

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	20
Program Memory Size	24KB (8K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f3013t-20i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Pins Used During Programming

The pins identified in Table 2-1 are used for device programming. Refer to the appropriate device data sheet for complete pin descriptions.

TABLE 2-1:dsPIC30F PIN DESCRIPTIONSDURING PROGRAMMING

Pin Name	Pin Type	Pin Description
MCLR/VPP	Р	Programming Enable
Vdd	Р	Power Supply
Vss	Р	Ground
PGC	I	Serial Clock
PGD	I/O	Serial Data

Legend: I = Input, O = Output, P = Power

2.3 Program Memory Map

The program memory space extends from 0x0 to 0xFFFFFE. Code storage is located at the base of the memory map and supports up to 144 Kbytes (48K instruction words). Code is stored in three, 48 Kbyte memory panels that reside on-chip. Table 2-2 shows the location and program memory size of each device.

Locations 0x800000 through 0x8005BE are reserved for executive code memory. This region stores either the programming executive or debugging executive. The programming executive is used for device programming, while the debug executive is used for incircuit debugging. This region of memory cannot be used to store user code.

Locations 0xF80000 through 0xF8000E are reserved for the Configuration registers. The bits in these registers may be set to select various device options, and are described in **Section 5.7 "Configuration Bits Programming"**.

Locations 0xFF0000 and 0xFF0002 are reserved for the Device ID registers. These bits can be used by the programmer to identify what device type is being programmed and are described in **Section 10.0 "Device ID"**. The device ID reads out normally, even after code protection is applied.

Figure 2-2 illustrates the memory map for the dsPIC30F devices.

2.4 Data EEPROM Memory

The Data EEPROM array supports up to 4 Kbytes of data and is located in one memory panel. It is mapped in program memory space, residing at the end of User Memory Space (see Figure 2-2). Table 2-2 shows the location and size of data EEPROM in each device.

TABLE 2-2: CODE MEMORY AND DATA EEPROM MAP AND SIZE

Device	Code Memory map (Size in Instruction Words)	Data EEPROM Memory Map (Size in Bytes)
dsPIC30F2010	0x000000-0x001FFE (4K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F2011	0x000000-0x001FFE (4K)	None (0K)
dsPIC30F2012	0x000000-0x001FFE (4K)	None (0K)
dsPIC30F3010	0x000000-0x003FFE (8K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F3011	0x000000-0x003FFE (8K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F3012	0x000000-0x003FFE (8K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F3013	0x000000-0x003FFE (8K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F3014	0x000000-0x003FFE (8K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F4011	0x000000-0x007FFE (16K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F4012	0x000000-0x007FFE (16K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F4013	0x000000-0x007FFE (16K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F5011	0x000000-0x00AFFE (22K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F5013	0x000000-0x00AFFE (22K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F5015	0x000000-0x00AFFE (22K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F5016	0x000000-0x00AFFE (22K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F6010	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFE (4K)
dsPIC30F6010A	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFF (4K)
dsPIC30F6011	0x000000-0x015FFE (44K)	0x7FF800-0x7FFFFE (2K)
dsPIC30F6011A	0x000000-0x015FFE (44K)	0x7FF800-0x7FFFFE (2K)
dsPIC30F6012	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFE (4K)
dsPIC30F6012A	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFE (4K)
dsPIC30F6013	0x000000-0x015FFE (44K)	0x7FF800-0x7FFFFE (2K)
dsPIC30F6013A	0x000000-0x015FFE (44K)	0x7FF800-0x7FFFFE (2K)
dsPIC30F6014	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFE (4K)
dsPIC30F6014A	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFE (4K)
dsPIC30F6015	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFE (4K)

5.5 Code Memory Programming

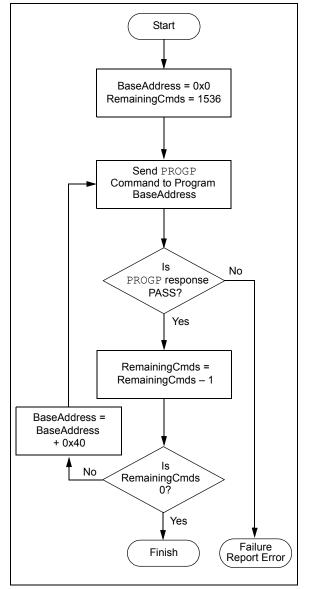
5.5.1 OVERVIEW

The Flash code memory array consists of 512 rows of thirty-two, 24-bit instructions. Each panel stores 16K instruction words, and each dsPIC30F device has either 1, 2 or 3 memory panels (see Table 5-2).

Device	Code Size (24-bit Words)	Number of Rows	Number of Panels
dsPIC30F2010	4K	128	1
dsPIC30F2011	4K	128	1
dsPIC30F2012	4K	128	1
dsPIC30F3010	8K	256	1
dsPIC30F3011	8K	256	1
dsPIC30F3012	8K	256	1
dsPIC30F3013	8K	256	1
dsPIC30F3014	8K	256	1
dsPIC30F4011	16K	512	1
dsPIC30F4012	16K	512	1
dsPIC30F4013	16K	512	1
dsPIC30F5011	22K	704	2
dsPIC30F5013	22K	704	2
dsPIC30F5015	22K	704	2
dsPIC30F5016	22K	704	2
dsPIC30F6010	48K	1536	3
dsPIC30F6010A	48K	1536	3
dsPIC30F6011	44K	1408	3
dsPIC30F6011A	44K	1408	3
dsPIC30F6012	48K	1536	3
dsPIC30F6012A	48K	1536	3
dsPIC30F6013	44K	1408	3
dsPIC30F6013A	44K	1408	3
dsPIC30F6014	48K	1536	3
dsPIC30F6014A	48K	1536	3
dsPIC30F6015	48K	1536	3

TABLE 5-2: DEVICE CODE MEMORY SIZE

5.5.2 PROGRAMMING METHODOLOGY


Code memory is programmed with the PROGP command. PROGP programs one row of code memory to the memory address specified in the command. The number of PROGP commands required to program a device depends on the number of rows that must be programmed in the device.

