
Microchip Technology - DSPIC30F2010T-20I/SOG Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor dsPIC

Core Size 16-Bit

Speed 20 MIPS

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT

Number of I/O 20

Program Memory Size 12KB (4K x 24)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 2.5V ~ 5.5V

Data Converters A/D 6x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-SOIC (0.295", 7.50mm Width)

Supplier Device Package 28-SOIC

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/dspic30f2010t-20i-sog

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/dspic30f2010t-20i-sog-4428164
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

dsPIC30F Flash Programming Specification
5.5.3 PROGRAMMING VERIFICATION
Once code memory is programmed, the contents of
memory can be verified to ensure that programming
was successful. Verification requires code memory to
be read back and compared against the copy held in
the programmer’s buffer.

The READP command can be used to read back all the
programmed code memory.

Alternatively, you can have the programmer perform
the verification once the entire device is programmed
using a checksum computation, as described in
Section 6.8 “Checksum Computation”.

5.6 Data EEPROM Programming

5.6.1 OVERVIEW
The panel architecture for the data EEPROM memory
array consists of 128 rows of sixteen 16-bit data words.
Each panel stores 2K words. All devices have either
one or no memory panels. Devices with data EEPROM
provide either 512 words, 1024 words or 2048 words of
memory on the one panel (see Table 5-3).

TABLE 5-3: DATA EEPROM SIZE

Device Data EEPROM
Size (Words)

Number of
Rows

dsPIC30F2010 512 32
dsPIC30F2011 0 0
dsPIC30F2012 0 0
dsPIC30F3010 512 32
dsPIC30F3011 512 32
dsPIC30F3012 512 32
dsPIC30F3013 512 32
dsPIC30F3014 512 32
dsPIC30F4011 512 32
dsPIC30F4012 512 32
dsPIC30F4013 512 32
dsPIC30F5011 512 32
dsPIC30F5013 512 32
dsPIC30F5015 512 32
dsPIC30F5016 512 32
dsPIC30F6010 2048 128
dsPIC30F6010A 2048 128
dsPIC30F6011 1024 64
dsPIC30F6011A 1024 64
dsPIC30F6012 2048 128
dsPIC30F6012A 2048 128
dsPIC30F6013 1024 64
dsPIC30F6013A 1024 64
dsPIC30F6014 2048 128
dsPIC30F6014A 2048 128
dsPIC30F6015 2048 128

5.6.2 PROGRAMMING METHODOLOGY
The programming executive uses the PROGD command
to program the data EEPROM. Figure 5-4 illustrates
the flowchart of the process. Firstly, the number of rows
to program (RemainingRows) is based on the device
size, and the destination address (DestAddress) is set
to ‘0’. In this example, 128 rows (2048 words) of data
EEPROM will be programmed.

The first PROGD command programs the first row of
data EEPROM. Once the command completes
successfully, ‘RemainingRows’ is decremented by 1
and compared with 0. Since there are 127 more rows
to program, ‘BaseAddress’ is incremented by 0x20 to
point to the next row of data EEPROM. This process is
then repeated until all 128 rows of data EEPROM are
programmed.

FIGURE 5-4: FLOWCHART FOR
PROGRAMMING
dsPIC30F6014A DATA
EEPROM

Is
PROGD response

PASS?

Is
RemainingRows

0?

Remaining Rows = 128
BaseAddress = 0

RemainingRows =
RemainingRows – 1

Finish

BaseAddress =
BaseAddress

No

No

Yes

Yes

+ 0x20

Start

Send PROGD
Command with
BaseAddress

Failure
Report Error
DS70102K-page 8 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
TABLE 5-7: CONFIGURATION BITS DESCRIPTION
Bit Field Register Description

FWPSA<1:0> FWDT Watchdog Timer Prescaler A
11 = 1:512
10 = 1:64
01 = 1:8
00 = 1:1

FWPSB<3:0> FWDT Watchdog Timer Prescaler B
1111 = 1:16
1110 = 1:15

•
•
•

0001 = 1:2
0000 = 1:1

FWDTEN FWDT Watchdog Enable
1 = Watchdog enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN

bit in the RCON register will have no effect)
0 = Watchdog disabled (LPRC oscillator can be disabled by clearing the SWDTEN bit

in the RCON register)
MCLREN FBORPOR Master Clear Enable

1 = Master Clear pin (MCLR) is enabled
0 = MCLR pin is disabled

PWMPIN FBORPOR Motor Control PWM Module Pin Mode
1 = PWM module pins controlled by PORT register at device Reset (tri-stated)
0 = PWM module pins controlled by PWM module at device Reset (configured as out-

put pins)
HPOL FBORPOR Motor Control PWM Module High-Side Polarity

1 = PWM module high-side output pins have active-high output polarity
0 = PWM module high-side output pins have active-low output polarity

LPOL FBORPOR Motor Control PWM Module Low-Side Polarity
1 = PWM module low-side output pins have active-high output polarity
0 = PWM module low-side output pins have active-low output polarity

BOREN FBORPOR PBOR Enable
1 = PBOR enabled
0 = PBOR disabled

BORV<1:0> FBORPOR Brown-out Voltage Select
11 = 2.0V (not a valid operating selection)
10 = 2.7V
01 = 4.2V
00 = 4.5V

FPWRT<1:0> FBORPOR Power-on Reset Timer Value Select
11 = PWRT = 64 ms
10 = PWRT = 16 ms
01 = PWRT = 4 ms
00 = Power-up Timer disabled

RBS<1:0> FBS Boot Segment Data RAM Code Protection (only present in dsPIC30F5011/5013/
6010A/6011A/6012A/6013A/6014A/6015)
11 = No Data RAM is reserved for Boot Segment
10 = Small-sized Boot RAM

[128 bytes of RAM are reserved for Boot Segment]
01 = Medium-sized Boot RAM

[256 bytes of RAM are reserved for Boot Segment]
00 = Large-sized Boot RAM

[512 bytes of RAM are reserved for Boot Segment in dsPIC30F5011/5013, and
1024 bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015]
© 2010 Microchip Technology Inc. DS70102K-page 13

dsPIC30F Flash Programming Specification
5.7.2 PROGRAMMING METHODOLOGY
System operation Configuration bits are inherently
different than all other memory cells. Unlike code
memory, data EEPROM and code-protect
Configuration bits, the system operation bits cannot be
erased. If the chip is erased with the ERASEB
command, the system-operation bits retain their
previous value. Consequently, you should make no
assumption about the value of the system operation
bits. They should always be programmed to their
desired setting.

