development tool suite, including 
a low-cost In-Circuit Debugger, In-Circuit 
Serial Programming™ and MPLAB® ICE 2000 
emulation, make these devices ideal for just 
about any embedded control application.

TIPS ‘N TRICKS WITH HARDWARE
The following series of Tips ’n Tricks can be 
applied to a variety of applications to help make 
the most of the 8-pin dynamics.
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TIP #9 Decode Keys and ID Settings
Buttons and jumpers can share I/O’s by using 
another I/O to select which one is read. Both 
buttons and jumpers are tied to a shared 
pull-down resistor. Therefore, they will read 
as ‘0’ unless a button is pressed or a jumper 
is connected. Each input (GP3/2/1/0) shares 
a jumper and a button. To read the jumper 
settings, set GP4 to output high and each 
connected jumper will read as ‘1’ on its assigned 
I/O or ‘0’ if it’s not connected. With GP4 output 
low, a pressed button will be read as ‘1’ on its 
assigned I/O and ‘0’ otherwise.

Figure 9-1

VDD

GP0
GP1
GP2
GP3
GP4

• When GP4 = 1 and no keys are pressed, read 
 ID setting
• When GP4 = 0, read the switch buttons

TIP #10 Generating High Voltages
Figure 10-1

PIC12F6XX
w/RC CLKOUT

CPUMP CFILTER

CLKOUT
VOUT max = 2 * VDD - 2 * VDIODE

VDD

Voltages greater than Vdd can be generated 
using a toggling I/O. PIC MCUs CLKOUT/OSC2 
pin toggles at one quarter the frequency of 
OSC1 when in external RC oscillator mode. 
When OSC2 is low, the Vdd diode is forward 
biased and conducts current, thereby charging 
Cpump. After OSC2 is high, the other diode is 
forward biased, moving the charge to Cfilter. 
The result is a charge equal to twice the Vdd 
minus two diode drops. This can be used with a 
PWM, a toggling I/O or other toggling pin.
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Tip #13.1 Reading a Sensor With Higher 
 Accuracy – RC Timing Method

RC Timing Method:
Simple RC step response
Vc(t) = Vdd * (1 - e -t/(RC))
t = -RC ln(1 - Vth/Vdd)
Vth/Vdd is constant
R2 = (t2/t1) * R1

Figure 13-1

Time

Vc(t)

VTH

t = 0 t = t1 t = t2

R1 R2

A reference resistor can be used to improve the 
accuracy of an analog sensor reading. In this 
diagram, the charge time of a resistor/capacitor 
combination is measured using a timer and a 
port input or comparator input switches from a ‘0’ 
to ‘1’. The R1 curve uses a reference resistor and 
the R2 curve uses the sensor. The charge time 
of the R1 curve is known and can be used to 
calibrate the unknown sensor reading, R2. This 
reduces the affects of temperature, component 
tolerance and noise while reading the sensor.

TIP #13 Reading a Sensor With 
 Higher Accuracy
Sensors can be read directly with the A/D but in 
some applications, factors such as temperature, 
external component accuracy, sensor non-
linearity and/or decreasing battery voltage need 
to be considered. In other applications, more 
than 10 bits of accuracy are needed and a 
slower sensor read is acceptable. The following 
tips deal with these factors and show how to get 
the most out of a PIC MCU.

13.1. RC Timing Method (with reference resistor)
13.2. Charge Balancing Method
13.3. A/D Method
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TIPS ‘N TRICKS INTRODUCTION
Microchip continues to provide innovative 
products that are smaller, faster, easier to 
use and more reliable. The Flash-based PIC® 
microcontrollers (MCUs) are used in an wide 
range of everyday products, from smoke 
detectors, hospital ID tags and pet containment 
systems, to industrial, automotive and medical 
products.
PIC MCUs featuring nanoWatt technology 
implement a variety of important features which 
have become standard in PIC microcontrollers.  
Since the release of nanoWatt technology, 
changes in MCU process technology and 
improvements in performance have resulted in 
new requirements for lower power.  PIC MCUs 
with nanoWatt eXtreme Low Power (nanoWatt 
XLP™) improve upon the original nanoWatt 
technology by dramatically reducing static 
power consumption and providing new flexibility 
for dynamic power management.
The following series of Tips n’ Tricks can be 
applied to many applications to make the most 
of PIC MCU nanoWatt and nanoWatt XLP 
devices.

