

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	12KB (4K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f2011t-20i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5-5:FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F4011/4012 AND
dsPIC30F5011/5013

Bit Field	Register	Description
FCKSM<1:0>	FOSC	Clock Switching Mode 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
FOS<1:0>	FOSC	Oscillator Source Selection on POR 11 = Primary Oscillator 10 = Internal Low-Power RC Oscillator 01 = Internal Fast RC Oscillator 00 = Low-Power 32 kHz Oscillator (Timer1 Oscillator)
FPR<3:0>	FOSC	 Primary Oscillator Mode 1111 = ECIO w/PLL 16X – External Clock mode with 16X PLL. OSC2 pin is I/O 1101 = ECIO w/PLL 8X – External Clock mode with 8X PLL. OSC2 pin is I/O 1011 = ECIO w/PLL 4X – External Clock mode with 4X PLL. OSC2 pin is I/O 100 = ECIO – External Clock mode. OSC2 pin is I/O 1011 = EC – External Clock mode. OSC2 pin is system clock output (Fosc/4) 1010 = FRC w/PLL 8x – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O 1001 = ERC – External RC Oscillator mode. OSC2 pin is system clock output (Fosc/4) 1000 = ERCIO – External RC Oscillator mode. OSC2 pin is system clock output (Fosc/4) 1000 = ERCIO – External RC Oscillator mode. OSC2 pin is I/O 0111 = XT w/PLL 16X – XT Crystal Oscillator mode with 16X PLL 0101 = XT w/PLL 4X – XT Crystal Oscillator mode with 4X PLL 0101 = XT w/PLL 4X – T Crystal Oscillator mode with 4X PLL 0101 = T K w/PLL 16x – Internal fast RC oscillator with 16x PLL 0111 = ST w/PLL 4X – XT Crystal Oscillator mode with 4X PLL 0101 = KT w/PLL 16x – Internal fast RC oscillator with 16x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 16x – Internal fast RC oscillator with 16x PLL. OSC2 pin is I/O 0010 = HS – HS Crystal Oscillator mode (10 MHz-25 MHz crystal) 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O

TABLE 5-6: FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013/3014, dsPIC30F4013, dsPIC30F5015/5016, dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015 (CONTINUED)

Bit Field	Register	Description
FPR<4:0>	FOSC	Alternate Oscillator Mode (when FOS<2:0> = 011b)
		1xxxx = Reserved (do not use)
		0111x = Reserved (do not use)
		01101 = Reserved (do not use)
		01100 = ECIO – External clock. OSC2 pin is I/O
		01011 = EC – External clock. OSC2 pin is system clock output (Fosc/4)
		01010 = Reserved (do not use)
		01001 = ERC – External RC oscillator. OSC2 pin is system clock output (Fosc/4)
		01000 = ERCIO – External RC oscillator. OSC2 pin is I/O
		00111 = Reserved (do not use)
		00110 = Reserved (do not use)
		00101 = Reserved (do not use)
		00100 = XT – XT crystal oscillator (4 MHz-10 MHz crystal)
		00010 = HS – HS crystal oscillator (10 MHz-25 MHz crystal)
		00001 = Reserved (do not use)
		00000 = XTL – XTL crystal oscillator (200 kHz-4 MHz crystal)