Configuration bits are programmed as a single word at
a time using the PROGC command. The PROGC
command specifies the configuration data and
Configuration register address. When Configuration
bits are programmed, any unimplemented bits must be
programmed with a ‘0’, and any reserved bits must be
programmed with a ‘1’.

Four PROGC commands are required to program all the
Configuration bits. Figure 5-5 illustrates the flowchart of
Configuration bit programming.

Note: If the General Code Segment Code
Protect (GCP) bit is programmed to ‘0’,
code memory is code-protected and can-
not be read. Code memory must
be verified before enabling read protec-
tion. See Section 5.7.4 “Code-Protect
Configuration Bits” for more information
about code-protect Configuration bits.

5.7.3 PROGRAMMING VERIFICATION
Once the Configuration bits are programmed, the
contents of memory should be verified to ensure that
the programming was successful. Verification requires
the Configuration bits to be read back and compared
against the copy held in the programmer’s buffer. The
READD command reads back the programmed
Configuration bits and verifies whether the
programming was successful.

Any unimplemented Configuration bits are read-only
and read as ‘0’.

5.7.4 CODE-PROTECT CONFIGURATION
BITS

The FBS, FSS and FGS Configuration registers are
special Configuration registers that control the size and
level of code protection for the Boot Segment, Secure
Segment and General Segment, respectively. For each
segment, two main forms of code protection are
provided. One form prevents code memory from being
written (write protection), while the other prevents code
memory from being read (read protection).

The BWRP, SWRP and GWRP bits control write
protection; and BSS<2:0>, SSS<2:0> and GSS<1:0>
bits control read protection. The Chip Erase ERASEB
command sets all the code protection bits to ‘1’, which
allows the device to be programmed.

When write protection is enabled, any programming
operation to code memory will fail. When read
protection is enabled, any read from code memory will
cause a ‘0x0’ to be read, regardless of the actual
contents of code memory. Since the programming
executive always verifies what it programs, attempting
to program code memory with read protection enabled
will also result in failure.

It is imperative that all code protection bits are ‘1’ while
the device is being programmed and verified. Only after
the device is programmed and verified should any of
the above bits be programmed to ‘0’ (see Section 5.7
“Configuration Bits Programming”).

In addition to code memory protection, parts of data
EEPROM and/or data RAM can be configured to be
accessible only by code resident in the Boot Segment
and/or Secure Segment. The sizes of these “reserved”
sections are user-configurable, using the EBS,
RBS<1:0>, ESS<1:0> and RSS<1:0> bits.

Note 1: All bits in the FBS, FSS and FGS
Configuration registers can only be
programmed to a value of ‘0’. ERASEB is
the only way to reprogram code-protect
bits from ON (‘0’) to OFF (‘1’).

2: If any of the code-protect bits in FBS,
FSS, or FGS are clear, the entire device
must be erased before it can be
reprogrammed.
DS70102K-page 18 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
5.8 Exiting Enhanced ICSP Mode
The Enhanced ICSP mode is exited by removing power
from the device or bringing MCLR to VIL. When normal
user mode is next entered, the program that was stored
using Enhanced ICSP will execute.

FIGURE 5-5: CONFIGURATION BIT PROGRAMMING FLOW

Send PROGC
Command

ConfigAddress = 0xF80000

Is
PROGC Response

PASS?

No

Yes

No

Failure
Report Error

Start

Finish

Yes

Is
ConfigAddress

0xF8000C?

ConfigAddress =
ConfigAddress + 2
© 2010 Microchip Technology Inc. DS70102K-page 19

dsPIC30F Flash Programming Specification
8.0 PROGRAMMING EXECUTIVE
COMMANDS

8.1 Command Set
The programming executive command set is shown in
Table 8-1. This table contains the opcode, mnemonic,
length, time out and description for each command.
Functional details on each command are provided in
the command descriptions (see Section 8.5
“Command Descriptions”).

8.2 Command Format
All programming executive commands have a general
format consisting of a 16-bit header and any required
data for the command (see Figure 8-1). The 16-bit
header consists of a 4-bit opcode field, which is used to
identify the command, followed by a 12-bit command
length field.

FIGURE 8-1: COMMAND FORMAT

The command opcode must match one of those in the
command set. Any command that is received which
does not match the list in Table 8-1 will return a “NACK”
response (see Section 9.2.1 “Opcode Field”).

The command length is represented in 16-bit words
since the SPI operates in 16-bit mode. The
programming executive uses the Command Length
field to determine the number of words to read from the
SPI port. If the value of this field is incorrect, the
command will not be properly received by the
programming executive.

8.3 Packed Data Format
When 24-bit instruction words are transferred across
the 16-bit SPI interface, they are packed to conserve
space using the format shown in Figure 8-2. This
format minimizes traffic over the SPI and provides the
programming executive with data that is properly
aligned for performing table write operations.

Note: When the number of instruction words
transferred is odd, MSB2 is zero and lsw2
cannot be transmitted.

FIGURE 8-2: PACKED INSTRUCTION
WORD FORMAT

8.4 Programming Executive Error
Handling

The programming executive will “NACK” all
unsupported commands. Additionally, due to the
memory constraints of the programming executive, no
checking is performed on the data contained in the
Programmer command. It is the responsibility of the
programmer to command the programming executive
with valid command arguments, or the programming
operation may fail. Additional information on error
handling is provided in Section 9.2.3 “QE_Code
Field”.