GENERAL LOW POWER TIPS ‘N 
TRICKS
The following tips can be used with all PIC 
MCUs to reduce the power consumption of 
almost any application.

CHAPTER 2
PIC® Microcontroller Low Power

Tips ‘n Tricks
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TIP #2 Power Budgeting
Power budgeting is a technique that is critical to 
predicting current consumption and battery life. 
Power budgeting is performed by calculating 
the total charge for each mode of operation 
of an application by multiplying that mode’s 
current consumption by the time in the mode 
for a single application loop.  The charge for 
each mode is added, then averaged over the 
total loop time to get average current. Table 1 
calculates a power budget using the application 
from Figure 2 in Tip #1 using a typical nanoWatt 
XLP device.

Mode
Time 

in 
Mode 
(mS)

Current (mA) Charge 
Current * 

Time 
(mA * Sec)

By 
Device

Mode
Total

Sleep
MCU Sleep
Sensor Off

EEPROM Off
1989 5.00E-05 9.95E-05

0.00005
0
0

Initialize
MCU Sleep
Sensor On

EEPROM Off
1 1.66E-02 1.66E-05

0.00005
0.0165

0
Sample Sensor

MCU Run
Sensor On

EEPROM Off
1 6.45E-02 6.45E-05

0.048
0.0165

0
Scaling

MCU Run
Sensor Off

EEPROM Off
1 4.80E-02 4.80E-05

0.048
0
0

Storing
MCU Run

Sensor Off
EEPROM On

8 1.05E+00 8.38E-03
0.048

0
1

Total 2000 — — 8.61E-03

Average Current

= 8.61e-3
2000e-3

mA*Sec 
Sec

= 0.0043 mA

Peak Current 1.05 mA

Computing Battery Life
Using the average current from the calculated 
power budget, it is possible to determine 
how long a battery will be able to power the 
application.  Table 2 shows lifetimes for typical 
battery types using the average power from 
Table 1.

Battery Capacity  
(mAh)

Life

Hours Days Months Years

CR1212 18 4180 174 5.8 .48

CR1620 75 17417 726 24.2 1.99

CR2032 220 51089 2129 71.0 5.83

Alkaline AAA 1250 290276 12095 403.2 33.14

Alkaline AA 2890 671118 27963 932.1 76.61

Li-ion* 850 197388 8224 274.1 22.53

NOTE: Calculations are based on average current draw only and 
do not include battery self-discharge.

*Varies by size; value used is typical.

After completing a power budget, it is very easy 
to determine the battery size required to meet 
the application requirements. If too much power 
is consumed, it is simple to determine where 
additional effort needs to be placed to reduce 
the power consumption.
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TIP #12 Internal Oscillator Calibration
An internal RC oscillator calibrated from the 
factory may require further calibration as the 
temperature or Vdd change. Timer1/SOSC can 
be used to calibrate the internal oscillator by 
connecting a 32.768 kHz clock crystal. Refer 
to AN244, “Internal RC Oscillator Calibration” 
for the complete application details. Calibrating 
the internal oscillator can help save power by 
allowing for use of the internal RC oscillator 
in applications which normally require higher 
accuracy crystals

Figure 12-1: Timer1 Used to Calibrate an 
 Internal Oscillator

PIC16F818/819

T1OSI

T1OSO
C2

33 pF

C1
33 pF

XTAL
32.768 kHz

The calibration is based on the measured 
frequency of the internal RC oscillator. For 
example, if the frequency selected is 4 MHz, 
we know that the instruction time is 1 µs 
(Fosc/4) and Timer1 has a period of 30.5 µs 
(1/32.768 kHz). This means within one Timer1 
period, the core can execute 30.5 instructions. 
If the Timer1 registers are preloaded with a 
known value, we can calculate the number of 
instructions that will be executed upon a Timer1 
overflow. 
This calculated number is then compared 
against the number of instructions executed by 
the core. With the result, we can determine if 
re-calibration is necessary, and if the frequency 
must be increased or decreased. Tuning uses 
the OSCTUNE register, which has a ±12% 
tuning range in 0.8% steps.

