

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	24KB (8K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f3012t-20e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Pins Used During Programming

The pins identified in Table 2-1 are used for device programming. Refer to the appropriate device data sheet for complete pin descriptions.

TABLE 2-1: dsPIC30F PIN DESCRIPTIONS DURING PROGRAMMING

Pin Name	Pin Type	Pin Description					
MCLR/Vpp	Р	Programming Enable					
VDD	Р	Power Supply					
Vss	Р	Ground					
PGC	I	Serial Clock					
PGD	I/O	Serial Data					

Legend: I = Input, O = Output, P = Power

2.3 Program Memory Map

The program memory space extends from 0x0 to 0xFFFFFE. Code storage is located at the base of the memory map and supports up to 144 Kbytes (48K instruction words). Code is stored in three, 48 Kbyte memory panels that reside on-chip. Table 2-2 shows the location and program memory size of each device.

Locations 0x800000 through 0x8005BE are reserved for executive code memory. This region stores either the programming executive or debugging executive. The programming executive is used for device programming, while the debug executive is used for incircuit debugging. This region of memory cannot be used to store user code.

Locations 0xF80000 through 0xF8000E are reserved for the Configuration registers. The bits in these registers may be set to select various device options, and are described in **Section 5.7 "Configuration Bits Programming"**.

Locations 0xFF0000 and 0xFF0002 are reserved for the Device ID registers. These bits can be used by the programmer to identify what device type is being programmed and are described in **Section 10.0** "Device ID". The device ID reads out normally, even after code protection is applied.

Figure 2-2 illustrates the memory map for the dsPIC30F devices.

2.4 Data EEPROM Memory

The Data EEPROM array supports up to 4 Kbytes of data and is located in one memory panel. It is mapped in program memory space, residing at the end of User Memory Space (see Figure 2-2). Table 2-2 shows the location and size of data EEPROM in each device.

TABLE 2-2: CODE MEMORY AND DATA EEPROM MAP AND SIZE

Device	Code Memory map (Size in Instruction Words)	Data EEPROM Memory Map (Size in Bytes)
dsPIC30F2010	0x000000-0x001FFE (4K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F2011	0x000000-0x001FFE (4K)	None (0K)
dsPIC30F2012	0x000000-0x001FFE (4K)	None (0K)
dsPIC30F3010	0x000000-0x003FFE (8K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F3011	0x000000-0x003FFE (8K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F3012	0x000000-0x003FFE (8K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F3013	0x000000-0x003FFE (8K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F3014	0x000000-0x003FFE (8K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F4011	0x000000-0x007FFE (16K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F4012	0x000000-0x007FFE (16K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F4013	0x000000-0x007FFE (16K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F5011	0x000000-0x00AFFE (22K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F5013	0x000000-0x00AFFE (22K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F5015	0x000000-0x00AFFE (22K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F5016	0x000000-0x00AFFE (22K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F6010	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFE (4K)
dsPIC30F6010A	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFF (4K)
dsPIC30F6011	0x000000-0x015FFE (44K)	0x7FF800-0x7FFFFE (2K)
dsPIC30F6011A	0x000000-0x015FFE (44K)	0x7FF800-0x7FFFFE (2K)
dsPIC30F6012	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFE (4K)
dsPIC30F6012A	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFE (4K)
dsPIC30F6013	0x000000-0x015FFE (44K)	0x7FF800-0x7FFFFE (2K)
dsPIC30F6013A	0x000000-0x015FFE (44K)	0x7FF800-0x7FFFFE (2K)
dsPIC30F6014	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFE (4K)
dsPIC30F6014A	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFE (4K)
dsPIC30F6015	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFE (4K)

TABLE 5-6: FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013/3014, dsPIC30F4013, dsPIC30F5015/5016, dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015 (CONTINUED)

Bit Field	Register	Description
FPR<4:0>	FOSC	Alternate Oscillator Mode (when FOS<2:0> = 011b)
		1xxxx = Reserved (do not use)
		0111x = Reserved (do not use)
		01101 = Reserved (do not use)
		01100 = ECIO – External clock. OSC2 pin is I/O
		01011 = EC – External clock. OSC2 pin is system clock output (Fosc/4)
		01010 = Reserved (do not use)
		01001 = ERC – External RC oscillator. OSC2 pin is system clock output (Fosc/4)
		01000 = ERCIO – External RC oscillator. OSC2 pin is I/O
		00111 = Reserved (do not use)
		00110 = Reserved (do not use)
		00101 = Reserved (do not use)
		00100 = XT – XT crystal oscillator (4 MHz-10 MHz crystal)
		00010 = HS – HS crystal oscillator (10 MHz-25 MHz crystal)
		00001 = Reserved (do not use)
		00000 = XTL – XTL crystal oscillator (200 kHz-4 MHz crystal)