15 12 11 0
Opcode Length

Command Data First Word (if required)
•
•

Command Data Last Word (if required)

15 8 7 0
lsw1

MSB2 MSB1
lsw2

lswx: Least significant 16 bits of instruction word
MSBx: Most Significant Byte of instruction word
© 2010 Microchip Technology Inc. DS70102K-page 23

dsPIC30F Flash Programming Specification
8.5.3 READP COMMAND

15 12 11 8 7 0
Opcode Length

N
Reserved Addr_MSB

Addr_LS

Field Description

Opcode 0x2
Length 0x4
N Number of 24-bit instructions to read

(max of 32768)
Reserved 0x0
Addr_MSB MSB of 24-bit source address
Addr_LS LS 16 bits of 24-bit source address

The READP command instructs the programming
executive to read N 24-bit words of code memory
starting from the 24-bit address specified by
Addr_MSB and Addr_LS. This command can only be
used to read 24-bit data. All data returned in response
to this command uses the packed data format
described in Section 8.3 “Packed Data Format”.

Expected Response (2 + 3 * N/2 words for N even):
0x1200
2 + 3 * N/2
Least significant program memory word 1
...
Least significant data word N

Expected Response (4 + 3 * (N – 1)/2 words for N
odd):
0x1200
4 + 3 * (N – 1)/2
Least significant program memory word 1
...
MSB of program memory word N (zero padded)

Note: Reading unimplemented memory will
cause the programming executive to
reset.

8.5.4 PROGD COMMAND

15 12 11 8 7 0
Opcode Length

Reserved Addr_MSB
Addr_LS

D_1
D_2
...

D_16

Field Description

Opcode 0x4
Length 0x13
Reserved 0x0
Addr_MSB MSB of 24-bit destination address
Addr_LS LS 16 bits of 24-bit destination

address
D_1 16-bit data word 1
D_2 16-bit data word 2
... 16-bit data words 3 through 15
D_16 16-bit data word 16

The PROGD command instructs the programming
executive to program one row of data EEPROM. The
data to be programmed is specified by the 16 data
words (D_1, D_2,..., D_16) and is programmed to the
destination address specified by Addr_MSB and
Addr_LSB. The destination address should be a
multiple of 0x20.

Once the row of data EEPROM has been programmed,
the programming executive verifies the programmed
data against the data in the command.

Expected Response (2 words):
0x1400
0x0002

Note: Refer to Table 5-3 for data EEPROM size
information.
DS70102K-page 26 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
8.5.7 ERASEB COMMAND

15 12 11 2 0
Opcode Length

Reserved MS

Field Description

Opcode 0x7
Length 0x2
Reserved 0x0
MS Select memory to erase:

 0x0 = All Code in General Segment
 0x1 = All Data EEPROM in General
Segment
 0x2 = All Code and Data EEPROM in
General Segment, interrupt vectors and
FGS Configuration register
 0x3 = Full Chip Erase
 0x4 = All Code and Data EEPROM in
Boot, Secure and General Segments,
and FBS, FSS and FGS Configuration
registers
 0x5 = All Code and Data EEPROM in
Secure and General Segments, and
FSS and FGS Configuration registers
 0x6 = All Data EEPROM in Boot
Segment
 0x7 = All Data EEPROM in Secure
Segment

The ERASEB command performs a Bulk Erase. The MS
field selects the memory to be bulk erased, with options
for erasing Code and/or Data EEPROM in individual
memory segments.

When Full Chip Erase is selected, the following
memory regions are erased:

• All code memory (even if code-protected)
• All data EEPROM
• All code-protect Configuration registers

Only the executive code memory, Unit ID, device ID
and Configuration registers that are not code-protected
remain intact after a Chip Erase.

Expected Response (2 words):
0x1700
0x0002

Note: A Full Chip Erase cannot be performed in
low-voltage programming systems (VDD
less than 4.5 volts). ERASED and ERASEP
must be used to erase code memory,
executive memory and data memory.
Alternatively, individual Segment Erase
operations may be performed.

8.5.8 ERASED COMMAND

15 12 11 8 7 0
Opcode Length

Num_Rows Addr_MSB
Addr_LS

Field Description

Opcode 0x8
Length 0x3
Num_Rows Number of rows to erase (max of 128)
Addr_MSB MSB of 24-bit base address
Addr_LS LS 16 bits of 24-bit base address

The ERASED command erases the specified number of
rows of data EEPROM from the specified base
address. The specified base address must be a
multiple of 0x20. Since the data EEPROM is mapped
to program space, a 24-bit base address must be
specified.

After the erase is performed, all targeted bytes of data
EEPROM will contain 0xFF.

Expected Response (2 words):
0x1800
0x0002

Note: The ERASED command cannot be used to
erase the Configuration registers or
device ID. Code-protect Configuration
registers can only be erased with the
ERASEB command, while the device ID is
read-only.
DS70102K-page 28 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
8.5.9 ERASEP COMMAND

15 12 11 8 7 0
Opcode Length

Num_Rows Addr_MSB
Addr_LS

Field Description

Opcode 0x9
Length 0x3
Num_Rows Number of rows to erase
Addr_MSB MSB of 24-bit base address
Addr_LS LS 16 bits of 24-bit base address

The ERASEP command erases the specified number of
rows of code memory from the specified base address.
The specified base address must be a multiple of 0x40.

Once the erase is performed, all targeted words of
code memory contain 0xFFFFFF.

Expected Response (2 words):
0x1900
0x0002

Note: The ERASEP command cannot be used to
erase the Configuration registers or
device ID. Code-protect Configuration
registers can only be erased with the
ERASEB command, while the device ID is
read-only.

8.5.10 QBLANK COMMAND

15 12 11 0
Opcode Length

PSize
Reserved DSize

Field Description

Opcode 0xA
Length 0x3
PSize Length of program memory to check

(in 24-bit words), max of 49152
Reserved 0x0
DSize Length of data memory to check

(in 16-bit words), max of 2048

The QBLANK command queries the programming exec-
utive to determine if the contents of code memory and
data EEPROM are blank (contains all ‘1’s). The size of
code memory and data EEPROM to check must be
specified in the command.

The Blank Check for code memory begins at 0x0 and
advances toward larger addresses for the specified
number of instruction words. The Blank Check for data
EEPROM begins at 0x7FFFFE and advances toward
smaller addresses for the specified number of data
words.