TIP #13 Idle and Doze Modes
nanoWatt and nanoWatt XLP devices have 
an Idle mode where the clock to the CPU is 
disconnected and only the peripherals are 
clocked. In PIC16 and PIC18 devices, Idle 
mode can be entered by setting the Idle bit in 
the OSCON register to ‘1’ and executing the 
SLEEP instruction. In PIC24, dsPIC® DSCs, 
and PIC32 devices, Idle mode can be entered 
by executing the instruction “PWRSAV #1”. Idle 
mode is best used whenever the CPU needs to 
wait for an event from a peripheral that cannot 
operate in Sleep mode. Idle mode can reduce 
power consumption by as much as 96% in 
many devices.
Doze mode is another low power mode 
available in PIC24, dsPIC DSCs, and PIC32 
devices.  In Doze mode, the system clock to 
the CPU is postscaled so that the CPU runs at 
a lower speed than the peripherals. If the CPU 
is not tasked heavily and peripherals need to 
run at high speed, then Doze mode can be 
used to scale down the CPU clock to a slower 
frequency. The CPU clock can be scaled down 
from 1:1 to 1:128.  Doze mode is best used in 
similar situations to Idle mode, when peripheral 
operation is critical, but the CPU only requires 
minimal functionality. 
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TIP #14 Use NOP and Idle Mode
When waiting on a blocking loop (e.g. waiting 
for an interrupt), instead put the device into 
Idle mode to disable the CPU. The peripheral 
interrupt will wake up the device.  Idle mode 
consumes much less current than constantly 
reading RAM and jumping back. If the CPU 
cannot be disabled because the loop required 
some calculations, such as incrementing a 
counter, instead of doing a very tight loop 
that loops many times, add NOPs into the 
loop. See the code example below.  A NOP 
requires less current to execute than reading 
RAM or branching operations, so current can 
be reduced. The overall loop count can be 
adjusted to account for the extra instructions for 
the NOPs.

Example:
Replace: 

 while(!_T1IF); 

with Idle mode:  

 IEC0bits.T1IE = 1;    
 Idle();

and replace:

 while(!_T1IF){

      i++;

 }

with extra NOP instructions:

 while(!_T1IF){

      i++;

      Nop();

      Nop();

      Nop();

      Nop();

      Nop();

 }

TIP #15 Peripheral Module Disable 
(PMD) Bits
PIC24, dsPIC DSCs, and PIC32 devices 
have PMD bits that can be used to disable 
peripherals that will not be used in the 
application. Setting these bits disconnects 
all power to the module as well as SFRs for 
the module. Because power is completely 
removed, the PMD bits offer additional power 
savings over disabling the module by turning 
off the module’s enable bit. These bits can be 
dynamically changed so that modules which are 
only used periodically can be disabled for the 
remainder of the application. The PMD bits are 
most effective at high clock speeds and when 
operating at full speed allowing the average 
power consumption to be significantly reduced.
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TIP #3 Measuring Pulse Width
Figure 3-1: Pulse Width

W

t1 t2

1. Configure control bits CCPxM3:CCPxM0 
 (CCPxCON<3:0>) to capture every rising 
 edge of the waveform.
2. Configure Timer1 prescaler so that Timer1 
 will run Wmax without overflowing.
3. Enable the CCP interrupt (CCPxIE bit).
4. When CCP interrupt occurs, save the 
 captured timer value (t1) and reconfigure 
 control bits to capture every falling edge.
5. When CCP interrupt occurs again, subtract 
 saved value (t1) from current captured value 
 (t2) – this result is the pulse width (W).
6. Reconfigure control bits to capture the next 
 rising edge and start process all over again 
 (repeat steps 3 through 6).

TIP #4 Measuring Duty Cycle
Figure 4-1: Duty Cycle

T

W

t1 t2 t3

The duty cycle of a waveform is the ratio 
between the width of a pulse (W) and the 
period (T). Acceleration sensors, for example, 
vary the duty cycle of their outputs based on 
the acceleration acting on a system. The CCP 
module, configured in Capture mode, can be 
used to measure the duty cycle of these types 
of sensors. Here’s how:
1. Configure control bits CCPxM3:CCPxM0 
 (CCPxCON<3:0>) to capture every rising 
 edge of the waveform.
2. Configure Timer1 prescaler so that Timer1 
 will run Tmax(1) without overflowing.
3. Enable the CCP interrupt (CCPxIE bit).
4. When CCP interrupt occurs, save the 
 captured timer value (t1) and reconfigure 
 control bits to capture every falling edge.

Note 1: Tmax is the maximum pulse period 
 that will occur.