A flowchart for programming of code memory is illustrated in Figure 5-3. In this example, all 48K instruction words of a dsPIC30F6014A device are programmed. First, the number of commands to send (called 'RemainingCmds' in the flowchart) is set to 1536 and the destination address (called 'BaseAddress') is set to '0'. Next, one row in the device is programmed with a PROGP command. Each PROGP command contains data for one row of code memory of the dsPIC30F6014A. After the first command is processed successfully, 'RemainingCmds' is decremented by 1 and compared to 0. Since there are more PROGP commands to send, 'BaseAddress' is incremented by 0x40 to point to the next row of memory.

On the second PROGP command, the second row of each memory panel is programmed. This process is repeated until the entire device is programmed. No special handling must be performed when a panel boundary is crossed.

FLOWCHART FOR PROGRAMMING dsPIC30F6014A CODE MEMORY

TABLE 5-5:FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F4011/4012 AND
dsPIC30F5011/5013

Bit Field	Register	Description
FCKSM<1:0>	FOSC	Clock Switching Mode 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
FOS<1:0>	FOSC	Oscillator Source Selection on POR 11 = Primary Oscillator 10 = Internal Low-Power RC Oscillator 01 = Internal Fast RC Oscillator 00 = Low-Power 32 kHz Oscillator (Timer1 Oscillator)
FPR<3:0>	FOSC	 Primary Oscillator Mode 1111 = ECIO w/PLL 16X – External Clock mode with 16X PLL. OSC2 pin is I/O 1101 = ECIO w/PLL 8X – External Clock mode with 8X PLL. OSC2 pin is I/O 1011 = ECIO w/PLL 4X – External Clock mode with 4X PLL. OSC2 pin is I/O 100 = ECIO – External Clock mode. OSC2 pin is I/O 1011 = EC – External Clock mode. OSC2 pin is system clock output (Fosc/4) 1010 = FRC w/PLL 8x – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O 1001 = ERC – External RC Oscillator mode. OSC2 pin is system clock output (Fosc/4) 1000 = ERCIO – External RC Oscillator mode. OSC2 pin is system clock output (Fosc/4) 1000 = ERCIO – External RC Oscillator mode. OSC2 pin is I/O 0111 = XT w/PLL 16X – XT Crystal Oscillator mode with 16X PLL 0101 = XT w/PLL 4X – XT Crystal Oscillator mode with 4X PLL 0101 = XT w/PLL 4X – T Crystal Oscillator mode with 4X PLL 0101 = T K w/PLL 16x – Internal fast RC oscillator with 16x PLL 0111 = ST w/PLL 4X – XT Crystal Oscillator mode with 4X PLL 0101 = KT w/PLL 16x – Internal fast RC oscillator with 16x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 16x – Internal fast RC oscillator with 16x PLL. OSC2 pin is I/O 0010 = HS – HS Crystal Oscillator mode (10 MHz-25 MHz crystal) 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O

TABLE 5-7:	BLE 5-7: CONFIGURATION BITS DESCRIPTION				
Bit Field	Register	Description			
FWPSA<1:0>		Watchdog Timer Prescaler A 11 = 1:512 10 = 1:64 01 = 1:8 00 = 1:1			
FWPSB<3:0>	FWDT	Watchdog Timer Prescaler B 1111 = 1:16 1110 = 1:15 0001 = 1:2 0000 = 1:1			
FWDTEN	FWDT	 Watchdog Enable 1 = Watchdog enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect) 0 = Watchdog disabled (LPRC oscillator can be disabled by clearing the SWDTEN bit in the RCON register) 			
MCLREN	FBORPOR	Master Clear Enable1 = Master Clear pin (MCLR) is enabled0 = MCLR pin is disabled			
PWMPIN	FBORPOR	Motor Control PWM Module Pin Mode 1 = PWM module pins controlled by PORT register at device Reset (tri-stated) 0 = PWM module pins controlled by PWM module at device Reset (configured as out- put pins)			
HPOL	FBORPOR	Motor Control PWM Module High-Side Polarity 1 = PWM module high-side output pins have active-high output polarity 0 = PWM module high-side output pins have active-low output polarity			
LPOL	FBORPOR	Motor Control PWM Module Low-Side Polarity 1 = PWM module low-side output pins have active-high output polarity 0 = PWM module low-side output pins have active-low output polarity			
BOREN	FBORPOR	PBOR Enable 1 = PBOR enabled 0 = PBOR disabled			
BORV<1:0>	FBORPOR	Brown-out Voltage Select 11 = 2.0V (not a valid operating selection) 10 = 2.7V 01 = 4.2V 00 = 4.5V			
FPWRT<1:0>	FBORPOR	Power-on Reset Timer Value Select 11 = PWRT = 64 ms 10 = PWRT = 16 ms 01 = PWRT = 4 ms 00 = Power-up Timer disabled			
RBS<1:0>	FBS	Boot Segment Data RAM Code Protection (only present in dsPIC30F5011/5013/ 6010A/6011A/6012A/6013A/6014A/6015) 11 = No Data RAM is reserved for Boot Segment 10 = Small-sized Boot RAM [128 bytes of RAM are reserved for Boot Segment] 01 = Medium-sized Boot RAM [256 bytes of RAM are reserved for Boot Segment] 00 = Large-sized Boot RAM [512 bytes of RAM are reserved for Boot Segment in dsPIC30F5011/5013, and 1024 bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015]			