QBLANK returns a QE_Code of 0xF0 if the specified
code memory and data EEPROM are blank.
Otherwise, QBLANK returns a QE_Code of 0x0F.

Expected Response (2 words for blank device):
0x1AF0
0x0002

Expected Response (2 words for non-blank device):
0x1A0F
0x0002

Note: The QBLANK command does not check
the system Configuration registers. The
READD command must be used to deter-
mine the state of the Configuration
registers.
© 2010 Microchip Technology Inc. DS70102K-page 29

dsPIC30F Flash Programming Specification
8.5.11 QVER COMMAND

15 12 11 0
Opcode Length

Field Description

Opcode 0xB
Length 0x1

The QVER command queries the version of the
programming executive software stored in test
memory. The “version.revision” information is returned
in the response’s QE_Code using a single byte with the
following format: main version in upper nibble and
revision in the lower nibble (i.e., 0x23 is version 2.3 of
programming executive software).

Expected Response (2 words):
0x1BMN (where “MN” stands for version M.N)
0x0002

9.0 PROGRAMMING EXECUTIVE
RESPONSES

9.1 Overview
The programming executive sends a response to the
programmer for each command that it receives. The
response indicates if the command was processed
correctly, and includes any required response or error
data.

The programming executive response set is shown in
Table 9-1. This table contains the opcode, mnemonic
and description for each response. The response
format is described in Section 9.2 “Response
Format”.

TABLE 9-1: PROGRAMMING EXECUTIVE
RESPONSE SET

Opcode Mnemonic Description

0x1 PASS Command successfully
processed.

0x2 FAIL Command unsuccessfully
processed.

0x3 NACK Command not known.

9.2 Response Format
As shown in Example 9-1, all programming executive
responses have a general format consisting of a two
word header and any required data for the command.
Table 9-2 lists the fields and their descriptions.

EXAMPLE 9-1: FORMAT

TABLE 9-2:
Field Description

Opcode Response opcode.
Last_Cmd Programmer command that

generated the response.
QE_Code Query code or Error code.
Length Response length in 16-bit words

(includes 2 header words.)
D_1 First 16-bit data word (if applicable).
D_N Last 16-bit data word (if applicable).

FIELDS AND DESCRIPTIONS

9.2.1 Opcode FIELD
The Opcode is a 4-bit field in the first word of the
response. The Opcode indicates how the command
was processed (see Table 9-1). If the command is
processed successfully, the response opcode is PASS.
If there is an error in processing the command, the
response opcode is FAIL, and the QE_Code indicates
the reason for the failure. If the command sent to
the programming executive is not identified, the
programming executive returns a NACK response.

9.2.2 Last_Cmd FIELD
The Last_Cmd is a 4-bit field in the first word of
the response and indicates the command that the
programming executive processed. Since the
programming executive can only process one
command at a time, this field is technically not required.
However, it can be used to verify whether the
programming executive correctly received the
command that the programmer transmitted.

15 12 11 8 7 0

Opcode Last_Cmd QE_Code

Length

D_1 (if applicable)

...

D_N (if applicable)
DS70102K-page 30 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
9.2.3 QE_Code FIELD
The QE_Code is a byte in the first word of the
response. This byte is used to return data for query
commands, and error codes for all other commands.

When the programming executive processes one of the
two query commands (QBLANK or QVER), the returned
opcode is always PASS and the QE_Code holds the
query response data. The format of the QE_Code for
both queries is shown in Table 9-3.

TABLE 9-3: QE_Code FOR QUERIES
Query QE_Code

QBLANK 0x0F = Code memory and data EEPROM
are NOT blank
0xF0 = Code memory and data EEPROM
are blank

QVER 0xMN, where programming executive
software version = M.N
(i.e., 0x32 means software version 3.2)

When the programming executive processes any
command other than a Query, the QE_Code
represents an error code. Supported error codes are
shown in Table 9-4. If a command is successfully
processed, the returned QE_Code is set to 0x0, which
indicates that there was no error in the command
processing. If the verify of the programming for the
PROGD, PROGP or PROGC command fails, the QE_Code
is set to 0x1. For all other programming executive
errors, the QE_Code is 0x2.

TABLE 9-4: QE_Code FOR NON-QUERY
COMMANDS

QE_Code Description

0x0 No error
0x1 Verify failed
0x2 Other error

9.2.4 RESPONSE LENGTH
The response length indicates the length of the
programming executive’s response in 16-bit words.
This field includes the 2 words of the response header.

With the exception of the response for the READD and
READP commands, the length of each response is only
2 words.

The response to the READD command is N + 2 words,
where N is the number of words specified in the READD
command.

The response to the READP command uses the packed
instruction word format described in Section 8.3
“Packed Data Format”. When reading an odd number
of program memory words (N odd), the response to the
READP command is (3 • (N + 1)/2 + 2) words. When
reading an even number of program memory words
(N even), the response to the READP command is
(3 • N/2 + 2) words.
© 2010 Microchip Technology Inc. DS70102K-page 31

dsPIC30F Flash Programming Specification
10.0 DEVICE ID
The device ID region is 2 x 16 bits and can be read
using the READD command. This region of memory is
read-only and can also be read when code protection
is enabled.

Table 10-1 shows the device ID for each device,
Table 10-2 shows the device ID registers and Table 10-
3 describes the bit field of each register.