TABLE 5-8: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F2010, dsPIC30F4011/4012 AND dsPIC30F6010/ 6011/6012/6013/ 6014)

Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSN	1<1:0>	_	_	-	_	FOS	S<1:0>	_	_	_	_		FPR<	3:0>	
0xF80002	FWDT	FWDTEN	_	_	_	_	_	-	_	_	_	FWPS	A<1:0>		FWPSB	3<3:0>	
0xF80004	FBORPOR	MCLREN	_	_	_	_	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	BOREN	_	BORV	<1:0>	_	-	FPWR	T<1:0>
0xF80006	FBS	_	_	Reser	ved ⁽²⁾	_	_	-	Reserved ⁽²⁾	_	_	-	_		Reserv	red ⁽²⁾	
0xF80008	FSS	_	_	Reser	ved ⁽²⁾	_	_	Rese	rved ⁽²⁾	_	_	-	_		Reserv	red ⁽²⁾	
0xF8000A	FGS	_		1	_		_	ı	_	_	_		_	_	Reserved ⁽²⁾	GCP	GWRP
0xF8000C	FICD	BKBUG	COE	_	_	_	_	_	_	_	_	_	_	_	_	ICS<	:1:0>

1: On the 6011, 6012, 6013 and 6014, these bits are reserved (read as '1' and must be programmed as '1').
2: Reserved bits read as '1' and must be programmed as '1'.

TABLE 5-9: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F5011/5013)

Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSM	1<1:0>	_	_	_	_	FOS	<1:0>	_	_	_	_		FPR<	3:0>	
0xF80002	FWDT	FWDTEN	_	_	_	_	_	_	_	_	_	FWPS	A<1:0>		FWPSE	3<3:0>	
0xF80004	FBORPOR	MCLREN	_	_	_	_	F	Reserved ⁽¹⁾		BOREN	_	BORV	/<1:0>	_	_	FPWR	T<1:0>
0xF80006	FBS	_	_	RBS-	<1:0>	_	_	_	EBS	_	_	_	_		BSS<2:0>		BWRP
0xF80008	FSS	_	_	RSS-	<1:0>	-	_	ESS	<1:0>	_	_	_	_		SSS<2:0>		SWRP
0xF8000A	FGS	_	_	_	_	_	_	_	_	_	_	_	_	_	GSS<	1:0>	GWRP
0xF8000C	FICD	BKBUG	COE	_	_	_	_	_	_	_	_	_	_	_	_	ICS<	:1:0>

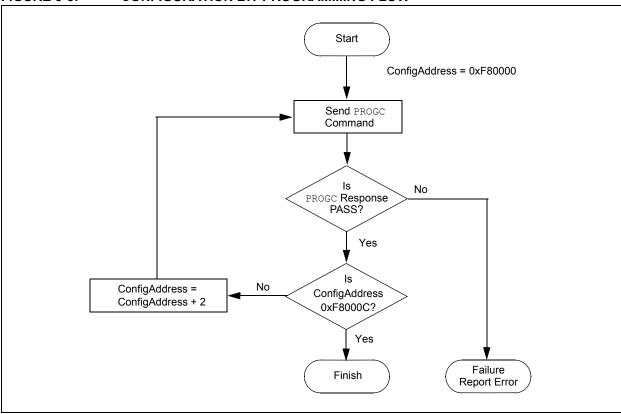
Note 1: Reserved bits read as '1' and must be programmed as '1'.

Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSM	l<1:0>	_	_			FOS<2:0>		_	_	_			FPR<4:0>		
0xF80002	FWDT	FWDTEN	_	_	_	_	_	_	-	-	_	FWPS	A<1:0>		FWPSB<3:0>		
0xF80004	FBORPOR	MCLREN	_	_	_	_	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	BOREN	_	BORV	/<1:0>	_	-	FPWR	T<1:0>
0xF80006	FBS	_	_	Reser	ved ⁽²⁾	_	_	_	Reserved ⁽²⁾	-	_	_	_		Resen	ved ⁽²⁾	
0xF80008	FSS	_	_	Reser	ved ⁽²⁾	_	_	Rese	rved ⁽²⁾	-	_	_	_		Resen	ved ⁽²⁾	
0xF8000A	FGS	_	_	_	ı	ı	_	ı	-	-	-	ı	-	_	Reserved ⁽³⁾	GCP	GWRP
0xF8000C	FICD	BKBUG	COE	_					-		_		_	_	_	ICS<	:1:0>

1: On the 2011, 2012, 3012, 3013, 3014 and 4013, these bits are reserved (read as '1' and must be programmed as '1').
2: Reserved bits read as '1' and must be programmed as '1'.

3: The FGS<2> bit is a read-only copy of the GCP bit (FGS<1>).