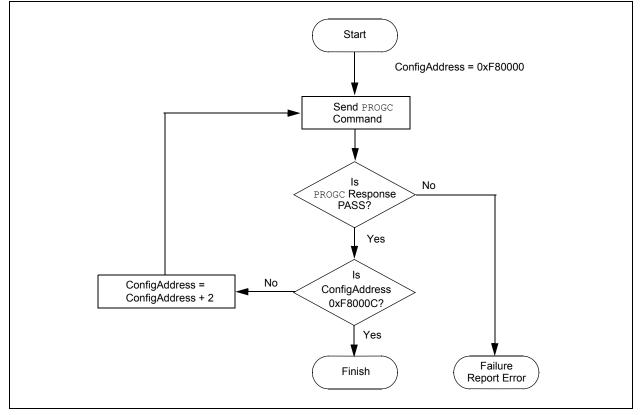

TABLE 5-7:	CONFIGURATION BITS DESCRIPTION				
Bit Field	Register	Description			
FWPSA<1:0>		Watchdog Timer Prescaler A 11 = 1:512 10 = 1:64 01 = 1:8 00 = 1:1			
FWPSB<3:0>	FWDT	Watchdog Timer Prescaler B 1111 = 1:16 1110 = 1:15 0001 = 1:2 0000 = 1:1			
FWDTEN	FWDT	 Watchdog Enable 1 = Watchdog enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect) 0 = Watchdog disabled (LPRC oscillator can be disabled by clearing the SWDTEN bit in the RCON register) 			
MCLREN	FBORPOR	Master Clear Enable1 = Master Clear pin (MCLR) is enabled0 = MCLR pin is disabled			
PWMPIN	FBORPOR	Motor Control PWM Module Pin Mode 1 = PWM module pins controlled by PORT register at device Reset (tri-stated) 0 = PWM module pins controlled by PWM module at device Reset (configured as out- put pins)			
HPOL	FBORPOR	Motor Control PWM Module High-Side Polarity 1 = PWM module high-side output pins have active-high output polarity 0 = PWM module high-side output pins have active-low output polarity			
LPOL	FBORPOR	Motor Control PWM Module Low-Side Polarity 1 = PWM module low-side output pins have active-high output polarity 0 = PWM module low-side output pins have active-low output polarity			
BOREN	FBORPOR	PBOR Enable 1 = PBOR enabled 0 = PBOR disabled			
BORV<1:0>	FBORPOR	Brown-out Voltage Select 11 = 2.0V (not a valid operating selection) 10 = 2.7V 01 = 4.2V 00 = 4.5V			
FPWRT<1:0>	FBORPOR	Power-on Reset Timer Value Select 11 = PWRT = 64 ms 10 = PWRT = 16 ms 01 = PWRT = 4 ms 00 = Power-up Timer disabled			
RBS<1:0>	FBS	Boot Segment Data RAM Code Protection (only present in dsPIC30F5011/5013/ 6010A/6011A/6012A/6013A/6014A/6015) 11 = No Data RAM is reserved for Boot Segment 10 = Small-sized Boot RAM [128 bytes of RAM are reserved for Boot Segment] 01 = Medium-sized Boot RAM [256 bytes of RAM are reserved for Boot Segment] 00 = Large-sized Boot RAM [512 bytes of RAM are reserved for Boot Segment in dsPIC30F5011/5013, and 1024 bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015]			

TABLE 5-7: CONFIGURATION BITS DESCRIPTION

5.8 Exiting Enhanced ICSP Mode

The Enhanced ICSP mode is exited by removing power from the device or bringing MCLR to VIL. When normal user mode is next entered, the program that was stored using Enhanced ICSP will execute.

FIGURE 5-5: CONFIGURATION BIT PROGRAMMING FLOW

6.6 Configuration Information in the Hexadecimal File

To allow portability of code, the programmer must read the Configuration register locations from the hexadecimal file. If configuration information is not present in the hexadecimal file, a simple warning message should be issued by the programmer. Similarly, while saving a hexadecimal file, all configuration information must be included. An option to not include the configuration information can be provided.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

6.7 Unit ID

The dsPIC30F devices contain 32 instructions of Unit ID. These are located at addresses 0x8005C0 through 0x8005FF. The Unit ID can be used for storing product information such as serial numbers, system manufacturing dates, manufacturing lot numbers and other such application-specific information.

A Bulk Erase does not erase the Unit ID locations. Instead, erase all executive memory using steps 1-4 as shown in Table 12-1, and program the Unit ID along with the programming executive. Alternately, use a Row Erase to erase the row containing the Unit ID locations.

6.8 Checksum Computation

Checksums for the dsPIC30F are 16 bits in size. The checksum is to total sum of the following:

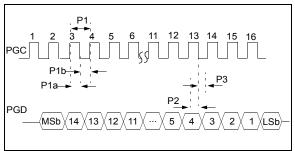
- · Contents of code memory locations
- · Contents of Configuration registers

Table A-1 describes how to calculate the checksum for each device. All memory locations are summed one byte at a time, using only their native data size. More specifically, Configuration and device ID registers are summed by adding the lower two bytes of these locations (the upper byte is ignored), while code memory is summed by adding all three bytes of code memory.

Note: The checksum calculation differs depending on the code-protect setting. Table A-1 describes how to compute the checksum for an unprotected device and a read-protected device. Regardless of the code-protect setting, the Configuration registers can always be read.

7.0 PROGRAMMER – PROGRAMMING EXECUTIVE COMMUNICATION

7.1 Communication Overview


The programmer and programming executive have a master-slave relationship, where the programmer is the master programming device and the programming executive is the slave.

All communication is initiated by the programmer in the form of a command. Only one command at a time can be sent to the programming executive. In turn, the programming executive only sends one response to the programmer after receiving and processing a command. The programming executive command set is described in Section 8.0 "Programming Executive Commands". The response set is described in Section 9.0 "Programming Executive Responses".

7.2 Communication Interface and Protocol

The Enhanced ICSP interface is a 2-wire SPI interface implemented using the PGC and PGD pins. The PGC pin is used as a clock input pin, and the clock source must be provided by the programmer. The PGD pin is used for sending command data to, and receiving response data from, the programming executive. All serial data is transmitted on the falling edge of PGC and latched on the rising edge of PGC. All data transmissions are sent Most Significant bit (MSb) first, using 16-bit mode (see Figure 7-1).

FIGURE 7-1: PROGRAMMING EXECUTIVE SERIAL TIMING

Since a 2-wire SPI interface is used, and data transmissions are bidirectional, a simple protocol is used to control the direction of PGD. When the programmer completes a command transmission, it releases the PGD line and allows the programming executive to drive this line high. The programming executive keeps the PGD line high to indicate that it is processing the command.