TABLE 10-1: DEVICE IDS

Device DEVID
Silicon Revision

A0 A1 A2 A3 A4 B0 B1 B2

dsPIC30F2010 0x0040 0x1000 0x1001 0x1002 0x1003 0x1004 — — —
dsPIC30F2011 0x0240 — 0x1001 — — — — — —
dsPIC30F2012 0x0241 — 0x1001 — — — — — —
dsPIC30F3010 0x01C0 0x1000 0x1001 0x1002 — — — — —
dsPIC30F3011 0x01C1 0x1000 0x1001 0x1002 — — — — —
dsPIC30F3012 0x00C1 — — — — — 0x1040 0x1041 —
dsPIC30F3013 0x00C3 — — — — — 0x1040 0x1041 —
dsPIC30F3014 0x0160 — 0x1001 0x1002 — — — — —
dsPIC30F4011 0x0101 — 0x1001 0x1002 0x1003 0x1003 — — —
dsPIC30F4012 0x0100 — 0x1001 0x1002 0x1003 0x1003 — — —
dsPIC30F4013 0x0141 — 0x1001 0x1002 — — — — —
dsPIC30F5011 0x0080 — 0x1001 0x1002 0x1003 0x1003 — — —
dsPIC30F5013 0x0081 — 0x1001 0x1002 0x1003 0x1003 — — —
dsPIC30F5015 0x0200 0x1000 — — — — — — —
dsPIC30F5016 0x0201 0x1000 — — — — — — —
dsPIC30F6010 0x0188 — — — — — — 0x1040 0x1042
dsPIC30F6010A 0x0281 — — 0x1002 0x1003 0x1004 — — —
dsPIC30F6011 0x0192 — — — 0x1003 — — 0x1040 0x1042
dsPIC30F6011A 0x02C0 — — 0x1002 — — 0x1040 0x1041 —
dsPIC30F6012 0x0193 — — — 0x1003 — — 0x1040 0x1042
dsPIC30F6012A 0x02C2 — — 0x1002 — — 0x1040 0x1041 —
dsPIC30F6013 0x0197 — — — 0x1003 — — 0x1040 0x1042
dsPIC30F6013A 0x02C1 — — 0x1002 — — 0x1040 0x1041 —
dsPIC30F6014 0x0198 — — — 0x1003 — — 0x1040 0x1042
dsPIC30F6014A 0x02C3 — — 0x1002 — — 0x1040 0x1041 —
dsPIC30F6015 0x0280 — — 0x1002 0x1003 0x1004 — — —

TABLE 10-2: dsPIC30F DEVICE ID REGISTERS

Address Name
Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0xFF0000 DEVID DEVID<15:0>
0xFF0002 DEVREV PROC<3:0> REV<5:0> DOT<5:0>
DS70102K-page 32 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
11.6 Erasing Program Memory in
Low-Voltage Systems

The procedure for erasing program memory (all code
memory and data memory) in low-voltage systems
(with VDD between 2.5 volts and 4.5 volts) is quite
different than the procedure for erasing program
memory in normal-voltage systems. Instead of using a
Bulk Erase operation, each region of memory must be
individually erased by row. Namely, all of the code
memory, executive memory and data memory must be
erased one row at a time. This procedure is detailed in
Table 11-5.

Due to security restrictions, the FBS, FSS and FGS
register cannot be erased in low-voltage systems.
Once any bits in the FGS register are programmed to
‘0’, they can only be set back to ‘1’ by performing a Bulk
Erase in a normal-voltage system. Alternatively, a Seg-
ment Erase operation can be performed instead of a
Bulk Erase.

Normal-voltage systems can also be used to erase
program memory as shown in Table 11-5. However,
since this method is more time-consuming and does
not clear the code-protect bits, it is not recommended.

Note: Program memory must be erased before
writing any data to program memory.

TABLE 11-5: SERIAL INSTRUCTION EXECUTION FOR ERASING PROGRAM MEMORY
(EITHER IN LOW-VOLTAGE OR NORMAL-VOLTAGE SYSTEMS)

Command
(Binary)

Data
(Hexadecimal) Description

Step 1: Exit the Reset vector.
0000
0000
0000

040100
040100
000000

GOTO 0x100
GOTO 0x100
NOP

Step 2: Initialize NVMADR and NVMADRU to erase code memory and initialize W7 for row address updates.
0000
0000
0000
0000

EB0300
883B16
883B26
200407

CLR W6
MOV W6, NVMADR
MOV W6, NVMADRU
MOV #0x40, W7

Step 3: Set NVMCON to erase 1 row of code memory.
0000
0000

24071A
883B0A

MOV #0x4071, W10
MOV W10, NVMCON

Step 4: Unlock the NVMCON to erase 1 row of code memory.
0000
0000
0000
0000

200558
883B38
200AA9
883B39

MOV #0x55, W8
MOV W8, NVMKEY
MOV #0xAA, W9
MOV W9, NVMKEY

Step 5: Initiate the erase cycle.
0000
0000
0000
—

0000
0000
0000
0000
0000

A8E761
000000
000000
—

000000
000000
A9E761
000000
000000

BSET NVMCON, #WR
NOP
NOP
Externally time ‘P13a’ ms (see Section 13.0 “AC/DC Characteristics and
Timing Requirements”)
NOP
NOP
BCLR NVMCON, #WR
NOP
NOP
DS70102K-page 40 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
11.7 Writing Configuration Memory
The FOSC, FWDT, FBORPOR and FICD registers are
not erasable. It is recommended that all Configuration
registers be set to a default value after erasing program
memory. The FWDT, FBORPOR and FICD registers
can be set to a default all ‘1’s value by programming
0xFFFF to each register. Since these registers contain
unimplemented bits that read as ‘0’ the default values
shown in Table 11-6 will be read instead of 0xFFFF.
The recommended default FOSC value is 0xC100,
which selects the FRC clock oscillator setting.

The FGS, FBS and FSS Configuration registers are
special since they enable code protection for the
device. For security purposes, once any bit in these
registers is programmed to ‘0’ (to enable some code
protection feature), it can only be set back to ‘1’ by
performing a Bulk Erase or Segment Erase as
described in Section 11.5 “Erasing Program
Memory in Normal-Voltage Systems”. Programming
these bits from a ‘0’ to ‘1’ is not possible, but they may
be programmed from a ‘1’ to a ‘0’ to enable code
protection.

Table 11-7 shows the ICSP programming details for
clearing the Configuration registers. In Step 1, the
Reset vector is exited. In Step 2, the write pointer (W7)
is loaded with 0x0000, which is the original destination
address (in TBLPAG 0xF8 of program memory). In
Step 3, the NVMCON is set to program one Configura-

tion register. In Step 4, the TBLPAG register is
initialized, to 0xF8, for writing to the Configuration
registers. In Step 5, the value to write to the each
Configuration register (0xFFFF) is loaded to W6. In
Step 6, the Configuration register data is written to the
write latch using the TBLWTL instruction. In Steps 7 and
8, the NVMCON is unlocked for programming and the
programming cycle is initiated, as described in
Section 11.4 “Flash Memory Programming in ICSP
Mode”. In Step 9, the internal PC is set to 0x100 as a
safety measure to prevent the PC from incrementing
into unimplemented memory. Lastly, Steps 3-9 are
repeated six times until all seven Configuration
registers are cleared.