TABLE 5-11: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015)


•						,										-,	
Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSM	1<1:0>	_	_	_		FOS<2:0>		_	_	_			FPR<4:0>		<u> </u>
0xF80002	FWDT	FWDTEN	_	_	_	_	_	_	_	_	_	FWPS	A<1:0>		FWPSE	3<3:0>	
0xF80004	FBORPOR	MCLREN	_	_	_	_	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	BOREN	_	BORV	/<1:0>	_	_	FPWR	T<1:0>
0xF80006	FBS	_	_	RBS-	<1:0>	_	_	_	EBS	_	_	_	_		BSS<2:0>		BWRP
0xF80008	FSS	_	_	RSS-	<1:0>	_	_	ESS	S<1:0>	_	_	_	_		SSS<2:0>		SWRP
0xF8000A	FGS	_	_	_	_	_	_	_	_	_	_	_	_	_	GSS<	1:0>	GWRP
0xF8000C	FICD	BKBUG	COE	_	_	_	_	_	_	_	_	_	_	-	_	ICS<	<1:0>

Note 1: On the 6011A, 6012A, 6013A and 6014A, these bits are reserved (read as '1' and must be programmed as '1').

5.8 Exiting Enhanced ICSP Mode

The Enhanced ICSP mode is exited by removing power from the device or bringing $\overline{\text{MCLR}}$ to VIL. When normal user mode is next entered, the program that was stored using Enhanced ICSP will execute.

FIGURE 5-5: CONFIGURATION BIT PROGRAMMING FLOW

clocked out. The programmer can begin to clock out the response 20 μsec after PGD is brought low, and it must provide the necessary amount of clock pulses to receive the entire response from the programming executive.

Once the entire response is clocked out, the programmer should terminate the clock on PGC until it is time to send another command to the programming executive. This protocol is illustrated in Figure 7-2.

7.3 SPI Rate

In Enhanced ICSP mode, the dsPIC30F operates from the fast internal RC oscillator, which has a nominal frequency of 7.37 MHz. This oscillator frequency yields an effective system clock frequency of 1.84 MHz. Since the SPI module operates in Slave mode, the programmer must limit the SPI clock rate to a frequency no greater than 1 MHz.

Note: If the programmer provides the SPI with a clock faster than 1 MHz, the behavior of

clock faster than 1 MHz, the behavior of the programming executive will be unpredictable.

7.4 Time Outs

The programming executive uses no Watchdog Timer or time out for transmitting responses to the programmer. If the programmer does not follow the flow control mechanism using PGC, as described in Section 7.2 "Communication Interface and Protocol", it is possible that the programming executive will behave unexpectedly while trying to send a response to the programmer. Since the programming executive has no time out, it is imperative that the programmer correctly follow the described communication protocol.

As a safety measure, the programmer should use the command time outs identified in Table 8-1. If the command time out expires, the programmer should reset the programming executive and start programming the device again.

FIGURE 7-2: PROGRAMMING EXECUTIVE – PROGRAMMER COMMUNICATION PROTOCOL

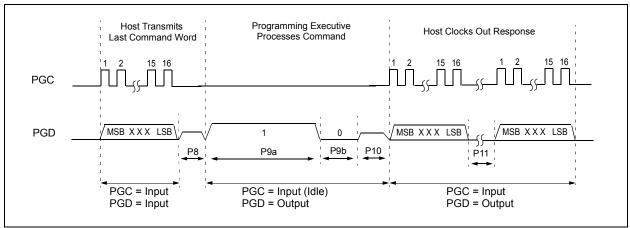


TABLE 8-1: PROGRAMMING EXECUTIVE COMMAND SET

Opcode	Mnemonic	Length (16-bit words)	Time Out	Description
0x0	SCHECK	1	1 ms	Sanity check.
0x1	READD	4	1 ms/row	Read N 16-bit words of data EEPROM, Configuration registers or device ID starting from specified address.
0x2	READP	4	1 ms/row	Read N 24-bit instruction words of code memory starting from specified address.
0x3	Reserved	N/A	N/A	This command is reserved. It will return a NACK.
0x4	PROGD ⁽²⁾	19	5 ms	Program one row of data EEPROM at the specified address, then verify.
0x5	PROGP ⁽¹⁾	51	5 ms	Program one row of code memory at the specified address, then verify.
0x6	PROGC	4	5 ms	Write byte or 16-bit word to specified Configuration register.
0x7	ERASEB	2	5 ms	Bulk Erase (entire code memory or data EEPROM), or erase by segment.
0x8	ERASED ⁽²⁾	3	5 ms/row	Erase rows of data EEPROM from specified address.
0x9	ERASEP(1)	3	5 ms/row	Erase rows of code memory from specified address.
0xA	QBLANK	3	300 ms	Query if the code memory and data EEPROM are blank.
0xB	QVER	1	1 ms	Query the programming executive software version.

Note 1: One row of code memory consists of (32) 24-bit words. Refer to Table 5-2 for device-specific information.