After the programming executive has processed the command, it brings PGD low for 15 μ sec to indicate to the programmer that the response is available to be

8.5 Command Descriptions

All commands that are supported by the programming executive are described in Section 8.5.1 "SCHECK Command" through Section 8.5.11 "QVER Command".

8.5.1 SCHECK COMMAND

15	12	11 0)
	Opcode	Length	

Field	Description
Opcode	0x0
Length	0x1

The SCHECK command instructs the programming executive to do nothing, but generate a response. This command is used as a "sanity check" to verify that the programming executive is operational.

Expected Response (2 words):

0x1000 0x0002

Note: This instruction is not required for programming, but is provided for development purposes only.

8.5.2 READD COMMAND

15	12	11 8 7 0			
Opcode				Length	
Reser	ved0	N			
	Reserved1			Addr_MSB	
Addı			Addr_	LS	

Field	Description
Opcode	0x1
Length	0x4
Reserved0	0x0
N	Number of 16-bit words to read (max of 2048)
Reserved1	0x0
Addr_MSB	MSB of 24-bit source address
Addr_LS	LS 16 bits of 24-bit source address

The READD command instructs the programming executive to read N 16-bit words of memory starting from the 24-bit address specified by Addr_MSB and Addr_LS. This command can only be used to read 16-bit data. It can be used to read data EEPROM, Configuration registers and the device ID.

Expected Response (2+N words):

0x1100 N + 2 Data word 1

Data word N

Note: Reading unimplemented memory will cause the programming executive to reset.

dsPIC30F Flash Programming Specification

8.5.3 READP COMMAND

15	12	11	8	7	0
Opcode			Length		
			Ν		
Reserved Addr_MSB					
Addr_LS					

Field	Description
Opcode	0x2
Length	0x4
Ν	Number of 24-bit instructions to read (max of 32768)
Reserved	0x0
Addr_MSB	MSB of 24-bit source address
Addr_LS	LS 16 bits of 24-bit source address

The READP command instructs the programming executive to read N 24-bit words of code memory starting from the 24-bit address specified by Addr_MSB and Addr_LS. This command can only be used to read 24-bit data. All data returned in response to this command uses the packed data format described in Section 8.3 "Packed Data Format".

Expected Response (2 + 3 * N/2 words for N even): 0x1200

2 + 3 * N/2 Least significant program memory word 1

Least significant data word N

Expected Response (4 + 3 * (N - 1)/2 words for N odd):

0x12004 + 3 * (N - 1)/2 Least significant program memory word 1

MSB of program memory word N (zero padded)

Note: Reading unimplemented memory will cause the programming executive to reset.

8.5.4 PROGD COMMAND

15	12	11 8 7 0				
Орс	code Length					
	Rese	rved			Addr_MSB	
			Addr_	LS		
			D_*	1		
			D_2	2		
			D_1	6		

Field	Description
Opcode	0x4
Length	0x13
Reserved	0x0
Addr_MSB	MSB of 24-bit destination address
Addr_LS	LS 16 bits of 24-bit destination address
D_1	16-bit data word 1
D_2	16-bit data word 2
	16-bit data words 3 through 15
D_16	16-bit data word 16

The PROGD command instructs the programming executive to program one row of data EEPROM. The data to be programmed is specified by the 16 data words (D_1, D_2,..., D_16) and is programmed to the destination address specified by Addr_MSB and Addr_LSB. The destination address should be a multiple of 0x20.

Once the row of data EEPROM has been programmed, the programming executive verifies the programmed data against the data in the command.

Expected Response (2 words):

0x1400 0x0002

Note: Refer to Table 5-3 for data EEPROM size information.

9.2.3 QE_Code FIELD

The QE_Code is a byte in the first word of the response. This byte is used to return data for query commands, and error codes for all other commands.

When the programming executive processes one of the two query commands (QBLANK or QVER), the returned opcode is always PASS and the QE_Code holds the query response data. The format of the QE_Code for both queries is shown in Table 9-3.

TABLE 9-3: QE_Code FOR QUERIES

Query	QE_Code				
QBLANK	0x0F = Code memory and data EEPROM are NOT blank 0xF0 = Code memory and data EEPROM are blank				
QVER	0xMN, where programming executive software version = M.N (i.e., 0x32 means software version 3.2)				

When the programming executive processes any command other than a Query, the QE_Code represents an error code. Supported error codes are shown in Table 9-4. If a command is successfully processed, the returned QE_Code is set to 0x0, which indicates that there was no error in the command processing. If the verify of the programming for the PROGD, PROGP or PROGC command fails, the QE_Code is set to 0x1. For all other programming executive errors, the QE_Code is 0x2.

TABLE 9-4: QE_Code FOR NON-QUERY COMMANDS

QE_Code	Description
0x0	No error
0x1	Verify failed
0x2	Other error

9.2.4 RESPONSE LENGTH

The response length indicates the length of the programming executive's response in 16-bit words. This field includes the 2 words of the response header.

With the exception of the response for the READD and READP commands, the length of each response is only 2 words.

The response to the READD command is N + 2 words, where N is the number of words specified in the READD command.