TABLE 11-6: DEFAULT CONFIGURATION
REGISTER VALUES

Address Register Default Value

0xF80000 FOSC 0xC100
0xF80002 FWDT 0x803F
0xF80004 FBORPOR 0x87B3
0xF80006 FBS 0x310F
0xF80008 FSS 0x330F
0xF8000A FGS 0x0007
0xF8000C FICD 0xC003

TABLE 11-7: SERIAL INSTRUCTION EXECUTION FOR WRITING CONFIGURATION
REGISTERS

Command
(Binary)

Data
(Hexadecimal) Description

Step 1: Exit the Reset vector.
0000
0000
0000

040100
040100
000000

GOTO 0x100
GOTO 0x100
NOP

Step 2: Initialize the write pointer (W7) for the TBLWT instruction.
0000 200007 MOV #0x0000, W7

Step 3: Set the NVMCON to program 1 Configuration register.
0000
0000

24008A
883B0A

MOV #0x4008, W10
MOV W10, NVMCON

Step 4: Initialize the TBLPAG register.
0000
0000

200F80
880190

MOV #0xF8, W0
MOV W0, TBLPAG

Step 5: Load the Configuration register data to W6.
0000
0000

2xxxx0
000000

MOV #<CONFIG_VALUE>, W0
NOP
© 2010 Microchip Technology Inc. DS70102K-page 43

dsPIC30F Flash Programming Specification
11.8 Writing Code Memory
The procedure for writing code memory is similar to the
procedure for clearing the Configuration registers,
except that 32 instruction words are programmed at a
time. To facilitate this operation, working registers
W0:W5 are used as temporary holding registers for the
data to be programmed.

Table 11-8 shows the ICSP programming details,
including the serial pattern with the ICSP command
code, which must be transmitted Least Significant bit
first using the PGC and PGD pins (see Figure 11-2). In
Step 1, the Reset vector is exited. In Step 2, the
NVMCON register is initialized for single-panel
programming of code memory. In Step 3, the 24-bit
starting destination address for programming is loaded
into the TBLPAG register and W7 register. The upper
byte of the starting destination address is stored to
TBLPAG, while the lower 16 bits of the destination
address are stored to W7.

To minimize the programming time, the same packed
instruction format that the programming executive uses
is utilized (Figure 8-2). In Step 4, four packed
instruction words are stored to working registers
W0:W5 using the MOV instruction and the read pointer
W6 is initialized. The contents of W0:W5 holding the
packed instruction word data is shown in Figure 11-4.

In Step 5, eight TBLWT instructions are used to copy the
data from W0:W5 to the write latches of code memory.
Since code memory is programmed 32 instruction
words at a time, Steps 4 and 5 are repeated eight times
to load all the write latches (Step 6).

After the write latches are loaded, programming is
initiated by writing to the NVMKEY and NVMCON
registers in Steps 7 and 8. In Step 9, the internal PC is
reset to 0x100. This is a precautionary measure to
prevent the PC from incrementing into unimplemented
memory when large devices are being programmed.
Lastly, in Step 10, Steps 2-9 are repeated until all of
code memory is programmed.

FIGURE 11-5: PACKED INSTRUCTION
WORDS IN W0:W5

15 8 7 0

W0 lsw0
W1 MSB1 MSB0
W2 lsw1
W3 lsw2
W4 MSB3 MSB2
W5 lsw3

TABLE 11-8: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY
Command
(Binary)

Data
(Hexadecimal) Description

Step 1: Exit the Reset vector.
0000
0000
0000

040100
040100
000000

GOTO 0x100
GOTO 0x100
NOP

Step 2: Set the NVMCON to program 32 instruction words.
0000
0000

24001A
883B0A

MOV #0x4001, W10
MOV W10, NVMCON

Step 3: Initialize the write pointer (W7) for TBLWT instruction.
0000
0000
0000

200xx0
880190
2xxxx7

MOV #<DestinationAddress23:16>, W0
MOV W0, TBLPAG
MOV #<DestinationAddress15:0>, W7

Step 4: Initialize the read pointer (W6) and load W0:W5 with the next 4 instruction words to program.
0000
0000
0000
0000
0000
0000

2xxxx0
2xxxx1
2xxxx2
2xxxx3
2xxxx4
2xxxx5

MOV #<LSW0>, W0
MOV #<MSB1:MSB0>, W1
MOV #<LSW1>, W2
MOV #<LSW2>, W3
MOV #<MSB3:MSB2>, W4
MOV #<LSW3>, W5
© 2010 Microchip Technology Inc. DS70102K-page 45

dsPIC30F Flash Programming Specification
Step 5: Set the read pointer (W6) and load the (next set of) write latches.
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

EB0300
000000
BB0BB6
000000
000000
BBDBB6
000000
000000
BBEBB6
000000
000000
BB1BB6
000000
000000
BB0BB6
000000
000000
BBDBB6
000000
000000
BBEBB6
000000
000000
BB1BB6
000000
000000

CLR W6
NOP
TBLWTL [W6++], [W7]
NOP
NOP
TBLWTH.B [W6++], [W7++]
NOP
NOP
TBLWTH.B [W6++], [++W7]
NOP
NOP
TBLWTL [W6++], [W7++]
NOP
NOP
TBLWTL [W6++], [W7]
NOP
NOP
TBLWTH.B [W6++], [W7++]
NOP
NOP
TBLWTH.B [W6++], [++W7]
NOP
NOP
TBLWTL [W6++], [W7++]
NOP
NOP

Step 6: Repeat steps 4-5 eight times to load the write latches for 32 instructions.
Step 7: Unlock the NVMCON for writing.
0000
0000
0000
0000

200558
883B38
200AA9
883B39

MOV #0x55, W8
MOV W8, NVMKEY
MOV #0xAA, W9
MOV W9, NVMKEY

Step 8: Initiate the write cycle.
0000
0000
0000
—

0000
0000
0000
0000
0000

A8E761
000000
000000
—

000000
000000
A9E761
000000
000000

BSET NVMCON, #WR
NOP
NOP
Externally time ‘P12a’ ms (see Section 13.0 “AC/DC Characteristics and
Timing Requirements”)
NOP
NOP
BCLR NVMCON, #WR
NOP
NOP

Step 9: Reset device internal PC.
0000
0000

040100
000000

GOTO 0x100
NOP

Step 10: Repeat steps 2-9 until all code memory is programmed.