^{2:} One row of data EEPROM consists of (16) 16-bit words. Refer to Table 5-3 for device-specific information.

8.5.3 READP COMMAND

15	12	11	8	7		0			
Opc	ode			Le	ngth				
			N						
	Rese	rved			Addr_MSB				
Addr_LS									

Field	Description
Opcode	0x2
Length	0x4
N	Number of 24-bit instructions to read (max of 32768)
Reserved	0x0
Addr_MSB	MSB of 24-bit source address
Addr_LS	LS 16 bits of 24-bit source address

The READP command instructs the programming executive to read N 24-bit words of code memory starting from the 24-bit address specified by Addr MSB and Addr LS. This command can only be used to read 24-bit data. All data returned in response to this command uses the packed data format described in Section 8.3 "Packed Data Format".

Expected Response (2 + 3 * N/2 words for N even): 0x1200

2 + 3 * N/2

Least significant program memory word 1

Least significant data word N

Expected Response (4 + 3 * (N - 1)/2 words for N odd):

0x1200

4 + 3 * (N - 1)/2

Least significant program memory word 1

MSB of program memory word N (zero padded)

Note:	Readin	ıg u	nimplemented	memory	will
	cause	the	programming	executive	to
	reset.				

8.5.4 PROGD COMMAND

15	12	11	11 8 7 0			0
Opc	ode			Leng	th	
	Rese	rved			Addr_MSB	
Addr_LS						
D_1						
D_2						
D_16						

Field	Description
Opcode	0x4
Length	0x13
Reserved	0x0
Addr_MSB	MSB of 24-bit destination address
Addr_LS	LS 16 bits of 24-bit destination address
D_1	16-bit data word 1
D_2	16-bit data word 2
•••	16-bit data words 3 through 15
D_16	16-bit data word 16

The PROGD command instructs the programming executive to program one row of data EEPROM. The data to be programmed is specified by the 16 data words (D_1, D_2,..., D_16) and is programmed to the destination address specified by Addr MSB and Addr LSB. The destination address should be a multiple of 0x20.

Once the row of data EEPROM has been programmed, the programming executive verifies the programmed data against the data in the command.

Expected Response (2 words):

0x1400 0x0002

> Note: Refer to Table 5-3 for data EEPROM size information.

8.5.5 PROGP COMMAND

15	12	11	11 8 7 0			
Opcode				L	ength.	
Reserved				Addr_MSB		
Addr_LS						
D_1						
D_2						
	D_N					

Field	Description
Opcode	0x5
Length	0x33
Reserved	0x0
Addr_MSB	MSB of 24-bit destination address
Addr_LS	LS 16 bits of 24-bit destination address
D_1	16-bit data word 1
D_2	16-bit data word 2
	16-bit data word 3 through 47
D_48	16-bit data word 48

The PROGP command instructs the programming executive to program one row of code memory (32 instruction words) to the specified memory address. Programming begins with the row address specified in the command. The destination address should be a multiple of 0x40.

The data to program to memory, located in command words D_1 through D_48, must be arranged using the packed instruction word format shown in Figure 8-2.

After all data has been programmed to code memory, the programming executive verifies the programmed data against the data in the command.

Expected Response (2 words):

0x1500 0x0002

Note: Refer to Table 5-2 for code memory size information.

8.5.6 PROGC COMMAND

15	12	2 11 8 7 0		0		
Opcode				Lei	ngth	
Reserved				Addr_MSB		
Addr_LS						
Data						

Field	Description
Opcode	0x6
Length	0x4
Reserved	0x0
Addr_MSB	MSB of 24-bit destination address
Addr_LS	LS 16 bits of 24-bit destination address
Data	Data to program

The PROGC command programs data to the specified Configuration register and verifies the programming. Configuration registers are 16 bits wide, and this command allows one Configuration register to be programmed.

Expected Response (2 words):

0x1600 0x0002

Note: This command can only be used for programming Configuration registers.

8.5.7 ERASEB COMMAND

15	12	11		2	2 0
Opc	ode		Length		
		Rese	rved		MS

Field	Description
Opcode	0x7
Length	0x2
Reserved	0x0
MS	Select memory to erase: 0x0 = All Code in General Segment 0x1 = All Data EEPROM in General Segment 0x2 = All Code and Data EEPROM in General Segment, interrupt vectors and FGS Configuration register 0x3 = Full Chip Erase 0x4 = All Code and Data EEPROM in Boot, Secure and General Segments, and FBS, FSS and FGS Configuration registers 0x5 = All Code and Data EEPROM in Secure and General Segments, and FSS and FGS Configuration registers 0x5 = All Code and Data EEPROM in Secure and General Segments, and FSS and FGS Configuration registers 0x6 = All Data EEPROM in Boot Segment 0x7 = All Data EEPROM in Secure Segment

The ERASEB command performs a Bulk Erase. The MS field selects the memory to be bulk erased, with options for erasing Code and/or Data EEPROM in individual memory segments.