The response to the READP command uses the packed instruction word format described in **Section 8.3 "Packed Data Format"**. When reading an odd number of program memory words (N odd), the response to the READP command is $(3 \cdot (N + 1)/2 + 2)$ words. When reading an even number of program memory words (N even), the response to the READP command is $(3 \cdot N/2 + 2)$ words.

11.0 ICSP™ MODE

11.1 ICSP Mode

ICSP mode is a special programming protocol that allows you to read and write to the dsPIC30F programming executive. The ICSP mode is the second (and slower) method used to program the device. This mode also has the ability to read the contents of executive memory to determine whether the programming executive is present. This capability is accomplished by applying control codes and instructions serially to the device using pins PGC and PGD.

In ICSP mode, the system clock is taken from the PGC pin, regardless of the device's oscillator Configuration bits. All instructions are first shifted serially into an internal buffer, then loaded into the Instruction register and executed. No program fetching occurs from internal memory. Instructions are fed in 24 bits at a time. PGD is used to shift data in and PGC is used as both the serial shift clock and the CPU execution clock.

Data is transmitted on the rising edge and latched on the falling edge of PGC. For all data transmissions, the Least Significant bit (LSb) is transmitted first.

Note 1: During ICSP operation, the operating frequency of PGC must not exceed 5 MHz.
2: Because ICSP is slower, it is recommended that only Enhanced ICSP (E-ICSP) mode be used for device programming, as described in Section 5.1 "Overview of the Programming Process".

11.2 ICSP Operation

Upon entry into ICSP mode, the CPU is idle. Execution of the CPU is governed by an internal state machine. A 4-bit control code is clocked in using PGC and PGD, and this control code is used to command the CPU (see Table 11-1).

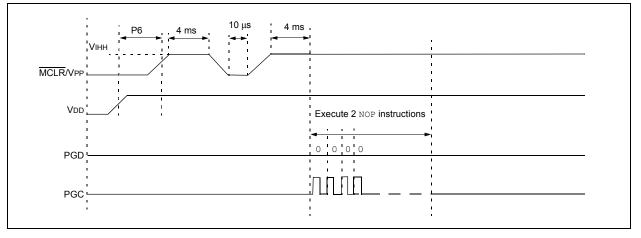
The SIX control code is used to send instructions to the CPU for execution, while the REGOUT control code is used to read data out of the device via the VISI register. The operation details of ICSP mode are provided in Section 11.2.1 "SIX Serial Instruction Execution" and Section 11.2.2 "REGOUT Serial Instruction Execution".

TABLE 11-1:CPU CONTROL CODES IN
ICSP™ MODE

4-bit Control Code	Mnemonic	Description
d0000b	SIX	Shift in 24-bit instruction and execute.
0001b	REGOUT	Shift out the VISI register.
0010b-1111b	N/A	Reserved.

11.2.1 SIX SERIAL INSTRUCTION EXECUTION

The SIX control code allows execution of dsPIC30F assembly instructions. When the SIX code is received, the CPU is suspended for 24 clock cycles as the instruction is then clocked into the internal buffer. Once the instruction is shifted in, the state machine allows it to be executed over the next four clock cycles. While the received instruction is executed, the state machine simultaneously shifts in the next 4-bit command (see Figure 11-2).


- Note 1: Coming out of the ICSP entry sequence, the first 4-bit control code is always forced to SIX and a forced NOP instruction is executed by the CPU. Five additional PGC clocks are needed on startup, thereby resulting in a 9-bit SIX command instead of the normal 4-bit SIX command. After the forced SIX is clocked in, ICSP operation resumes as normal (the next 24 clock cycles load the first instruction word to the CPU). See Figure 11-1 for details.
 - 2: TBLRDH, TBLRDL, TBLWTH and TBLWTL instructions must be followed by a NOP instruction.

11.3 Entering ICSP Mode

The ICSP mode is entered by holding PGC and PGD low, raising $\overline{\text{MCLR}/\text{VPP}}$ to VIHH (high voltage), and then performing additional steps as illustrated in Figure 11-4.

- Note 1: The sequence that places the device into ICSP mode places all unused I/O pins to the high-impedance state.
 - **2:** Once ICSP mode is entered, the PC is set to 0x0 (the Reset vector).
 - 3: Before leaving the Reset vector, execute two GOTO instructions, followed by a single NOP instruction must be executed.

FIGURE 11-4: ENTERING ICSP™ MODE

11.6 Erasing Program Memory in Low-Voltage Systems

The procedure for erasing program memory (all code memory and data memory) in low-voltage systems (with VDD between 2.5 volts and 4.5 volts) is quite different than the procedure for erasing program memory in normal-voltage systems. Instead of using a Bulk Erase operation, each region of memory must be individually erased by row. Namely, all of the code memory, executive memory and data memory must be erased one row at a time. This procedure is detailed in Table 11-5.

Due to security restrictions, the FBS, FSS and FGS register cannot be erased in low-voltage systems. Once any bits in the FGS register are programmed to '0', they can only be set back to '1' by performing a Bulk Erase in a normal-voltage system. Alternatively, a Segment Erase operation can be performed instead of a Bulk Erase.