TABLE 5-7: CONFIGURATION BITS DESCRIPTION

Bit Field	Register	Description
EBS	FBS	Boot Segment Data EEPROM Code Protection (only present in dsPIC30F5011/ 5013/6010A/6011A/6012A/6013A/6014A/6015) 1 = No Data EEPROM is reserved for Boot Segment 0 = 128 bytes of Data EEPROM are reserved for Boot Segment in dsPIC30F5011/ 5013, and 256 bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015
BSS<2:0>	FBS	Boot Segment Program Memory Code Protection (only present in dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015) 111 = No Boot Segment 110 = Standard security; Small-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0003FF] 101 = Standard security; Medium-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0007FF] 100 = Standard security; Large-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0007FF] 100 = Standard security; Large-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x001FF] 011 = No Boot Segment 010 = High security; Small-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0003FF] 011 = High security; Medium-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0003FF] 001 = High security; Medium-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0007FF] 001 = High security; Large-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0007FF] 000 = High security; Large-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0007FF] 000 = High security; Large-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0007FF]
BWRP	FBS	Boot Segment Program Memory Write Protection (only present in dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015) 1 = Boot Segment program memory is not write-protected 0 = Boot Segment program memory is write-protected
RSS<1:0>	FSS	Secure Segment Data RAM Code Protection (only present in dsPIC30F5011/ 5013/6010A/6011A/6012A/6013A/6014A/6015) 11 = No Data RAM is reserved for Secure Segment 10 = Small-sized Secure RAM [(256 - N) bytes of RAM are reserved for Secure Segment] 01 = Medium-sized Secure RAM [(768 - N) bytes of RAM are reserved for Secure Segment in dsPIC30F5011/ 5013, and (2048 - N) bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/ 6015] 00 = Large-sized Secure RAM [(1024 - N) bytes of RAM are reserved for Secure Segment in dsPIC30F5011/ 5013, and (4096 - N) bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/ 6015] where N = Number of bytes of RAM reserved for Boot Sector.
ESS<1:0>	FSS	 Secure Segment Data EEPROM Code Protection (only present in dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015) 11 = No Data EEPROM is reserved for Secure Segment 10 = Small-sized Secure Data EEPROM [(128 – N) bytes of Data EEPROM are reserved for Secure Segment in dsPIC30F5011/5013, and (256 – N) bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015] 01 = Medium-sized Secure Data EEPROM [(256 – N) bytes of Data EEPROM are reserved for Secure Segment in dsPIC30F5011/5013, and (512 – N) bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015] 01 = Large-sized Secure Data EEPROM [(512 – N) bytes of Data EEPROM [(512 – N) bytes of Data EEPROM are reserved for Secure Segment in dsPIC30F5011/5013, (1024 – N) bytes in dsPIC30F6011A/6013A, and (2048 – N) bytes in dsPIC30F6010A/6012A/6014A/6015]

TABLE 5-7: CONFIGURATION BITS DESCRIPTION (CONTINUED)

6.6 Configuration Information in the Hexadecimal File

To allow portability of code, the programmer must read the Configuration register locations from the hexadecimal file. If configuration information is not present in the hexadecimal file, a simple warning message should be issued by the programmer. Similarly, while saving a hexadecimal file, all configuration information must be included. An option to not include the configuration information can be provided.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

6.7 Unit ID

The dsPIC30F devices contain 32 instructions of Unit ID. These are located at addresses 0x8005C0 through 0x8005FF. The Unit ID can be used for storing product information such as serial numbers, system manufacturing dates, manufacturing lot numbers and other such application-specific information.

A Bulk Erase does not erase the Unit ID locations. Instead, erase all executive memory using steps 1-4 as shown in Table 12-1, and program the Unit ID along with the programming executive. Alternately, use a Row Erase to erase the row containing the Unit ID locations.

6.8 Checksum Computation

Checksums for the dsPIC30F are 16 bits in size. The checksum is to total sum of the following:

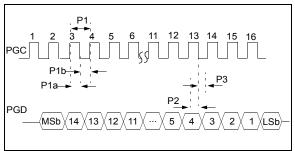
- · Contents of code memory locations
- · Contents of Configuration registers

Table A-1 describes how to calculate the checksum for each device. All memory locations are summed one byte at a time, using only their native data size. More specifically, Configuration and device ID registers are summed by adding the lower two bytes of these locations (the upper byte is ignored), while code memory is summed by adding all three bytes of code memory.

Note: The checksum calculation differs depending on the code-protect setting. Table A-1 describes how to compute the checksum for an unprotected device and a read-protected device. Regardless of the code-protect setting, the Configuration registers can always be read.

7.0 PROGRAMMER – PROGRAMMING EXECUTIVE COMMUNICATION

7.1 Communication Overview


The programmer and programming executive have a master-slave relationship, where the programmer is the master programming device and the programming executive is the slave.

All communication is initiated by the programmer in the form of a command. Only one command at a time can be sent to the programming executive. In turn, the programming executive only sends one response to the programmer after receiving and processing a command. The programming executive command set is described in Section 8.0 "Programming Executive Commands". The response set is described in Section 9.0 "Programming Executive Responses".

7.2 Communication Interface and Protocol

The Enhanced ICSP interface is a 2-wire SPI interface implemented using the PGC and PGD pins. The PGC pin is used as a clock input pin, and the clock source must be provided by the programmer. The PGD pin is used for sending command data to, and receiving response data from, the programming executive. All serial data is transmitted on the falling edge of PGC and latched on the rising edge of PGC. All data transmissions are sent Most Significant bit (MSb) first, using 16-bit mode (see Figure 7-1).

FIGURE 7-1: PROGRAMMING EXECUTIVE SERIAL TIMING

Since a 2-wire SPI interface is used, and data transmissions are bidirectional, a simple protocol is used to control the direction of PGD. When the programmer completes a command transmission, it releases the PGD line and allows the programming executive to drive this line high. The programming executive keeps the PGD line high to indicate that it is processing the command.