When Full Chip Erase is selected, the following memory regions are erased:

- · All code memory (even if code-protected)
- All data EEPROM
- · All code-protect Configuration registers

Only the executive code memory, Unit ID, device ID and Configuration registers that are not code-protected remain intact after a Chip Erase.

Expected Response (2 words):

0x1700 0x0002

Note:	A Full Chip Erase cannot be performed in				
	low-voltage programming systems (VDD				
	less than 4.5 volts). ERASED and ERASEP				
	must be used to erase code memory,				
	executive memory and data memory.				
	Alternatively, individual Segment Erase				
	operations may be performed.				

8.5.8 ERASED COMMAND

15	12	11 8 7				0
Opcode				L	ength	
Num_Rows					Addr_MSB	
Addr_LS						

Field	Description
Opcode	0x8
Length	0x3
Num_Rows	Number of rows to erase (max of 128)
Addr_MSB	MSB of 24-bit base address
Addr_LS	LS 16 bits of 24-bit base address

The ERASED command erases the specified number of rows of data EEPROM from the specified base address. The specified base address must be a multiple of 0x20. Since the data EEPROM is mapped to program space, a 24-bit base address must be specified.

After the erase is performed, all targeted bytes of data EEPROM will contain 0xFF.

Expected Response (2 words):

0x1800 0x0002

Note: The ERASED command cannot be used to erase the Configuration registers or device ID. Code-protect Configuration registers can only be erased with the ERASEB command, while the device ID is read-only.

8.5.11 QVER COMMAND

15 12	11 0
Opcode	Length

Field	Description		
Opcode	0xB		
Length	0x1		

The QVER command queries the version of the programming executive software stored in test memory. The "version.revision" information is returned in the response's QE_Code using a single byte with the following format: main version in upper nibble and revision in the lower nibble (i.e., 0x23 is version 2.3 of programming executive software).

Expected Response (2 words):

0x1BMN (where "MN" stands for version M.N) 0x0002

9.0 PROGRAMMING EXECUTIVE RESPONSES

9.1 Overview

The programming executive sends a response to the programmer for each command that it receives. The response indicates if the command was processed correctly, and includes any required response or error data

The programming executive response set is shown in Table 9-1. This table contains the opcode, mnemonic and description for each response. The response format is described in **Section 9.2** "**Response Format**".

TABLE 9-1: PROGRAMMING EXECUTIVE RESPONSE SET

Opcode	Mnemonic	Description
0x1	PASS	Command successfully processed.
0x2	FAIL	Command unsuccessfully processed.
0x3	NACK	Command not known.

9.2 Response Format

As shown in Example 9-1, all programming executive responses have a general format consisting of a two word header and any required data for the command. Table 9-2 lists the fields and their descriptions.

EXAMPLE 9-1: FORMAT

15 12	11 8	7	0	
Opcode	Last_Cmd	QE_Code		
	Lenç	gth		
	D_1 (if applicable)			
D_N (if applicable)				

TABLE 9-2: FIELDS AND DESCRIPTIONS

Field	Description
Opcode	Response opcode.
Last_Cmd	Programmer command that generated the response.
QE_Code	Query code or Error code.
Length	Response length in 16-bit words (includes 2 header words.)
D_1	First 16-bit data word (if applicable).
D_N	Last 16-bit data word (if applicable).

9.2.1 Opcode FIELD

The Opcode is a 4-bit field in the first word of the response. The Opcode indicates how the command was processed (see Table 9-1). If the command is processed successfully, the response opcode is PASS. If there is an error in processing the command, the response opcode is FAIL, and the QE_Code indicates the reason for the failure. If the command sent to the programming executive is not identified, the programming executive returns a NACK response.

9.2.2 Last_Cmd FIELD

The Last_Cmd is a 4-bit field in the first word of the response and indicates the command that the programming executive processed. Since the programming executive can only process one command at a time, this field is technically not required. However, it can be used to verify whether the programming executive correctly received the command that the programmer transmitted.

9.2.3 QE Code FIELD

The QE_Code is a byte in the first word of the response. This byte is used to return data for query commands, and error codes for all other commands.

When the programming executive processes one of the two query commands (QBLANK or QVER), the returned opcode is always PASS and the QE_Code holds the query response data. The format of the QE_Code for both queries is shown in Table 9-3.

TABLE 9-3: QE_Code FOR QUERIES

Query	QE_Code					
QBLANK	0x0F = Code memory and data EEPROM are NOT blank 0xF0 = Code memory and data EEPROM are blank					
QVER	0xMN, where programming executive software version = M.N (i.e., 0x32 means software version 3.2)					

When the programming executive processes any command other than a Query, the QE_Code represents an error code. Supported error codes are shown in Table 9-4. If a command is successfully processed, the returned QE_Code is set to 0x0, which indicates that there was no error in the command processing. If the verify of the programming for the PROGD, PROGP or PROGC command fails, the QE_Code is set to 0x1. For all other programming executive errors, the QE_Code is 0x2.