Normal-voltage systems can also be used to erase program memory as shown in Table 11-5. However, since this method is more time-consuming and does not clear the code-protect bits, it is not recommended.

Note: Program memory must be erased before writing any data to program memory.

TABLE 11-5:SERIAL INSTRUCTION EXECUTION FOR ERASING PROGRAM MEMORY
(EITHER IN LOW-VOLTAGE OR NORMAL-VOLTAGE SYSTEMS)

Command (Binary)	Data (Hexadecimal)	Description
Step 1: Exit th	e Reset vector.	
0000	040100	GOTO 0x100
0000	040100 000000	GOTO 0x100 NOP
		/MADRU to erase code memory and initialize W7 for row address updates.
0000	EB0300 883B16	CLR W6 MOV W6, NVMADR
0000 0000	883B26 200407	MOV W6, NVMADRU MOV #0x40, W7
Step 3: Set N	VMCON to erase 1 r	ow of code memory.
0000 0000	24071A 883B0A	MOV #0x4071, W10 MOV W10, NVMCON
Step 4: Unloc	k the NVMCON to e	rase 1 row of code memory.
0000 0000 0000 0000	200558 883B38 200AA9 883B39	MOV #0x55, W8 MOV W8, NVMKEY MOV #0xAA, W9 MOV W9, NVMKEY
Step 5: Initiate	e the erase cycle.	
0000 0000 0000 	A8E761 000000 000000 -	BSET NVMCON, #WR NOP NOP Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and Timing Requirements")
0000 0000 0000 0000 0000	000000 000000 A9E761 000000 000000	NOP NOP BCLR NVMCON, #WR NOP NOP

TABLE 11-5:SERIAL INSTRUCTION EXECUTION FOR ERASING PROGRAM MEMORY
(EITHER IN LOW-VOLTAGE OR NORMAL-VOLTAGE SYSTEMS) (CONTINUED)

Command (Binary)	I Data (Hexadecimal)	Description
		stored in NVMADRU:NVMADR. When W6 rolls over to 0x0, NVMADRU must be
incr	emented.	
0000	430307	ADD W6, W7, W6
0000	AF0042	BTSC SR, #C
0000	EC2764	INC NVMADRU
0000	883B16	MOV W6, NVMADR
Step 7: Res	et device internal PO	J
0000	040100	GOTO 0x100
0000	000000	NOP
Step 8: Rep	eat Steps 3-7 until a	Il rows of code memory are erased.
Step 9: Initia	alize NVMADR and	NVMADRU to erase executive memory and initialize W7 for row address updates.
	EB0300	CLR W6
0000	883B16	MOV W6, NVMADR
0000	200807	MOV #0x80, W7
0000	883B27	MOV W7, NVMADRU
0000	200407	MOV #0x40, W7
Step 10: Se	et NVMCON to erase	1 row of executive memory.
0000	24071A	MOV #0x4071, W10
0000	883B0A	MOV W10, NVMCON
Step 11: Un	lock the NVMCON t	o erase 1 row of executive memory.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 12: Ini	tiate the erase cycle	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_		Eutompolity time VD12o/ me (coo Section 13.0 "AC/DC Characteristics and
	_	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and
0000	_	Timing Requirements")
	000000	Timing Requirements")
0000	000000	Timing Requirements") NOP NOP
0000 0000		Timing Requirements")
0000 0000 0000	000000 A9E761	Timing Requirements") NOP NOP BCLR NVMCON, #WR
0000 0000 0000 0000 Step 13: U p	000000 A9E761 000000 000000	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP
0000 0000 0000 0000 Step 13: Up	000000 A9E761 000000 000000 odate the row addres	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP Se stored in NVMADR.
0000 0000 0000 0000 Step 13: Up	000000 A9E761 000000 000000	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP
0000 0000 0000 0000 Step 13: Up 0000 0000	000000 A9E761 000000 odate the row addres 430307 883B16	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP Stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR
0000 0000 0000 Step 13: Up 0000 0000 Step 14: Re	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP SS stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR PC.
0000 0000 0000 0000 Step 13: Up 0000 0000 Step 14: Re	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP Ses stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100
2000 2000 2000 2000 2000 2000 2000 200	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100 00000	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP SS stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP
2000 2000 Step 13: Up 2000 Step 14: Re 2000 Step 15: Re	000000 A9E761 000000 odate the row address 430307 883B16 eset device internal F 040100 000000 epeat Steps 10-14 ur	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP NOP SS stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP ntil all 24 rows of executive memory are erased.
2000 2000 Step 13: Up 2000 Step 14: Re 2000 Step 15: Re Step 16: Ini	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100 00000 epeat Steps 10-14 ur tialize NVMADR and	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP SS stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP ntil all 24 rows of executive memory are erased. NVMADRU to erase data memory and initialize W7 for row address updates.
2000 2000 2000 2000 2000 2000 2000 200	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100 000000 epeat Steps 10-14 ur tialize NVMADR and 2xxxx6	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP NOP St stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP ntil all 24 rows of executive memory are erased. INVMADRU to erase data memory and initialize W7 for row address updates. MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6</lower>
0000 0000 Step 13: Up 0000 Step 14: Re 0000 Step 15: Re Step 16: Ini 0000 0000	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100 000000 epeat Steps 10-14 ur tialize NVMADR and 2xxxx6 883B16	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP NOP NOP State ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP NOP NOP ADL WVMADRU OC. GOTO 0x100 NOP NOP MOV # NVMADRU to erase data memory and initialize W7 for row address updates. MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6 MOV W6, NVMADR</lower>
0000 0000 Step 13: Up 0000 Step 14: Re 0000 Step 15: Re Step 16: Ini 0000 0000 0000	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100 000000 epeat Steps 10-14 ur tialize NVMADR and 2XXXX6 883B16 2007F6	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP State ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP NOP thil all 24 rows of executive memory are erased. INVMADRU to erase data memory and initialize W7 for row address updates. MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6 MOV #0x7F, W6</lower>
0000 0000 Step 13: Up 0000 0000 Step 14: Re 0000 0000 Step 15: Re	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100 000000 epeat Steps 10-14 ur tialize NVMADR and 2xxxx6 883B16	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP NOP NOP State ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP NOP NOP ADL WVMADRU OC. GOTO 0x100 NOP NOP MOV # NVMADRU to erase data memory and initialize W7 for row address updates. MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6 MOV W6, NVMADR</lower>
0000 0000 Step 13: Up 0000 Step 14: Re 0000 Step 15: Re Step 16: Ini 0000 0000 0000 0000 0000 0000 0000	000000 A9E761 000000 odate the row address 430307 883B16 eset device internal F 040100 00000 epeat Steps 10-14 ur tialize NVMADR and 2XXXX6 83B16 2007F6 883B16 200207	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP NOP NOP NOP NOP NOP NOP NOP State ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP NOP NOP ADL MOV WS MOV MOV WOV MOV WOV MOV WOV MOV MOV <
0000 0000 Step 13: Up 0000 Step 14: Re 0000 Step 15: Re Step 16: Ini 0000 0000 0000 0000 0000 0000 0000	000000 A9E761 000000 odate the row address 430307 883B16 eset device internal F 040100 00000 epeat Steps 10-14 ur tialize NVMADR and 2XXXX6 83B16 2007F6 883B16 200207	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP State ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP NOP thil all 24 rows of executive memory are erased. INVMADRU to erase data memory and initialize W7 for row address updates. MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6 MOV #0x7F, W6 MOV #0x7F, W6 MOV W6, NVMADR</lower>