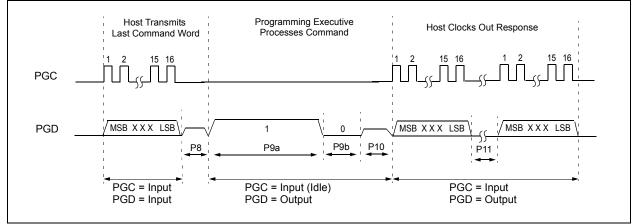
After the programming executive has processed the command, it brings PGD low for 15 μ sec to indicate to the programmer that the response is available to be

clocked out. The programmer can begin to clock out the response 20 μ sec after PGD is brought low, and it must provide the necessary amount of clock pulses to receive the entire response from the programming executive.

Once the entire response is clocked out, the programmer should terminate the clock on PGC until it is time to send another command to the programming executive. This protocol is illustrated in Figure 7-2.

7.3 SPI Rate

In Enhanced ICSP mode, the dsPIC30F operates from the fast internal RC oscillator, which has a nominal frequency of 7.37 MHz. This oscillator frequency yields an effective system clock frequency of 1.84 MHz. Since the SPI module operates in Slave mode, the programmer must limit the SPI clock rate to a frequency no greater than 1 MHz.


Note:	If the programmer provides the SPI with a clock faster than 1 MHz, the behavior of					
	the programming executive will be unpredictable.					

7.4 Time Outs

The programming executive uses no Watchdog Timer or time out for transmitting responses to the programmer. If the programmer does not follow the flow control mechanism using PGC, as described in Section 7.2 "Communication Interface and Protocol", it is possible that the programming executive will behave unexpectedly while trying to send a response to the programmer. Since the programming executive has no time out, it is imperative that the programmer correctly follow the described communication protocol.

As a safety measure, the programmer should use the command time outs identified in Table 8-1. If the command time out expires, the programmer should reset the programming executive and start programming the device again.

FIGURE 7-2: PROGRAMMING EXECUTIVE – PROGRAMMER COMMUNICATION PROTOCOL

Opcode	Mnemonic	Length (16-bit words)	Time Out	Description		
0x0	SCHECK	1	1 ms	Sanity check.		
0x1	READD	4	1 ms/row	Read N 16-bit words of data EEPROM, Configuration registers or device ID starting from specified address.		
0x2	READP	4	1 ms/row	Read N 24-bit instruction words of code memory starting from specified address.		
0x3	Reserved	N/A	N/A	This command is reserved. It will return a NACK.		
0x4	PROGD ⁽²⁾	19	5 ms	Program one row of data EEPROM at the specified address, th verify.		
0x5	PROGP(1)	51	5 ms	Program one row of code memory at the specified address, then verify.		
0x6	PROGC	4	5 ms	Write byte or 16-bit word to specified Configuration register.		
0x7	ERASEB	2	5 ms	Bulk Erase (entire code memory or data EEPROM), or erase by segment.		
0x8	ERASED ⁽²⁾	3	5 ms/row	Erase rows of data EEPROM from specified address.		
0x9	ERASEP(1)	3	5 ms/row	Erase rows of code memory from specified address.		
0xA	QBLANK	3	300 ms	Query if the code memory and data EEPROM are blank.		
0xB	QVER	1	1 ms	Query the programming executive software version.		

TABLE 8-1: PROGRAMMING EXECUTIVE COMMAND SET

Note 1: One row of code memory consists of (32) 24-bit words. Refer to Table 5-2 for device-specific information.
2: One row of data EEPROM consists of (16) 16-bit words. Refer to Table 5-3 for device-specific information.

8.5 Command Descriptions

All commands that are supported by the programming executive are described in Section 8.5.1 "SCHECK Command" through Section 8.5.11 "QVER Command".

8.5.1 SCHECK COMMAND

15	12	11 0)
	Opcode	Length	

Field	Description
Opcode	0x0
Length	0x1

The SCHECK command instructs the programming executive to do nothing, but generate a response. This command is used as a "sanity check" to verify that the programming executive is operational.

Expected Response (2 words):

0x1000 0x0002

Note: This instruction is not required for programming, but is provided for development purposes only.

8.5.2 READD COMMAND

15	12	11	8	7	0
Орс	ode			Length	
Reser	ved0			Ν	
	Reser	ved1		Addr_MSB	
			Addr_	LS	

Field	Description
Opcode	0x1
Length	0x4
Reserved0	0x0
N	Number of 16-bit words to read (max of 2048)
Reserved1	0x0
Addr_MSB	MSB of 24-bit source address
Addr_LS	LS 16 bits of 24-bit source address

The READD command instructs the programming executive to read N 16-bit words of memory starting from the 24-bit address specified by Addr_MSB and Addr_LS. This command can only be used to read 16-bit data. It can be used to read data EEPROM, Configuration registers and the device ID.

Expected Response (2+N words):

0x1100 N + 2 Data word 1

Data word N

Note: Reading unimplemented memory will cause the programming executive to reset.

dsPIC30F Flash Programming Specification

8.5.3 READP COMMAND

15	12	11	8	7	0	
Opcode Length						
Ν						
	Addr_MSB					
Addr_LS						

Field	Description
Opcode	0x2
Length	0x4
Ν	Number of 24-bit instructions to read (max of 32768)
Reserved	0x0
Addr_MSB	MSB of 24-bit source address
Addr_LS	LS 16 bits of 24-bit source address

The READP command instructs the programming executive to read N 24-bit words of code memory starting from the 24-bit address specified by Addr_MSB and Addr_LS. This command can only be used to read 24-bit data. All data returned in response to this command uses the packed data format described in Section 8.3 "Packed Data Format".

Expected Response (2 + 3 * N/2 words for N even): 0x1200

2 + 3 * N/2 Least significant program memory word 1

Least significant data word N

Expected Response (4 + 3 * (N - 1)/2 words for N odd):

0x12004 + 3 * (N - 1)/2 Least significant program memory word 1

MSB of program memory word N (zero padded)

Note: Reading unimplemented memory will cause the programming executive to reset.