TABLE 9-4: QE_Code FOR NON-QUERY COMMANDS

QE_Code	Description	
0x0	No error	
0x1	Verify failed	
0x2	Other error	

9.2.4 RESPONSE LENGTH

The response length indicates the length of the programming executive's response in 16-bit words. This field includes the 2 words of the response header.

With the exception of the response for the READD and READP commands, the length of each response is only 2 words.

The response to the READD command is N + 2 words, where N is the number of words specified in the READD command.

The response to the READP command uses the packed instruction word format described in **Section 8.3** "Packed Data Format". When reading an odd number of program memory words (N odd), the response to the READP command is $(3 \cdot (N + 1)/2 + 2)$ words. When reading an even number of program memory words (N even), the response to the READP command is $(3 \cdot N/2 + 2)$ words.

11.0 ICSP™ MODE

11.1 ICSP Mode

ICSP mode is a special programming protocol that allows you to read and write to the dsPIC30F programming executive. The ICSP mode is the second (and slower) method used to program the device. This mode also has the ability to read the contents of executive memory to determine whether the programming executive is present. This capability is accomplished by applying control codes and instructions serially to the device using pins PGC and PGD.

In ICSP mode, the system clock is taken from the PGC pin, regardless of the device's oscillator Configuration bits. All instructions are first shifted serially into an internal buffer, then loaded into the Instruction register and executed. No program fetching occurs from internal memory. Instructions are fed in 24 bits at a time. PGD is used to shift data in and PGC is used as both the serial shift clock and the CPU execution clock.

Data is transmitted on the rising edge and latched on the falling edge of PGC. For all data transmissions, the Least Significant bit (LSb) is transmitted first.

- Note 1: During ICSP operation, the operating frequency of PGC must not exceed 5 MHz.
 - 2: Because ICSP is slower, it is recommended that only Enhanced ICSP (E-ICSP) mode be used for device programming, as described in Section 5.1 "Overview of the Programming Process".

11.2 ICSP Operation

Upon entry into ICSP mode, the CPU is idle. Execution of the CPU is governed by an internal state machine. A 4-bit control code is clocked in using PGC and PGD, and this control code is used to command the CPU (see Table 11-1).

The SIX control code is used to send instructions to the CPU for execution, while the REGOUT control code is used to read data out of the device via the VISI register. The operation details of ICSP mode are provided in Section 11.2.1 "SIX Serial Instruction Execution" and Section 11.2.2 "REGOUT Serial Instruction Execution".

TABLE 11-1: CPU CONTROL CODES IN ICSP™ MODE

4-bit Control Code	Mnemonic	Description
0000b	SIX	Shift in 24-bit instruction and execute.
0001b	REGOUT	Shift out the VISI register.
0010b-1111b	N/A	Reserved.

11.2.1 SIX SERIAL INSTRUCTION EXECUTION

The SIX control code allows execution of dsPIC30F assembly instructions. When the SIX code is received, the CPU is suspended for 24 clock cycles as the instruction is then clocked into the internal buffer. Once the instruction is shifted in, the state machine allows it to be executed over the next four clock cycles. While the received instruction is executed, the state machine simultaneously shifts in the next 4-bit command (see Figure 11-2).

- Note 1: Coming out of the ICSP entry sequence, the first 4-bit control code is always forced to SIX and a forced NOP instruction is executed by the CPU. Five additional PGC clocks are needed on startup, thereby resulting in a 9-bit SIX command instead of the normal 4-bit SIX command. After the forced SIX is clocked in, ICSP operation resumes as normal (the next 24 clock cycles load the first instruction word to the CPU). See Figure 11-1 for details.
 - 2: TBLRDH, TBLRDL, TBLWTH and TBLWTL instructions must be followed by a NOP instruction.