TABLE 11-5:SERIAL INSTRUCTION EXECUTION FOR ERASING PROGRAM MEMORY
(EITHER IN LOW-VOLTAGE OR NORMAL-VOLTAGE SYSTEMS) (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description
Step 18: Un	lock the NVMCON to	erase 1 row of data memory.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 19: Init	iate the erase cycle.	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_	-	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and
		Timing Requirements")
0000	000000	NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
Step 20: Up	date the row address	stored in NVMADR.
0000	430307	ADD W6, W7, W6
0000	883B16	MOV W6, NVMADR
Step 21: Re	set device internal P	С.
0000	040100	GOTO 0x100
0000	000000	NOP
Step 22: Re	peat Steps 17-21 unt	il all rows of data memory are erased.

TABLE 11-7:SERIAL INSTRUCTION EXECUTION FOR WRITING CONFIGURATION
REGISTERS (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description
Step 6: Write	the Configuration re	gister data to the write latch and increment the write pointer.
0000	BB1B96	TBLWTL W6, [W7++]
0000	000000	NOP
0000	000000	NOP
Step 7: Unloc	ck the NVMCON for	programming.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 8: Initiat	te the write cycle.	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_	-	Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and
		Timing Requirements")
0000	000000	NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
Step 9: Rese	t device internal PC.	
0000	040100	GOTO 0x100
0000	000000	NOP
Step 10: Rep	eat steps 3-9 until al	I 7 Configuration registers are cleared.

11.8 Writing Code Memory

The procedure for writing code memory is similar to the procedure for clearing the Configuration registers, except that 32 instruction words are programmed at a time. To facilitate this operation, working registers W0:W5 are used as temporary holding registers for the data to be programmed.

Table 11-8 shows the ICSP programming details, including the serial pattern with the ICSP command code, which must be transmitted Least Significant bit first using the PGC and PGD pins (see Figure 11-2). In Step 1, the Reset vector is exited. In Step 2, the NVMCON register is initialized for single-panel programming of code memory. In Step 3, the 24-bit starting destination address for programming is loaded into the TBLPAG register and W7 register. The upper byte of the starting destination address is stored to TBLPAG, while the lower 16 bits of the destination address are stored to W7.

To minimize the programming time, the same packed instruction format that the programming executive uses is utilized (Figure 8-2). In Step 4, four packed instruction words are stored to working registers W0:W5 using the MOV instruction and the read pointer W6 is initialized. The contents of W0:W5 holding the packed instruction word data is shown in Figure 11-4.