5. When the CCP interrupt occurs again, 
 subtract saved value (t1) from current 
 captured value (t2) – this result is the pulse 
 width (W).
6. Reconfigure control bits to capture the next 
 rising edge.
7. When the CCP interrupt occurs, subtract 
 saved value (t1) from the current captured 
 value (t3) – this is the period (T) of the 
 waveform.
8. Divide T by W – this result is the Duty Cycle.
9. Repeat steps 4 through 8.
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TIP #12 Repetitive Phase Shifted 
 Sampling
Repetitive phase shifted sampling is a technique 
to artificially increase the sampling rate of an 
A/D converter when sampling waveforms that 
are both periodic and constant from period 
to period. The technique works by capturing 
regularly spaced samples of the waveform 
from the start to finish of the waveform’s 
period. Sampling of the next waveform is then 
performed in the same manner, except that 
the start of the sample sequence is delayed a 
percentage of the sampling period. Subsequent 
waveforms are also sampled, with each sample 
sequence slightly delayed from the last, until 
the delayed start of the sample sequence is 
equal to one sample period. Interleaving the 
sample sets then produces a sample set of 
the waveform at a higher sample rate. Figure 
12-1 shows an example of a high frequency 
waveform.

Figure 12-1: High Frequency Periodic 
 Waveform 

IA

 

As indicated in the key, the finely dotted lines 
show where the A/D readings are taken during 
the first period of the waveform. The medium 
sized dashed lines show when the A/D readings 
are taken during the second period, and so on. 
Figure 12-2 shows these readings transposed 
onto one period.

Figure 12-2: Transposed Waveform 

IV

Time

First Pass
Second Pass
Third Pass
Fourth Pass

Key

Volts

 

The CCP module is configured in Compare 
Special Event Trigger mode to accomplish this 
task. The phase shift is implemented by picking 
values of CCPRxL and CCPRxH that are not 
synchronous with the period of the sampling 
waveform. For instance, if the period of a 
waveform is 100 ms, then sampling at a rate of 
once every 22 µs will give the following set of 
sample times over 11 periods (all values in µs).

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

0 10 20 8 18 6 16 4 14 2 12

22 32 42 30 40 28 38 26 36 24 34

44 54 64 52 62 50 60 48 58 46 56

66 76 86 74 84 72 82 70 80 68 78

88 98 96 94 92 90

When these numbers are placed in sequential 
order, they reveal a virtual sampling interval (Iv) 
of 2 ms from 0 ms to 100 ms, although the actual 
sampling interval (Ia) is 22 ms.
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TIP #2 Faster Code for Detecting 
 Change
When using a comparator to monitor a sensor, 
it is often just as important to know when 
a change occurs as it is to know what the 
change is. To detect a change in the output of 
a comparator, the traditional method has been 
to store a copy of the output and periodically 
compare the held value to the actual output to 
determine the change. An example of this type 
of routine is shown below.

Example 2-1

Test
 MOVF hold,w ;get old Cout
 XORWF CMCON,w ;compare to new Cout
 ANDLW COUTMASK
 BTFSC STATUS,Z
 RETLW 0 ;if = return "no change"
 MOVF CMCON,w ;if not =, get new Cout
 ANDLW COUTMASK ;remove all other bits
 MOVWF hold ;store in holding var.
 IORLW CHNGBIT ;add change flag
 RETURN

This routine requires 5 instructions for each test, 
9 instructions if a change occurs, and 1 RAM 
location for storage of the old output state.
A faster method for microcontrollers with a 
single comparator is to use the comparator 
interrupt flag to determine when a change has 
occurred.

Example 2-2

Test
 BTFSS PIR1,CMIF ;test comparator flag
 RETLW 0 ;if clear, return a 0
 BTFSS CMCON,COUT ;test Cout
 RETLW CHNGBIT ;if clear return 
   ;CHNGFLAG
 RETLW COUTMASK + CHNGBIT;if set,
   ;return both

This routine requires 2 instructions for each test, 
3 instructions if a change occurs, and no RAM 
storage. 
If the interrupt flag can not be used, or if two 
comparators share an interrupt flag, an alternate 
method that uses the comparator output polarity 
bit can be used.