TABLE 11-5: SERIAL INSTRUCTION EXECUTION FOR ERASING PROGRAM MEMORY (EITHER IN LOW-VOLTAGE OR NORMAL-VOLTAGE SYSTEMS) (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description
Step 6: Upda	ate the row address s	stored in NVMADRU:NVMADR. When W6 rolls over to 0x0, NVMADRU must be
	emented.	
0000	430307	ADD W6, W7, W6
0000	AF0042	BTSC SR, #C
0000	EC2764	INC NVMADRU
0000	883B16	MOV W6, NVMADR
Step 7: Rese	et device internal PC.	
0000	040100	GOTO 0x100
0000	000000	NOP
		rows of code memory are erased.
Step 9: Initia	lize NVMADR and N	VMADRU to erase executive memory and initialize W7 for row address updates.
0000	EB0300	CLR W6
0000	883B16	MOV W6, NVMADR
0000	200807	MOV #0x80, W7 MOV W7, NVMADRU
0000	883B27 200407	MOV W7, NVMADRU MOV #0x40, W7
		1 row of executive memory.
0000	24071A	MOV #0x4071, W10
0000	883B0A	MOV W10, NVMCON
		erase 1 row of executive memory.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 12: Initi	ate the erase cycle.	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_	_	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and
0000	000000	Timing Requirements") NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
Step 13: Upo	date the row address	stored in NVMADR.
0000	430307	ADD W6, W7, W6
0000	883B16	MOV W6, NVMADR
Step 14: Res	set device internal PC	D.
0000	040100	GOTO 0x100
0000	000000	NOP
Step 15: Rep	peat Steps 10-14 unti	l all 24 rows of executive memory are erased.
Step 16: Initi	alize NVMADR and I	NVMADRU to erase data memory and initialize W7 for row address updates.
0000	2XXXX6	MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6</lower>
0000	883B16	MOV W6, NVMADR
0000	2007F6	MOV #0x7F, W6
0000	883B16	MOV W6, NVMADRU
0000	200207	MOV #0x20, W7
Step 17 : Set	NVMCON to erase	1 row of data memory.
0000	24075A	MOV #0x4075, W10
0000	883B0A	MOV W10, NVMCON

11.11 Reading Configuration Memory

The procedure for reading configuration memory is similar to the procedure for reading code memory, except that 16-bit data words are read instead of 24-bit words. Since there are seven Configuration registers, they are read one register at a time.

Table 11-11 shows the ICSP programming details for reading all of the configuration memory. Note that the TBLPAG register is hard-coded to 0xF8 (the upper byte address of configuration memory), and the read pointer W6 is initialized to 0x0000.

TABLE 11-11: SERIAL INSTRUCTION EXECUTION FOR READING ALL CONFIGURATION MEMORY

Command (Binary)	Data (Hexadecimal)	Description
Step 1: Exit t	ne Reset vector.	
0000	040100	GOTO 0x100
0000	040100	GOTO 0x100
0000	000000	NOP
Step 2: Initial	ize TBLPAG, and	the read pointer (W6) and the write pointer (W7) for TBLRD instruction.
0000	200F80	MOV #0xF8, WO
0000	880190	MOV WO, TBLPAG
0000	EB0300	CLR W6
0000	EB0380	CLR W7
0000	000000	NOP
Step 3: Read	the Configuration	register and write it to the VISI register (located at 0x784).
0000	BA0BB6	TBLRDL [W6++], [W7]
0000	000000	NOP
0000	000000	NOP
0000	883C20	MOV WO, VISI
0000	000000	NOP
Step 4: Outpu	ut the VISI registe	r using the REGOUT command.
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
Step 5: Rese	t device internal F	PC.
0000	040100	GOTO 0x100
0000	000000	NOP
Step 6: Repe	at steps 3-5 six tir	nes to read all of configuration memory.

11.13 Reading the Application ID Word

The application ID word is stored at address 0x8005BE in executive code memory. To read this memory location, you must use the SIX control code to move this program memory location to the VISI register. The REGOUT control code must then be used to clock the contents of the VISI register out of the device. The corresponding control and instruction codes that must be serially transmitted to the device to perform this operation are shown in Table 11-13.

Once the programmer has clocked-out the application ID word, it must be inspected. If the application ID has the value 0xBB, the programming executive is resident in memory and the device can be programmed using the mechanism described in **Section 5.0** "**Device Programming**". However, if the application ID has any other value, the programming executive is not resident in memory. It must be loaded to memory before the device can be programmed. The procedure for loading the programming executive to the memory is described in **Section 12.0** "**Programming the Programming Executive to Memory**".

11.14 Exiting ICSP Mode

After confirming that the programming executive is resident in memory, or loading the programming executive, ICSP mode is exited by removing power to the device or bringing MCLR to VIL. Programming can then take place by following the procedure outlined in Section 5.0 "Device Programming".

TABLE 11-13: SERIAL INSTRUCTION EXECUTION FOR READING THE APPLICATION ID WORD

Command (Binary)	Data (Hexadecimal)	Description		
Step 1: Exit th	ne Reset vector.			
0000 0000 0000	040100 040100 000000	GOTO 0x100 GOTO 0x100 NOP		
Step 2: Initiali	ze TBLPAG and th	ne read pointer (W0) for TBLRD instruction.		
0000 0000 0000 0000 0000 0000 0000	200800 880190 205BE0 207841 000000 BA0890 000000 000000	MOV #0x80, W0 MOV W0, TBLPAG MOV #0x5BE, W0 MOV VISI, W1 NOP TBLRDL [W0], [W1] NOP		
Step 3: Outpu	ut the VISI register	using the REGOUT command.		
0001 0000	<visi></visi>	Clock out contents of the VISI register NOP		