In Step 5, eight TBLWT instructions are used to copy the data from W0:W5 to the write latches of code memory. Since code memory is programmed 32 instruction words at a time, Steps 4 and 5 are repeated eight times to load all the write latches (Step 6).

After the write latches are loaded, programming is initiated by writing to the NVMKEY and NVMCON registers in Steps 7 and 8. In Step 9, the internal PC is reset to 0x100. This is a precautionary measure to prevent the PC from incrementing into unimplemented memory when large devices are being programmed. Lastly, in Step 10, Steps 2-9 are repeated until all of code memory is programmed.

FIGURE 11-5: PACKED INSTRUCTION WORDS IN W0:W5

	15		8	7		0
W0			lsv	v0		
W1		MSB1			MSB0	
W2			lsv	v1		
W3			lsv	v2		
W4		MSB3			MSB2	
W5			lsv	v3		

Command (Binary)	Data (Hexadecimal)	Description				
Step 1: Exit th	Step 1: Exit the Reset vector.					
0000	040100	GOTO 0x100				
0000	040100	GOTO 0x100				
0000	000000	NOP				
Step 2: Set th	e NVMCON to progr	am 32 instruction words.				
0000	24001A	MOV #0x4001, W10				
0000	883B0A	MOV W10, NVMCON				
Step 3: Initiali	ze the write pointer (W7) for TBLWT instruction.				
0000	200xx0	MOV # <destinationaddress23:16>, W0</destinationaddress23:16>				
0000	880190	MOV W0, TBLPAG				
0000	2xxxx7	MOV # <destinationaddress15:0>, W7</destinationaddress15:0>				
Step 4: Initializ	ze the read pointer (W6) and load W0:W5 with the next 4 instruction words to program.				
0000	2xxxx0	MOV # <lsw0>, W0</lsw0>				
0000	2xxxx1	MOV # <msb1:msb0>, W1</msb1:msb0>				
0000	2xxxx2	MOV # <lsw1>, W2</lsw1>				
0000	2xxxx3	MOV # <lsw2>, W3</lsw2>				
0000	2xxxx4	MOV # <msb3:msb2>, W4</msb3:msb2>				
0000	2xxxx5	MOV # <lsw3>, W5</lsw3>				

TABLE 11-8: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY

Command (Binary)	Data (Hexadecimal)	Description			
Step 4: Output	t W0:W5 using th	e VISI register and REGOUT command.			
0000	883C20	MOV W0, VISI			
0000	000000	NOP			
0001	<visi></visi>	Clock out contents of VISI register			
0000	000000	NOP			
0000	883C21	MOV W1, VISI			
0000	000000	NOP			
0001	<visi></visi>	Clock out contents of VISI register			
0000	000000	NOP			
0000	883C22	MOV W2, VISI			
0000	000000	NOP			
0001	<visi></visi>	Clock out contents of VISI register			
0000	000000	NOP			
0000	883C23	MOV W3, VISI			
0000	000000	NOP			
0001	<visi></visi>	Clock out contents of VISI register			
0000	000000	NOP			
0000	883C24	MOV W4, VISI			
0000	000000	NOP			
0001	<visi></visi>	Clock out contents of VISI register			
0000	000000	NOP			
0000	883C25	MOV W5, VISI			
0000	000000	NOP			
0001	<visi></visi>	Clock out contents of VISI register			
0000	000000	NOP			
Step 5: Reset	the device intern	al PC.			
0000	040100	GOTO 0x100			
0000	000000	NOP			
Step 6: Repea	tep 6: Repeat steps 3-5 until all desired code memory is read.				

TABLE 11-10: SERIAL INSTRUCTION EXECUTION FOR READING CODE MEMORY (CONTINUED)

13.0 AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS

TABLE 13-1: AC/DC CHARACTERISTICS

AC/DC CHARACTERISTICS				Standard Operating Conditions (unless otherwise stated) Operating Temperature: 25° C is recommended			
Param. No.	Sym	Characteristic	Min	Мах	Units	Conditions	
D110	Vінн	High Programming Voltage on MCLR/VPP	9.00	13.25	V	_	
D112	IPP	Programming Current on MCLR/VPP	_	300	μA	_	
D113	IDDP	Supply Current during programming	_	30	mA	Row Erase Program memory	
				30	mA	Row Erase Data EEPROM	
			—	30	mA	Bulk Erase	
D001	Vdd	Supply voltage	2.5	5.5	V	—	
D002	VDDBULK	Supply voltage for Bulk Erase programming	4.5	5.5	V	—	
D031	VIL	Input Low Voltage	Vss	0.2 Vss	V	—	
D041	Vih	Input High Voltage	0.8 Vdd	Vdd	V	—	
D080	Vol	Output Low Voltage	—	0.6	V	IOL = 8.5 mA	
D090	Voн	Output High Voltage	Vdd - 0.7	—	V	Іон = -3.0 mA	
D012	Сю	Capacitive Loading on I/O Pin (PGD)	_	50	pF	To meet AC specifications	
P1	TSCLK	Serial Clock (PGC) period	50	—	ns	ICSP™ mode	
			1	—	μs	Enhanced ICSP mode	
P1a	TSCLKL	Serial Clock (PGC) low time	20	—	ns	ICSP mode	
			400	—	ns	Enhanced ICSP mode	
P1b	TSCLKH	Serial Clock (PGC) high time	20	—	ns	ICSP mode	
			400	—	ns	Enhanced ICSP mode	
P2	TSET1	Input Data Setup Timer to PGC \downarrow	15	—	ns	—	
P3	THLD1	Input Data Hold Time from PGC \downarrow	15	—	ns	—	
P4	TDLY1	Delay between 4-bit command and command operand	20	—	ns	—	
P4a	TDLY1a	Delay between 4-bit command operand and next 4-bit command	20	—	ns	—	
P5	TDLY2	Delay between last PGC ↓of command to first PGC ↑ of VISI output	20	—	ns	—	
P6	TSET2	VDD ↑ setup time to MCLR/VPP	100	—	ns	_	
P7	THLD2	Input data hold time from MCLR/VPP ↑	2	_	μs	ICSP mode	
			5	_	ms	Enhanced ICSP mode	
P8	TDLY3	Delay between last PGC ↓of command word to PGD driven ↑ by programming executive	20	—	μs	-	
P9a	TDLY4	Programming Executive Command processing time	10	—	μs	—	