8.5.4 PROGD COMMAND

15	12	11 8 7 0				
Opcode Length						
	Rese	rved			Addr_MSB	
			Addr_	LS		
D_1						
D_2						
D_16						

Field	Description
Opcode	0x4
Length	0x13
Reserved	0x0
Addr_MSB	MSB of 24-bit destination address
Addr_LS	LS 16 bits of 24-bit destination address
D_1	16-bit data word 1
D_2	16-bit data word 2
	16-bit data words 3 through 15
D_16	16-bit data word 16

The PROGD command instructs the programming executive to program one row of data EEPROM. The data to be programmed is specified by the 16 data words (D_1, D_2,..., D_16) and is programmed to the destination address specified by Addr_MSB and Addr_LSB. The destination address should be a multiple of 0x20.

Once the row of data EEPROM has been programmed, the programming executive verifies the programmed data against the data in the command.

Expected Response (2 words):

0x1400 0x0002

Note: Refer to Table 5-3 for data EEPROM size information.

9.2.3 QE_Code FIELD

The QE_Code is a byte in the first word of the response. This byte is used to return data for query commands, and error codes for all other commands.

When the programming executive processes one of the two query commands (QBLANK or QVER), the returned opcode is always PASS and the QE_Code holds the query response data. The format of the QE_Code for both queries is shown in Table 9-3.

TABLE 9-3: QE_Code FOR QUERIES

Query	QE_Code
QBLANK	0x0F = Code memory and data EEPROM are NOT blank 0xF0 = Code memory and data EEPROM are blank
QVER	0xMN, where programming executive software version = M.N (i.e., 0x32 means software version 3.2)

When the programming executive processes any command other than a Query, the QE_Code represents an error code. Supported error codes are shown in Table 9-4. If a command is successfully processed, the returned QE_Code is set to 0x0, which indicates that there was no error in the command processing. If the verify of the programming for the PROGD, PROGP or PROGC command fails, the QE_Code is set to 0x1. For all other programming executive errors, the QE_Code is 0x2.

TABLE 9-4: QE_Code FOR NON-QUERY COMMANDS

QE_Code	Description
0x0	No error
0x1	Verify failed
0x2	Other error

9.2.4 RESPONSE LENGTH

The response length indicates the length of the programming executive's response in 16-bit words. This field includes the 2 words of the response header.

With the exception of the response for the READD and READP commands, the length of each response is only 2 words.

The response to the READD command is N + 2 words, where N is the number of words specified in the READD command.

The response to the READP command uses the packed instruction word format described in **Section 8.3 "Packed Data Format"**. When reading an odd number of program memory words (N odd), the response to the READP command is $(3 \cdot (N + 1)/2 + 2)$ words. When reading an even number of program memory words (N even), the response to the READP command is $(3 \cdot N/2 + 2)$ words.

10.0 DEVICE ID

The device ID region is 2×16 bits and can be read using the READD command. This region of memory is read-only and can also be read when code protection is enabled.

Table 10-1shows the device ID for each device,Table 10-2shows the device ID registers and Table 10-33describes the bit field of each register.

Device		Silicon Revision								
Device	DEVID	A0	A1	A2	A3	A4	В0	B1	B2	
dsPIC30F2010	0x0040	0x1000	0x1001	0x1002	0x1003	0x1004	_	_	_	
dsPIC30F2011	0x0240	_	0x1001				_	_	_	
dsPIC30F2012	0x0241	_	0x1001	_	_	_	_	_	—	
dsPIC30F3010	0x01C0	0x1000	0x1001	0x1002	—	—	_	—	—	
dsPIC30F3011	0x01C1	0x1000	0x1001	0x1002	_	_	_	_	—	
dsPIC30F3012	0x00C1	_	_	_	_	_	0x1040	0x1041	—	
dsPIC30F3013	0x00C3	_	_	_	_		0x1040	0x1041	_	
dsPIC30F3014	0x0160	—	0x1001	0x1002	_		—	—	—	
dsPIC30F4011	0x0101	—	0x1001	0x1002	0x1003	0x1003	—	—	—	
dsPIC30F4012	0x0100		0x1001	0x1002	0x1003	0x1003		_	_	
dsPIC30F4013	0x0141	_	0x1001	0x1002		_	_	_	_	
dsPIC30F5011	0x0080	_	0x1001	0x1002	0x1003	0x1003	_	—	—	
dsPIC30F5013	0x0081	_	0x1001	0x1002	0x1003	0x1003	_	_	_	
dsPIC30F5015	0x0200	0x1000	_	_	_		_	—	—	
dsPIC30F5016	0x0201	0x1000	_	_	_		_	—	—	
dsPIC30F6010	0x0188	—	_	—	—	—	_	0x1040	0x1042	
dsPIC30F6010A	0x0281	_	_	0x1002	0x1003	0x1004	_	_	—	
dsPIC30F6011	0x0192	—	—	—	0x1003	—	—	0x1040	0x1042	
dsPIC30F6011A	0x02C0	—	_	0x1002	—	—	0x1040	0x1041	—	
dsPIC30F6012	0x0193	_	_	_	0x1003	_	_	0x1040	0x1042	
dsPIC30F6012A	0x02C2	—	—	0x1002	—	—	0x1040	0x1041	—	
dsPIC30F6013	0x0197	_	_	_	0x1003	_	_	0x1040	0x1042	
dsPIC30F6013A	0x02C1			0x1002			0x1040	0x1041	_	
dsPIC30F6014	0x0198				0x1003			0x1040	0x1042	
dsPIC30F6014A	0x02C3	_	_	0x1002		_	0x1040	0x1041	—	
dsPIC30F6015	0x0280	_		0x1002	0x1003	0x1004	_	—	—	

TABLE 10-1	DEVICE IDS
IADLE 10-1	

TABLE 10-2: dsPIC30F DEVICE ID REGISTERS

Address	Nama								В	it							
Address	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0xFF0000	DEVID		DEVID<15:0>														
0xFF0002	DEVREV	PROC<3:0> REV<5:0> DOT<5:0>															