TABLE 11-8: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY (CONTINUED)
Command
(Binary)

Data
(Hexadecimal) Description
DS70102K-page 46 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
11.9 Writing Data EEPROM
The procedure for writing data EEPROM is very similar
to the procedure for writing code memory, except that
fewer words are programmed in each operation. When
writing data EEPROM, one row of data EEPROM is
programmed at a time. Each row consists of sixteen
16-bit data words. Since fewer words are programmed

during each operation, only working registers W0:W3
are used as temporary holding registers for the data to
be programmed.

Table 11-9 shows the ICSP programming details for
writing data EEPROM. Note that a different NVMCON
value is required to write to data EEPROM, and that the
TBLPAG register is hard-coded to 0x7F (the upper byte
address of all locations of data EEPROM).

TABLE 11-9: SERIAL INSTRUCTION EXECUTION FOR WRITING DATA EEPROM
Command

(Binary)
Data

(Hexadecimal) Description

Step 1: Exit the Reset vector.
0000
0000
0000

040100
040100
000000

GOTO 0x100
GOTO 0x100
NOP

Step 2: Set the NVMCON to write 16 data words.
0000
0000

24005A
883B0A

MOV #0x4005, W10
MOV W10, NVMCON

Step 3: Initialize the write pointer (W7) for TBLWT instruction.
0000
0000
0000

2007F0
880190
2xxxx7

MOV #0x7F, W0
MOV W0, TBLPAG
MOV #<DestinationAddress15:0>, W7

Step 4: Load W0:W3 with the next 4 data words to program.
0000
0000
0000
0000

2xxxx0
2xxxx1
2xxxx2
2xxxx3

MOV #<WORD0>, W0
MOV #<WORD1>, W1
MOV #<WORD2>, W2
MOV #<WORD3>, W3

Step 5: Set the read pointer (W6) and load the (next set of) write latches.
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

EB0300
000000
BB1BB6
000000
000000
BB1BB6
000000
000000
BB1BB6
000000
000000
BB1BB6
000000
000000

CLR W6
NOP
TBLWTL [W6++], [W7++]
NOP
NOP
TBLWTL [W6++], [W7++]
NOP
NOP
TBLWTL [W6++], [W7++]
NOP
NOP
TBLWTL [W6++], [W7++]
NOP
NOP

Step 6: Repeat steps 4-5 four times to load the write latches for 16 data words.
© 2010 Microchip Technology Inc. DS70102K-page 47

dsPIC30F Flash Programming Specification
Step 7: Unlock the NVMCON for writing.
0000
0000
0000
0000

200558
883B38
200AA9
883B39

MOV #0x55, W8
MOV W8, NVMKEY
MOV #0xAA, W9
MOV W9, NVMKEY

Step 8: Initiate the write cycle.
0000
0000
0000
—

0000
0000
0000
0000
0000

A8E761
000000
000000
—

000000
000000
A9E761
000000
000000

BSET NVMCON, #WR
NOP
NOP
Externally time ‘P12a’ ms (see Section 13.0 “AC/DC Characteristics and
Timing Requirements”)
NOP
NOP
BCLR NVMCON, #WR
NOP
NOP

Step 9: Reset device internal PC.
0000
0000

040100
000000

GOTO 0x100
NOP

Step 10: Repeat steps 2-9 until all data memory is programmed.

TABLE 11-9: SERIAL INSTRUCTION EXECUTION FOR WRITING DATA EEPROM (CONTINUED)
Command

(Binary)
Data

(Hexadecimal) Description
DS70102K-page 48 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
APPENDIX A: DEVICE-SPECIFIC
INFORMATION

A.1 Checksum Computation
The checksum computation is described in Section 6.8
“Checksum Computation”. Table A-1 shows how this
16-bit computation can be made for each dsPIC30F
device. Computations for read code protection are
shown both enabled and disabled. The checksum
values assume that the Configuration registers are also
erased. However, when code protection is enabled, the
value of the FGS register is assumed to be 0x5.

A.2 dsPIC30F5011 and dsPIC30F5013

A.2.1 ICSP PROGRAMMING
The dsPIC30F5011 and dsPIC30F5013 processors
require that the FBS and FSS registers be programmed
with 0x0000 before the device is chip erased. The steps
to perform this action are shown in Table 11-4.

A.2.2 ENHANCED ICSP PROGRAMMING
The dsPIC30F5011 and dsPIC30F5013 processors
require that the FBS and FSS registers be programmed
with 0x0000 using the PROGC command before the
ERASEB command is used to erase the chip.

TABLE A-1: CHECKSUM COMPUTATION

Device Read Code
Protection Checksum Computation Erased

Value

Value with
0xAAAAAA at 0x0

and Last
Code Address

dsPIC30F2010 Disabled CFGB+SUM(0:001FFF) 0xD406 0xD208
Enabled CFGB 0x0404 0x0404

dsPIC30F2011 Disabled CFGB+SUM(0:001FFF) 0xD406 0xD208
Enabled CFGB 0x0404 0x0404

dsPIC30F2012 Disabled CFGB+SUM(0:001FFF) 0xD406 0xD208
Enabled CFGB 0x0404 0x0404

dsPIC30F3010 Disabled CFGB+SUM(0:003FFF) 0xA406 0xA208
Enabled CFGB 0x0404 0x0404

dsPIC30F3011 Disabled CFGB+SUM(0:003FFF) 0xA406 0xA208
Enabled CFGB 0x0404 0x0404