TABLE 12-1: PROGRAMMING THE PROGRAMMING EXECUTIVE (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description			
Step 8: Set the read pointer (W6) and load the (next four write) latches.					
0000	EB0300	CLR W6			
0000	000000	NOP			
0000	BB0BB6	TBLWTL [W6++], [W7]			
0000	000000	NOP			
0000	000000	NOP			
0000	BBDBB6	TBLWTH.B [W6++], [W7++]			
0000	000000	NOP			
0000	000000	NOP			
0000	BBEBB6	TBLWTH.B [W6++], [++W7]			
0000	000000	NOP			
0000	000000	NOP			
0000	BB1BB6	TBLWTL [W6++], [W7++]			
0000	000000	NOP			
0000	000000	NOP			
0000	BB0BB6	TBLWTL [W6++], [W7]			
0000	000000	NOP NOP			
0000	BBDBB6	TBLWTH.B [W6++], [W7++]			
0000	000000	NOP			
0000	000000	NOP			
0000	BBEBB6	TBLWTH.B [W6++], [++W7]			
0000	000000	NOP			
0000	000000	NOP			
0000	BB1BB6	TBLWTL [W6++], [W7++]			
0000	000000	NOP			
0000	000000	NOP			
Step 9: Repe	at Steps 7-8 eight ti	mes to load the write latches for the 32 instructions.			
Step 10: Unlo	ck the NVMCON fo	r programming.			
0000	200558	MOV #0x55, W8			
0000	883B38	MOV W8, NVMKEY			
0000	200AA9	MOV #0xAA, W9			
0000	883B39	MOV W9, NVMKEY			
Step 11: Initia	te the programming	cycle.			
0000	A8E761	BSET NVMCON, #15			
0000	000000	NOP			
0000	000000	NOP			
_	_	Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and			
		Timing Requirements")			
0000	000000	NOP			
0000	000000	NOP			
0000	A9E761	BCLR NVMCON, #15			
0000	000000	NOP			
0000	000000	NOP			
Step 12: Rese	et the device interna	al PC.			
0000	040100	GOTO 0x100			
0000	000000	NOP			
	ant Otama 7 10 until	all 23 rows of executive memory are programmed.			

13.0 AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS

TABLE 13-1: AC/DC CHARACTERISTICS

AC/DC C	HARACTE	RISTICS	Standard Operating Conditions (unless otherwise stated) Operating Temperature: 25° C is recommended			
Param. No.	Sym	Characteristic	Min	Max	Units	Conditions
D110	Vінн	High Programming Voltage on MCLR/VPP	9.00	13.25	V	_
D112	IPP	Programming Current on MCLR/VPP	_	300	μΑ	_
D113	IDDP	Supply Current during programming	_	30	mA	Row Erase Program memory
			_	30	mA	Row Erase Data EEPROM
			_	30	mA	Bulk Erase
D001	VDD	Supply voltage	2.5	5.5	V	_
D002	VDDBULK	Supply voltage for Bulk Erase programming	4.5	5.5	V	_
D031	VIL	Input Low Voltage	Vss	0.2 Vss	V	_
D041	VIH	Input High Voltage	0.8 VDD	Vdd	V	_
D080	Vol	Output Low Voltage	_	0.6	V	IOL = 8.5 mA
D090	Vон	Output High Voltage	VDD - 0.7		V	Iон = -3.0 mA
D012	Сю	Capacitive Loading on I/O Pin (PGD)	_	50	pF	To meet AC specifications
P1	TSCLK	Serial Clock (PGC) period	50	_	ns	ICSP™ mode
			1	1	μs	Enhanced ICSP mode
P1a	TSCLKL	Serial Clock (PGC) low time	20	_	ns	ICSP mode
			400		ns	Enhanced ICSP mode
P1b	TSCLKH	Serial Clock (PGC) high time	20	_	ns	ICSP mode
			400		ns	Enhanced ICSP mode
P2	TSET1	Input Data Setup Timer to PGC ↓	15	1	ns	_
P3	THLD1	Input Data Hold Time from PGC \downarrow	15	_	ns	_
P4	TDLY1	Delay between 4-bit command and command operand	20	1	ns	_
P4a	TDLY1a	Delay between 4-bit command operand and next 4-bit command	20		ns	_
P5	TDLY2	Delay between last PGC ↓of command to first PGC ↑ of VISI output	20	_	ns	_
P6	TSET2	VDD ↑ setup time to MCLR/VPP	100		ns	
P7	THLD2	Input data hold time from MCLR/VPP ↑	2	_	μs	ICSP mode
			5	_	ms	Enhanced ICSP mode
P8	TDLY3	Delay between last PGC ↓of command word to PGD driven ↑ by programming executive	20	_	μs	_
P9a	TDLY4	Programming Executive Command processing time	10	_	μs	_

NOTES:			

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, Keeloq, Keeloq logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-636-4

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002