Bit Field	Register	Description
DEVID<15:0>	DEVID	Encodes the device ID.
PROC<3:0>	DEVREV	Encodes the process of the device (always read as 0x001).
REV<5:0>	DEVREV	Encodes the major revision number of the device. 000000 = A 000001 = B 000010 = C
DOT<5:0>	DEVREV	Encodes the minor revision number of the device. 000000 = 0 000001 = 1 000010 = 2 000011 = 3
Examples:		
Rev A.1 = 0000 000	0 0000 0001	
Rev A.2 = 0000 000	0 0000 0010	
Rev B.0 = 0000 000	0 0100 0000	
This formula applies to	o all dsPIC30F device	es, with the exception of the following:
 dsPIC30F6010 dsPIC30F6011 dsPIC30F6012 dsPIC30F6013 dsPIC30F6014 		-
Refer to Table 10-1 fo	r the actual revision II	٦

TABLE 10-3: DEVICE ID BITS DESCRIPTION

11.11 Reading Configuration Memory

The procedure for reading configuration memory is similar to the procedure for reading code memory, except that 16-bit data words are read instead of 24-bit words. Since there are seven Configuration registers, they are read one register at a time. Table 11-11 shows the ICSP programming details for reading all of the configuration memory. Note that the TBLPAG register is hard-coded to 0xF8 (the upper byte address of configuration memory), and the read pointer W6 is initialized to 0x0000.