Example 2-3

Test
 BTFSS CMCON,COUT ;test Cout
 RETLW 0 ;if clear, return 0
 MOVLW CINVBIT ;if set, invert Cout
 XORWF CMCON,f ;forces Cout to 0
 BTFSS CMCON,CINV ;test Cout polarity
 RETLW CHNGFLAG ;if clear, return
   ;CHNGFLAG
 RETLW COUTMASK + CHNGFLAG;if set,
   ;return both 

This routine requires 2 instructions for each test, 
5 instructions if a change occurs, and no GPR 
storage.
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TIP #3 Hysteresis
When the voltages on a comparator’s input are 
nearly equal, external noise and switching noise 
from inside the microcontroller can cause the 
comparator output to oscillate or “chatter.” To 
prevent chatter, some of the comparator output 
voltage is fed back to the non-inverting input of 
the comparator to form hysteresis (see Figure 
3-1). Hysteresis moves the comparator 
threshold up when the input is below the 
threshold, and down when the input is above 
the threshold. The result is that the input must 
overshoot the threshold to cause a change 
in the comparator output. If the overshoot is 
greater than the noise present on the input, the 
comparator output will not chatter. 

Figure 3-1: Comparator with Hysteresis

Input

VDD

+

-

R2

R3R1

Output

To calculate the resistor values required, first 
determine the high and low threshold values 
which will prevent chatter (Vth and Vtl). Using 
Vth and Vtl, the average threshold voltage can 
be calculated using the equation.

Equation 3-1

Next, choose resistor values that satisfy 
Equation 3-2 and calculate the equivalent 
resistance using Equation 3-3.

Note: A continuous current will flow through 
 R1 and R2. To limit the power 
 dissipation in R1 and R2 the total 
 resistance of R1 and R2 should be at 
 least 1k. The total resistance of R1 
 and R2 should also be kept below 
 10K to keep the size of R3 small. 
 Large values for R3, 100k-10 MW, 
 can produce voltage offsets at the 
 non-inverting input due to the 
 comparator’s input bias current.

Equation 3-2

Equation 3-3

Then, determine the feedback divider ratio Dr, 
using Equation 3-4.

Equation 3-4

Finally, calculate the feedback resistor R3 using 
Equation 3-5.

Equation 3-5

Example:
• A Vdd = 5.0V, Vh = 3.0V and Vl = 2.5V
• Vavg = 2.77V
• R = 8.2k and R2 = 10k, gives a Vavg = 2.75V
• Req = 4.5k
• Dr = .1
• R3 = 39k (40.5 calculated)
• Vhact = 2.98V
• Vlact = 2.46V

R3 = Req [ (    1     ) - 1]
           Dr

Vavg  =   Vdd * R2 
               R1 + R2

Req  =   R1 * R2 
              R1 + R2

Dr  =   (Vth - Vtl) 
            Vdd

Vavg  =         Vdd * Vtl       
                     Vdd -  Vth + Vtl
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TIPS ‘N TRICKS INTRODUCTION
Every motor control circuit can be divided 
into the drive electronics and the controlling 
software. These two pieces can be fairly simple 
or extremely complicated depending upon 
the motor type, the system requirements and 
the hardware/software complexity trade-off. 
Generally, higher performance systems require 
more complicated hardware. This booklet 
describes many basic circuits and software 
building blocks commonly used to control 
motors. The booklet also provides references 
to Microchip application notes that describe 
many motor control concepts in more detail. The 
application notes can be found on the Microchip 
web site at www.microchip.com. 
Additional motor control design information can 
be found at the Motor Control Design Center 
(www.microchip.com/motor).

CHAPTER 5
DC Motor Control

Tips ‘n Tricks
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Figure 2-3: Quadrature Decoder (Sensor Motor)
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Application notes describing Brushless DC Motor 
Control are listed below and can be found on the 
Microchip web site at: www.microchip.com.
•	AN857,	“Brushless DC Motor Control Made 

Easy” (DS00857)
•	AN885,	“Brushless DC Motor Fundamentals” 

(DS00885)
•	AN899,	“Brushless DC Motor Control Using 

PIC18FXX31” (DS00899)
•	AN901,	“Using the dsPIC30F for Sensorless 

BLDC Control” (DS00901)
•	AN957,	“Sensored BLDC Motor Control Using 

dsPIC30F2010” (DS00957)
•	AN992,	“Sensorless BLDC Motor Control 

Using dsPIC30F2010” (DS00992)
•	AN1017,	“Sinusoidal Control of PMSM with 

dsPIC30F DSC” (DS01017)
•	GS005,	“Using the dsPIC30F Sensorless 

Motor Tuning Interface” (DS93005)