APPENDIX A: DEVICE-SPECIFIC INFORMATION

A.1 Checksum Computation

The checksum computation is described in **Section 6.8 "Checksum Computation"**. Table A-1 shows how this 16-bit computation can be made for each dsPIC30F device. Computations for read code protection are shown both enabled and disabled. The checksum values assume that the Configuration registers are also erased. However, when code protection is enabled, the value of the FGS register is assumed to be 0x5.

A.2 dsPIC30F5011 and dsPIC30F5013

A.2.1 ICSP PROGRAMMING

The dsPIC30F5011 and dsPIC30F5013 processors require that the FBS and FSS registers be programmed with 0x0000 before the device is chip erased. The steps to perform this action are shown in Table 11-4.

A.2.2 ENHANCED ICSP PROGRAMMING

The dsPIC30F5011 and dsPIC30F5013 processors require that the FBS and FSS registers be programmed with 0x0000 using the PROGC command before the ERASEB command is used to erase the chip.

Device	Read Code Protection	Checksum Computation	Erased Value	Value with 0xAAAAAA at 0x0 and Last Code Address
dsPIC30F2010	Disabled	CFGB+SUM(0:001FFF)	0xD406	0xD208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F2011	Disabled	CFGB+SUM(0:001FFF)	0xD406	0xD208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F2012	Disabled	CFGB+SUM(0:001FFF)	0xD406	0xD208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3010	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3011	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3012	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3013	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3014	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F4011	Disabled	CFGB+SUM(0:007FFF)	0x4406	0x4208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F4012	Disabled	CFGB+SUM(0:007FFF)	0x4406	0x4208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F4013	Disabled	CFGB+SUM(0:007FFF)	0x4406	0x4208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F5011	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404
dsPIC30F5013	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404
dsPIC30F5015	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404

TABLE A-1: CHECKSUM COMPUTATION

Item Description:

SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory)

CFGB = Configuration Block (masked) = Byte sum of ((FOSC&0xC10F) + (FWDT&0x803F) + (FBORPOR&0x87B3) + (FBS&0x310F) + (FSS&0x330F) + (FGS&0x0007) + (FICD&0xC003))

APPENDIX C: REVISION HISTORY

Note: Revision histories were not recorded for revisions A through H. The previous revision (J), was published in August 2007.

Revision K (November 2010)

This version of the document includes the following updates:

- Added Note three to Section 5.2 "Entering Enhanced ICSP Mode"
- Updated the first paragraph of Section 10.0 "Device ID"
- Updated Table 10-1: Device IDs
- Removed the VARIANT bit and updated the bit definition for the DEVID register in Table 10-2: dsPIC30F Device ID Registers
- Removed the VARIANT bit and updated the bit field definition and description for the DEVID register in Table 10-3: Device ID Bits Description
- Updated Note 3 in Section 11.3 "Entering ICSP Mode"
- Updated Step 11 in Table 11-4: Serial Instruction Execution for BUIk Erasing Program Memory (Only in Normal-voltage Systems)
- Updated Steps 5, 12 and 19 in Table 11-5: Serial Instruction Execution for Erasing Program Memory (Either in Low-voltage or Normal-voltage Systems)
- Updated Steps 5, 6 and 8 in Table 11-7: Serial Instruction Execution for Writing Configuration Registers
- Updated Steps 6 and 8 in Table 11-8: Serial Instruction Execution for Writing Code Memory
- Updated Steps 6 and 8 in Table 11-9: Serial Instruction Execution for Writing Data EEPROM
- Updated Entering ICSP[™] Mode (see Figure 11-4)
- Updated Steps 4 and 11 in Table 12-1: Programming the Programming Executive
- Renamed parameters: P12 to P12a and P13 to P13a, and added parameters P12b and P13b in Table 13-1: AC/DC Characteristics

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address:

www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

08/04/10