dsPIC30F3012 Disabled CFGB+SUM(0:003FFF) 0xA406 0xA208
Enabled CFGB 0x0404 0x0404

dsPIC30F3013 Disabled CFGB+SUM(0:003FFF) 0xA406 0xA208
Enabled CFGB 0x0404 0x0404

dsPIC30F3014 Disabled CFGB+SUM(0:003FFF) 0xA406 0xA208
Enabled CFGB 0x0404 0x0404

dsPIC30F4011 Disabled CFGB+SUM(0:007FFF) 0x4406 0x4208
Enabled CFGB 0x0404 0x0404

dsPIC30F4012 Disabled CFGB+SUM(0:007FFF) 0x4406 0x4208
Enabled CFGB 0x0404 0x0404

dsPIC30F4013 Disabled CFGB+SUM(0:007FFF) 0x4406 0x4208
Enabled CFGB 0x0404 0x0404

dsPIC30F5011 Disabled CFGB+SUM(0:00AFFF) 0xFC06 0xFA08
Enabled CFGB 0x0404 0x0404

dsPIC30F5013 Disabled CFGB+SUM(0:00AFFF) 0xFC06 0xFA08
Enabled CFGB 0x0404 0x0404

dsPIC30F5015 Disabled CFGB+SUM(0:00AFFF) 0xFC06 0xFA08
Enabled CFGB 0x0404 0x0404

Item Description:
SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory)
CFGB = Configuration Block (masked) = Byte sum of ((FOSC&0xC10F) + (FWDT&0x803F) +

 (FBORPOR&0x87B3) + (FBS&0x310F) + (FSS&0x330F) + (FGS&0x0007) + (FICD&0xC003))
DS70102K-page 60 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
dsPIC30F5016 Disabled CFGB+SUM(0:00AFFF) 0xFC06 0xFA08
Enabled CFGB 0x0404 0x0404

dsPIC30F6010 Disabled CFGB+SUM(0:017FFF) 0xC406 0xC208
Enabled CFGB 0x0404 0x0404

dsPIC30F6010A Disabled CFGB+SUM(0:017FFF) 0xC406 0xC208
Enabled CFGB 0x0404 0x0404

dsPIC30F6011 Disabled CFGB+SUM(0:015FFF) 0xF406 0xF208
Enabled CFGB 0x0404 0x0404

dsPIC30F6011A Disabled CFGB+SUM(0:015FFF) 0xF406 0xF208
Enabled CFGB 0x0404 0x0404

dsPIC30F6012 Disabled CFGB+SUM(0:017FFF) 0xC406 0xC208
Enabled CFGB 0x0404 0x0404

dsPIC30F6012A Disabled CFGB+SUM(0:017FFF) 0xC406 0xC208
Enabled CFGB 0x0404 0x0404

dsPIC30F6013 Disabled CFGB+SUM(0:015FFF) 0xF406 0xF208
Enabled CFGB 0x0404 0x0404

dsPIC30F6013A Disabled CFGB+SUM(0:015FFF) 0xF406 0xF208
Enabled CFGB 0x0404 0x0404

dsPIC30F6014 Disabled CFGB+SUM(0:017FFF) 0xC406 0xC208
Enabled CFGB 0x0404 0x0404

dsPIC30F6014A Disabled CFGB+SUM(0:017FFF) 0xC406 0xC208
Enabled CFGB 0x0404 0x0404

dsPIC30F6015 Disabled CFGB+SUM(0:017FFF) 0xC406 0xC208
Enabled CFGB 0x0404 0x0404

TABLE A-1: CHECKSUM COMPUTATION (CONTINUED)

Device Read Code
Protection Checksum Computation Erased

Value

Value with
0xAAAAAA at 0x0

and Last
Code Address

Item Description:
SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory)
CFGB = Configuration Block (masked) = Byte sum of ((FOSC&0xC10F) + (FWDT&0x803F) +

 (FBORPOR&0x87B3) + (FBS&0x310F) + (FSS&0x330F) + (FGS&0x0007) + (FICD&0xC003))
© 2010 Microchip Technology Inc. DS70102K-page 61

dsPIC30F Flash Programming Specification
APPENDIX B: HEX FILE FORMAT
Flash programmers process the standard HEX format
used by the Microchip development tools. The format
supported is the Intel® HEX 32 Format (INHX32).
Please refer to Appendix A in the “MPASM User’s
Guide” (DS33014) for more information about hex file
formats.

The basic format of the hex file is:

:BBAAAATTHHHH...HHHHCC

Each data record begins with a 9-character prefix and
always ends with a 2-character checksum. All records
begin with ‘:’ regardless of the format. The individual
elements are described below.

• BB - is a two-digit hexadecimal byte count
representing the number of data bytes that appear
on the line. Divide this number by two to get the
number of words per line.

• AAAA - is a four-digit hexadecimal address
representing the starting address of the data
record. Format is high byte first followed by low
byte. The address is doubled because this format
only supports 8-bits. Divide the value by two to
find the real device address.

• TT - is a two-digit record type that will be ‘00’ for
data records, ‘01’ for end-of-file records and ‘04’
for extended-address record.

• HHHH - is a four-digit hexadecimal data word. For-
mat is low byte followed by high byte. There will
be BB/2 data words following TT.

• CC - is a two-digit hexadecimal checksum that is
the two’s complement of the sum of all the
preceding bytes in the line record.

Because the Intel hex file format is byte-oriented, and
the 16-bit program counter is not, program memory
sections require special treatment. Each 24-bit
program word is extended to 32 bits by inserting a so-
called “phantom byte”. Each program memory address
is multiplied by 2 to yield a byte address.

As an example, a section that is located at 0x100 in
program memory will be represented in the hex file as
0x200.

The hex file will be produced with the following con-
tents:

:020000040000fa

:040200003322110096

:00000001FF

Notice that the data record (line 2) has a load address
of 0200, while the source code specified address
0x100. Note also that the data is represented in “little-
endian” format, meaning the Least Significant Byte
(LSB) appears first. The phantom byte appears last,
just before the checksum.
DS70102K-page 62 © 2010 Microchip Technology Inc.