TIP #3 Stepper Motor Drive Circuits
Stepper motors are similar to Brushless 
DC motors in that the control system must 
commutate the motor through the entire rotation 
cycle. Unlike the brushless motor, the position 
and speed of a stepping motor is predictable 
and does not require the use of sensors. 
There are two basic types of stepper motors, 
although some motors are built to be used in 
either mode. The simplest stepper motor is 
the unipolar motor. This motor has four drive 
connections and one or two center tap wires 
that are tied to ground or Vsupply, depending 
on the implementation. Other motor types are 
the bipolar stepper and various combinations 
of unipolar and bipolar, as shown in Figure 3-1 
and Figure 3-2. When each drive connection 
is energized, one coil is driven and the motor 
rotates one step. The process is repeated 
until all the windings have been energized. 
To increase the step rate, often the voltage is 
increased beyond the motors rated voltage. 
If the voltage is increased, some method of 
preventing an over current situation is required. 
There are many ways to control the winding 
current, but the most popular is a chopper 
system that turns off current when it reaches 
an	upper	limit	and	enables	the	current	flow	a	
short time later. Current sensor systems are 
discussed in Tip #6. Some systems are built 
with a current chopper, but they do not detect 
the current, rather the system is designed to 
begin	a	fixed	period	chopping	cycle	after	the	
motor has stepped to the next position. These 
are simpler systems to build, as they only 
require a change in the software.
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TIPS ‘N TRICKS INTRODUCTION
Microchip continues to provide innovative 
products that are smaller, faster, easier-to-
use and more reliable. PIC® microcontrollers 
(MCUs) are used in a wide range of everyday 
products from washing machines, garage door 
openers and television remotes to industrial, 
automotive and medical products.
While some designs such as Switch Mode 
Power Supplies (SMPS) are traditionally 
implemented using a purely analog control 
scheme, these designs can benefit from the 
configurability and intelligence that can only be 
realized by adding a microcontroller.
This document showcases several examples 
in which a PIC microcontroller may be used 
to increase the functionality of a design with a 
minimal increase in cost.
Several of the tips provide working software 
examples or reference other documents for 
more information. The software and referenced 
documents can be found on the Microchip web 
site at www.microchip.com/tipsntricks.
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The switching frequency of the MCP1630 can 
be adjusted by changing the frequency of the 
clock source. The maximum on-timer of the 
MCP1630 PWM can be adjusted by changing 
the duty cycle of the clock source.
The PIC MCU has several options for providing 
this clock source:
• The Fosc/4 pin can be enabled. This will 

produce a 50% duty cycle square wave that 
is 1/4th of the oscillator frequency. Tip #4 
provides both example software and 
information on clock dithering using the Fosc/4 
output.

• For PIC MCUs equipped with a Capture/
Compare/PWM (CCP) or Enhanced CCP 
(ECCP) module, a variable frequency, variable 
duty cycle signal can be created with little 
software overhead. This PWM signal is entirely 
under software control and allows advanced 
features, such as soft-start, to be implemented 
using software.

• For smaller parts that do not have a CCP 
or ECCP module, a software PWM can be 
created. Tips #1 and #2 use software PWM for 
soft-start and provide software examples. 

TIP #5 Using a PIC® Microcontroller 
 as a Clock Source for a SMPS 
 PWM Generator
A PIC MCU can be used as the clock source for 
a PWM generator, such as the MCP1630.

Figure 5-1: PIC MCU and MCP1630 Example 
 Boost Application
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The MCP1630 begins its cycle when its clock/
oscillator source transitions from high-to-low, 
causing its PWM output to go high state. The 
PWM pulse can be terminated in any of three 
ways: 
1. The sensed current in the magnetic device 
 reaches 1/3 of the error amplifier output.
2. The voltage at the Feedback (FB) pin is 
 higher than the reference voltage (Vref).
3. The clock/oscillator source transitions from 
 low-to-high.
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R and C are chosen based on the following 
equation:

Equation 11-2

Choose the R value based on drive capability 
and then calculate the required C value. The 
attenuation of the PWM frequency for a given 
RC filter is shown in Equation 11-3.