TABLE 11-11: SERIAL INSTRUCTION EXECUTION FOR READING ALL CONFIGURATION MEMORY

Step 1: Exit the Reset vector. 0000 040100 GOTO 0x100 0000 040100 GOTO 0x100 0000 000000 NOP Step 2: Initialize TBLPAG, and the read pointer (W6) and the write pointer (W7) for TBLRD instruction. 0000 200F80 MOV #0xF8, W0 0000 880190 MOV W0, TBLPAG 0000 EB0380 CLR W6 0000 EB0380 CLR W7 0000 000000 NOP Step 3: Read the Configuration register and write it to the VISI register (located at 0x784). 0000 000000 NOP NOP Step 3: Read the Configuration register and write it to the VISI register (located at 0x784). 0000 0000 000000 NOP 0000 000000 NOP 0000 000000 NOP Step 4: Output the VISI register using the REGOUT command. 0001 0001 Clock out contents of VISI register 0000 000000 NOP 0000 000000 OOT 0x100	Command (Binary)	Data (Hexadecimal)	Description					
0000 040100 GOTO 0x100 0000 NOP Step 2: Initialize TBLPAG, and the read pointer (W6) and the write pointer (W7) for TBLRD instruction. 0000 200F80 MOV #0xF8, W0 0000 880190 MOV w0, TBLPAG 0000 EB0300 CLR W6 0000 EB0380 CLR W7 0000 000000 NOP Step 3: Read the Configuration register and write it to the VISI register (located at 0x784). 0000 00000 NOP Step 3: Read the Configuration register and write it to the VISI register (located at 0x784). 0000 00000 NOP Step 4: Output the VISI register using the REGOUT command. Olock out contents of VISI register 0001 Clock out contents of VISI register Olock out contents of VISI register 00000	Step 1: Exit the Reset vector.							
0000 00000 NOP Step 2: Initialize TBLPAG, and the read pointer (W6) and the write pointer (W7) for TBLRD instruction. 0000 200F80 MOV #0xF8, W0 0000 880190 MOV W0, TBLPAG 0000 EB0300 CLR W6 0000 EB0380 CLR W7 0000 00000 NOP NOP Step 3: Read the Configuration register and write it to the VISI register (located at 0x784). 0000 00000 NOP 0000 000000 NOP 00000 NOP Clock out contents of VIS	0000	040100	GOTO 0x100					
Step 2: Initialize TBLPAG, and the read pointer (W6) and the write pointer (W7) for TBLRD instruction. 0000 200F80 MOV #0xF8, W0 0000 880190 MOV W0, TBLPAG 0000 EB0300 CLR W6 0000 EB0380 CLR W7 0000 00000 NOP Step 3: Read the Configuration register and write it to the VISI register (located at 0x784). 0000 00000 NOP NOP 0000 00000 NOP Step 4: Output the VISI register using the REGOUT command. 0001								
0000 200F80 MOV #0xF8, W0 0000 880190 MOV W0, TBLPAG 0000 EB0300 CLR W6 0000 EB0380 CLR W7 0000 000000 NOP NOP Step 3: Read the Configuration register and write it to the VISI register (located at 0x784). 0000 BA0B86 TBLRDL [W6++], [W7] 0000 000000 NOP Step 4: Output the VISI register using the REGOUT command. Olock out contents of VISI register 0000 000000 NOP Step 5: Reset device internal PC. O0000 0000 040100 GOTO 0x100								
0000 880190 MOV W0, TBLPAG 0000 EB0300 CLR W6 0000 EB0380 CLR W7 0000 000000 NOP NOP Step 3: Read the Configuration register and write it to the VISI register (located at 0x784). 0000 BA0BB6 TBLRDL [W6++], [W7] 0000 000000 NOP Step 4: Output the VISI register using the REGOUT command. Clock out contents of VISI register 0001 <visi> Clock out contents of VISI register 0000 000000 NOP Step 5: Reset device internal PC. 00000 0000 040100 GOTO 0x100</visi>	Step 2: Initializ	ze TBLPAG, and	the read pointer (W6) and the write pointer (W7) for TBLRD instruction.					
0000 EB0300 CLR W6 0000 EB0380 CLR W7 0000 00000 NOP Step 3: Read the Configuration register and write it to the VISI register (located at 0x784). 0000 BA0BB6 TBLRDL [W6++], [W7] 0000 000000 NOP 0001 000000 NOP 0001 <visi> OO0000 Clock out contents of VISI register 0000 000000 NOP Step 5: Reset device internal PC. 0000 0000 040100 GOTO 0x100</visi>	0000	200F80	MOV #0xF8, WO					
0000 0000 EB0380 00000 CLR NOP W7 NOP Step 3: Read Configuration register and write it to the VISI register (located at 0x784). 0000 BA0BB6 TBLRDL [W6++], [W7] 0000 000000 NOP 0000 00000 NOP Step 4: Output te VISI register using the REGOUT command. Clock out contents of VISI register NOP Step 5: Reset Evice internal EV 0000 040100 GOTO 0x100	0000	880190	MOV W0, TBLPAG					
0000 00000 NOP Step 3: Read UCCONFIGURATION register and write it to the VISI register (located at 0x784). 0000 BA0BB6 TBLRDL [W6++], [W7] 0000 000000 NOP 0001 00000 NOP 0001 Clock out contents of VISI register 0000 00000 NOP Step 5: Reset Uniterimaterimaterimaterimation Step 5: Output (Differentimaterim	0000	EB0300	CLR W6					
Step 3: Read UP Configuration register and write it to the VISI register (located at 0x784). 0000 BA0BB6 TBLRDL [W6++], [W7] 0000 000000 NOP 0000 000000 NOP 0000 883C20 MOV W0, VISI 0000 000000 NOP 0000 000000 NOP 0000 000000 NOP 0001 00000 NOP 0001 Clock out contents of VISI register 0000 00000 NOP Step 5: Reset device internal PC. 00000 0000 040100 GOTO 0x100	0000	EB0380	CLR W7					
0000 BA0BB6 TBLRDL [W6++], [W7] 0000 000000 NOP 0000 000000 NOP 0000 883C20 MOV W0, VISI 0000 000000 NOP Step 4: Output the VISI register using the REGOUT command. 0001 0001 <visi> Clock out contents of VISI register 0000 000000 NOP Step 5: Reset device internal PC. 0000 040100 GOTO 0x100</visi>	0000	000000	NOP					
0000 00000 NOP 0000 00000 NOP 0000 883C20 MOV W0, VISI 0000 000000 NOP Step 4: Output the VISI register using the REGOUT command. 0001 <visi> Clock out contents of VISI register 0000 000000 NOP</visi>	Step 3: Read	the Configuration	register and write it to the VISI register (located at 0x784).					
0000 00000 NOP 0000 883C20 MOV W0, VISI 0000 000000 NOP Step 4: Output the VISI register using the REGOUT command. 0001 <visi> Clock out contents of VISI register 0000 000000 NOP Step 5: Reset device internal PC. 0000 040100 GOTO 0x100</visi>	0000	BA0BB6	TBLRDL [W6++], [W7]					
0000 883C20 MOV W0, VISI 0000 000000 NOP Step 4: Output the VISI register using the REGOUT command. 0001 <visi> Clock out contents of VISI register 0000 000000 NOP Step 5: Reset device internal PC. 0000 040100 GOTO 0x100</visi>	0000	000000	NOP					
0000 NOP Step 4: Output the VISI register using the REGOUT command. 0001 <visi> Clock out contents of VISI register 0000 000000 NOP Step 5: Reset device internal PC. GOTO 0x100</visi>	0000		NOP					
Step 4: Output the VISI register using the REGOUT command. 0001 <visi> Clock out contents of VISI register 0000 000000 NOP Step 5: Reset device internal PC. 0000 040100 GOTO 0x100</visi>			MOV W0, VISI					
0001 <visi> Clock out contents of VISI register 0000 000000 NOP Step 5: Reset device internal PC. 0000 0000 040100 GOTO 0x100</visi>	0000	000000	NOP					
0000 NOP Step 5: Reset device internal PC. O000 0000 040100 GOTO 0x100	Step 4: Output	t the VISI registe	r using the REGOUT command.					
Step 5: Reset device internal PC. 0000 040100 GOTO 0x100	0001	<visi></visi>	Clock out contents of VISI register					
0000 040100 GOTO 0x100	0000	000000	NOP					
	Step 5: Reset	device internal F	С.					
	0000	040100	GOTO 0x100					
0000 000000 NOP	0000	000000	NOP					
Step 6: Repeat steps 3-5 six times to read all of configuration memory.	Step 6: Repea	at steps 3-5 six tir	nes to read all of configuration memory.					

12.0 PROGRAMMING THE PROGRAMMING EXECUTIVE TO MEMORY

12.1 Overview

If it is determined that the programming executive does not reside in executive memory (as described in Section 4.0 "Confirming the Contents of Executive Memory"), it must be programmed into executive memory using ICSP and the techniques described in Section 11.0 "ICSP™ Mode". Storing the programming executive to executive memory is similar to normal programming of code memory. The executive memory must first be erased, and then the programming executive must be programmed 32 words at a time. This control flow is summarized in Table 12-1.

Command (Binary)	Data (Hexadecimal)	Description
Step 1: Exit th	e Reset vector and	erase executive memory.
0000	040100	GOTO 0x100
0000	040100	GOTO 0x100
0000	000000	NOP
Step 2: Initializ	ze the NVMCON to	erase executive memory.
0000	24072A	MOV #0x4072, W10
0000	883B0A	MOV W10, NVMCON
Step 3: Unloc	k the NVMCON for p	programming.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 4: Initiate	e the erase cycle.	
0000	A8E761	BSET NVMCON, #15
0000	000000	NOP
0000	000000	NOP
-	-	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and
		Timing Requirements")
0000	000000	NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #15
0000	000000	NOP NOP
•		the write pointer (W7).
0000	200800	MOV #0x80, WO
0000	880190	MOV W0, TBLPAG CLR W7
0000	EB0380 000000	CLR W7 NOP
0000	000000	NOP
		program 32 instruction words.
0000	24001A	MOV #0x4001, W10
0000	883B0A	MOV W10, NVMCON
Step 7: Load progra	W0:W5 with the nex	t 4 words of packed programming executive code and initialize W6 for ng starts from the base of executive memory (0x800000) using W6 as a read
0000	2 <lsw0>0</lsw0>	MOV # <lswo>, WO</lswo>
0000	2 <msb1:msb0>1</msb1:msb0>	MOV # <msb1:msb0>, W1</msb1:msb0>
0000	2 <lsw1>2</lsw1>	MOV # <lsw1>, W2</lsw1>
0000	2 <lsw2>3</lsw2>	MOV # <lsw2>, W3</lsw2>
0000	2 <msb3:msb2>4</msb3:msb2>	MOV # <msb3:msb2>, W4</msb3:msb2>
0000	2 <lsw3>5</lsw3>	MOV # <lsw3>, W5</lsw3>

TABLE 12-1: PROGRAMMING THE PROGRAMMING EXECUTIVE

12.2 Programming Verification

After the programming executive has been programmed to executive memory using ICSP, it must be verified. Verification is performed by reading out the contents of executive memory and comparing it with the image of the programming executive stored in the programmer.

Reading the contents of executive memory can be performed using the same technique described in **Section 11.10 "Reading Code Memory"**. A procedure for reading executive memory is shown in Table 12-2. Note that in Step 2, the TBLPAG register is set to 0x80 such that executive memory may be read.

TABLE 12-2: REA	DING EXECUTIVE MEMORY
-----------------	-----------------------

Command (Binary)	Data (Hexadecimal)	Description		
Step 1: Exit th	e Reset vector.			
0000	040100	GOTO 0x100		
0000	040100	GOTO 0x100		
0000	000000	NOP		
Step 2: Initiali	ze TBLPAG and t	he read pointe	er (W6) for TBLRD instruction.	
0000	200800	MOV	#0x80, W0	
0000	880190	MOV	W0, TBLPAG	
0000	EB0300	CLR	W6	
Step 3: Initiali	ze the write point	er (W7), and s	store the next four locations of executive memory to W0:W5.	
0000	EB0380	CLR	W7	
0000	000000	NOP		
0000	BA1B96	TBLRDL	[W6], [W7++]	
0000	000000	NOP		
0000	000000	NOP		
0000	BADBB6	TBLRDH.B	[W6++], [W7++]	
0000	000000	NOP		
0000	000000	NOP		
0000	BADBD6	TBLRDH.B	[++W6], [W7++]	
0000	000000	NOP		
0000	000000	NOP		
0000	BA1BB6	TBLRDL	[W6++], [W7++]	
0000	000000	NOP		
0000	000000	NOP		
0000	BA1B96	TBLRDL	[W6], [W7++]	
0000	000000	NOP		
0000	000000	NOP		
0000	BADBB6	TBLRDH.B	[W6++], [W7++]	
0000	000000	NOP		
0000	000000	NOP		
0000	BADBD6	TBLRDH.B	[++W6], [W7++]	
0000	000000	NOP		
0000	000000	NOP		
0000	BA1BB6	TBLRDL	[W6++], [W7]	
0000	000000	NOP		
0000	000000	NOP		

Command (Binary)	Data (Hexadecimal)	Description
Step 4: Outpu	t W0:W5 using th	ne VISI register and REGOUT command.
0000	883C20	MOV W0, VISI
0000	000000	NOP
0001	-	Clock out contents of VISI register
0000	883C21	MOV W1, VISI
0000	000000	NOP
0001	-	Clock out contents of VISI register
0000	883C22	MOV W2, VISI
0000	000000	NOP
0001	-	Clock out contents of VISI register
0000	883C23	MOV W3, VISI
0000	000000	NOP
0001	-	Clock out contents of VISI register
0000	883C24	MOV W4, VISI
0000	000000	NOP
0001	-	Clock out contents of VISI register
0000	883C25	MOV W5, VISI
0000	000000	NOP
0001	-	Clock out contents of VISI register
Step 5: Reset	the device intern	al PC.
0000	040100	GOTO 0x100
0000	000000	NOP
Step 6: Repea	at Steps 3-5 until	all 736 instruction words of executive memory are read.

TABLE 12-2: READING EXECUTIVE MEMORY (CONTINUED)

AC/DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating Temperature: 25° C is recommended				
Param. No.	Sym	Characteristic	Min	Мах	Units	Conditions	
P9b	TDLY5	Delay between PGD ↓by programming executive to PGD released by programming executive	15	_	μs	—	
P10	TDLY6	Delay between PGD released by programming executive to first PGC ↑ of response	5	_	μs	_	
P11	TDLY7	Delay between clocking out response words	10	—	μs	-	
P12a	TPROG	Row Programming cycle time	1	4	ms	ICSP mode	
P12b	TPROG	Row Programming cycle time	0.8	2.6	ms	Enhanced ICSP mode	
P13a	Tera	Bulk/Row Erase cycle time	1	4	ms	ICSP mode	
P13b	Tera	Bulk/Row Erase cycle time	0.8	2.6	ms	Enhanced ICSP mode	

TABLE 13-1: AC/DC CHARACTERISTICS (CONTINUED)

Device	Read Code Protection	Checksum Computation	Erased Value	Value with 0xAAAAAA at 0x0 and Last Code Address	
dsPIC30F5016	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6010	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6010A	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6011	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6011A	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6012	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6012A	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6013	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6013A	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6014	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6014A	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6015	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208	
	Enabled	CFGB	0x0404	0x0404	

TABLE A-1: CHECKSUM COMPUTATION (CONTINUED)

Item Description:

SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory)

CFGB = Configuration Block (masked) = Byte sum of ((FOSC&0xC10F) + (FWDT&0x803F) + (FBORPOR&0x87B3) + (FBS&0x310F) + (FSS&0x330F) + (FGS&0x0007) + (FICD&0xC003))

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address:

www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

08/04/10