Equation 11-3

If the attenuation calculated in Equation 11-3 
is not sufficient, then K must be increased in 
Equation 11-1.
In order to sufficiently attenuate the harmonics, 
it may be necessary to use small capacitor 
values or large resistor values. Any current 
draw will effect the voltage across the capacitor. 
Adding an op amp allows the analog voltage to 
be buffered and, because of this, any current 
drawn will be supplied by the op amp and not 
the filter capacitor.
For more information on using a PWM signal 
to generate an analog output, refer to AN538, 
“Using PWM to Generate Analog Output” 
(DS00538). 

TIP #11 Generating a Reference 
 Voltage with a PWM Output
Figure 11-1: Low-Pass Filter
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A PWM signal can be used to create a Digital-
to-Analog Converter (DAC) with only a few 
external components. Conversion of PWM 
waveforms to analog signals involves the use of 
an analog low-pass filter. In order to eliminate 
unwanted harmonics caused by a PWM signal, 
the PWM frequency (Fpwm) should be 
significantly higher than the bandwidth (Fbw) of 
the desired analog signal. Equation 11-1 shows 
this relation.

Equation 11-1

Fpwm = K • Fbw

   Where harmonics decrease as K increases.

RC = 1/(2 • p • Fbw)

   Where harmonics decrease as K increases.

Att(dB) = -10 • log [1 + (2 p • Fpwm • rc) 2]
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TIP #14 Brushless DC Fan Speed 
 Control
There are several methods to control the 
speed of a DC brushless fan. The type of fan, 
allowable power consumption and the type of 
control desired are all factors in choosing the 
appropriate type.

Figure 14-1: Low-Side PWM Drive

PWM Drive

12V

Figure 14-2: High-Side PWM Drive

PWM Drive

12V12V

Method 1 – Pulse-Width Modulation
As shown in Figure 14-1 and Figure 14-2, a 
simple PWM drive may be used to switch a 
two-wire fan on and off. While it is possible to 
use the circuit in Figure 14-1 without a high-side 
MOSFET driver, some manufacturers state that 
switching on the low side of the fan will void the 
warranty.

Because of this, it is necessary to switch the 
high side of the fan in order to control the 
speed. The simplest type of speed control is ‘on’ 
or ‘off’. However, if a higher degree of control is 
desired, PWM can be used to vary the speed of 
the fan.
For 3-wire fans, the tachometer output will 
not be accurate if PWM is used. The sensor 
providing the tachometer output on 3-wire fans 
is powered from the same supply as the fan 
coils, thus using a PWM to control fan speed 
will render the fan’s tachometer inaccurate.
One solution is to use a 4-wire fan which 
includes both the tachometer output and a drive 
input. Figure 14-3 shows a diagram of a 4-wire 
fan.

Figure 14-3: Typical 4-Wire Fan
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TACH

 

A 4-wire fan allows speed to be controlled 
using PWM via the Drive line. Since power to 
the tachometer sensor is not interrupted, it will 
continue to output the correct speed.
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TIP	#10	5V	→	3.3V	With	Diode	Clamp
Many	manufacturers	protect	their	I/O	pins	from	
exceeding	the	maximum	allowable	voltage	
specification	by	using	clamping	diodes.	These	
clamping	diodes	keep	the	pin	from	going	more	
than a diode drop below Vss and a diode drop 
above Vdd. To use the clamping diode to protect 
the	input,	you	still	need	to	look	at	the	current	
through the clamping diode. The current through 
the	clamp	diodes	should	be	kept	small	(in	the	
micro	amp	range).	If	the	current	through	the	
clamping	diodes	gets	too	large,	then	you	risk	
the part latching up. Since the source resistance 
of	a	5V	output	is	typically	around	10Ω,	an	
additional series resistor is still needed to limit 
the current through the clamping diode as 
shown	Figure	10-1.	The	consequence	of	using	
the series resistor is it will reduce the speed at 
which we can switch the input because the RC 
time	constant	formed	the	capacitance	of	the	pin	
(Cl).

Figure 10-1: Clamping Diodes on the Input
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If	the	clamping	diodes	are	not	present,	a	single	
external	diode	can	be	added	to	the	circuit	as	
shown in Figure 10-2.

Figure	10-2:	Without	Clamping	Diodes
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TIP	#9	5V	→	3.3V	Direct	Connect
5V outputs have a typical Voh	of	4.7	volts	and 
a Vol	of	0.4	volts	and	a	3.3V	LVCMOS	input 
will have a typical Vih	of	0.7	x	Vdd and a Vil	of	
0.2	x	Vdd.
When	the	5V	output	is	driving	low,	there	are	no	
problems because the 0.4 volt output is less 
than	in	the	input	threshold	of	0.8	volts.	When	
the 5V output is high, the Voh	of	4.7	volts	is	
greater than 2.1 volt Vih,	therefore,	we	can	
directly	connect	the	2	pins	with	no	conflicts	if	the	
3.3V CMOS input is 5 volt tolerant.

Figure 9-1: 5V Tolerant Input
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If	the	3.3V	CMOS	input	is	not	5	volt	tolerant,	
then there will be an issue because the 
maximum	volt	specification	of	the	input	will	be	
exceeded.	
See	Tips	10-13	for	possible	solutions.
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Figure 16-2: Op Amp Attenuators
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If	the	resistor	divider	is	before	the	unity	gain	
follower,	then	the	lowest	possible	impedance	is	
provided	for	the	3.3V	circuits.	Also,	the	op	amp	
can	be	powered	from	3.3V,	saving	some	power.	
If	the	X	is	made	very	large,	then	power	
consumed by the 5V side can be minimized.
If	the	attenuator	is	added	after	the	unity	gain	
follower,	then	the	highest	possible	impedance	is	
presented to the 5V source. The op amp must 
be	powered	from	5V	and	the	impedance	at	the	
3V	side	will	depend	upon	the	value	of	R1||R2.

TIP	#16	5V	→	3.3V	Active	Analog 
 Attenuator
Reducing	a	signal’s	amplitude	from	a	5V	to	3.3V	
system using an op amp.
The	simplest	method	of	converting	a	5V	analog	
signal to a 3.3V analog signal is to use a 
resistor	divider	with	a	ratio	R1:R2	of	1.7:3.3.	
However,	there	are	a	few	problems	with	this.
1.	The	attenuator	may	be	feeding	a	capacitive 
	 load,	creating	an	unintentional	low	pass	filter.
2. The attenuator circuit may need to drive a 
	 low-impedance	load	from	a	high-impedance 
 source.
Under	either	of	these	conditions,	an	op	amp	
becomes	necessary	to	buffer	the	signals.
The op amp circuit necessary is a unity gain 
follower	(see	Figure	16-1).

Figure	16-1:	Unity	Gain
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This circuit will output the same voltage that is 
applied to the input.
To convert the 5V signal down to a 3V signal, 
we simply add the resistor attenuator.
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Table 18-1: Bipolar Transistor DC 
	 Specifications

Characteristic Sym Min Max Unit Test 
Condition

OFF CHARACTERISTICS
Collector-Base 
Breakdown	
Voltage 

V(br)cbo 60 – V Ic = 50 µA, 
Ie = 0

Collector-Emitter	
Breakdown	
Voltage

V(br)ceo 50 – V Ic = 1.0 
mA, 
Ib = 0

Emitter-Base	
Breakdown 
Voltage 

V(br)ebo 7.0 – V Ie = 50 µA, 
Ic = 0 

Collector	Cutoff	
Current

Icbo – 100 nA Vcb = 60V

Emitter	Cutoff	
Current

Iebo – 100 nA Veb = 7.0V

ON CHARACTERISTICS
DC	Current	Gain hfe 120 

180 
270

270 
390 
560

– Vce = 6.0V, 
Ic = 1.0 mA

Collector-Emitter	
Saturation Voltage

Vce(sat) – 0.4 V Ic = 50 mA, 
Ib = 5.0 mA

 
When	using	bipolar	transistors	as	switches	
to	turn	on	and	off	loads	controlled	by	the	
microcontroller I/O port pin, use the minimum 
hfe	specification	and	margin	to	ensure	complete	
device saturation.

Equation 18-1: Calculating the Base Resistor 
 Value

 

3V Technology Example
Vdd = +3V, Vload = +40V, Rload	=	400Ω, 
hfe min. = 180, Vbe = 0.7V
Rbase	=	4.14	kΩ, I/O port current = 556 µA
5V Technology Example
Vdd = +5V, Vload = +40V, Rload	=	400Ω, 
hfe min. = 180, Vbe = 0.7V
Rbase	=	7.74	kΩ, I/O port current = 556 µA
For	both	examples,	it	is	good	practice	to	
increase	base	current	for	margin.	Driving	the	
base with 1 mA to 2 mA would ensure saturation 
at	the	expense	of	increasing	the	input	power	
consumption.

Rbase  =   (Vdd - Vbe)	x	hfe	x	Rload 
               Vload


