

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	30
Program Memory Size	24KB (8K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f3014t-20e-ml

Email: info@E-XFL.COM

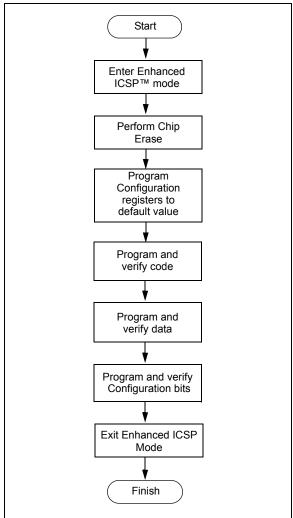
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.0 DEVICE PROGRAMMING

5.1 Overview of the Programming Process

Once the programming executive has been verified in memory (or loaded if not present), the dsPIC30F can be programmed using the command set shown in Table 5-1. A detailed description for each command is provided in Section 8.0 "Programming Executive Commands".

TABLE 5-1: COMMAND SET SUMMARY


Command	Description
SCHECK	Sanity check
READD	Read data EEPROM, Configuration registers and device ID
READP	Read code memory
PROGD	Program one row of data EEPROM and verify
PROGP	Program one row of code memory and verify
PROGC	Program Configuration bits and verify
ERASEB	Bulk Erase, or erase by segment
ERASED	Erase data EEPROM
ERASEP	Erase code memory
QBLANK	Query if the code memory and data EEPROM are blank
QVER	Query the software version

A high-level overview of the programming process is illustrated in Figure 5-1. The process begins by entering Enhanced ICSP mode. The chip is then bulk erased, which clears all memory to '1' and allows the device to be programmed. The Chip Erase is verified before programming begins. Next, the code memory, data Flash and Configuration bits are programmed. As these memories are programmed, they are each verified to ensure that programming was successful. If no errors are detected, the programming is complete and Enhanced ICSP mode is exited. If any of the verifications fail, the procedure should be repeated, starting from the Chip Erase.

If Advanced Security features are enabled, then individual Segment Erase operations need to be performed, based on user selections (i.e., based on the specific needs of the user application). The specific operations that are used typically depend on the order in which various segments need to be programmed for a given application or system.

Section 5.2 "Entering Enhanced ICSP Mode" through Section 5.8 "Exiting Enhanced ICSP Mode" describe the programming process in detail.

FIGURE 5-1: PROGRAMMING FLOW

5.5 Code Memory Programming

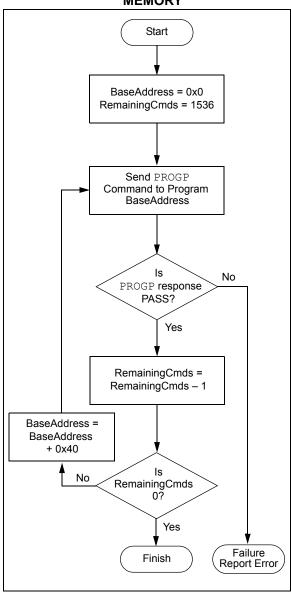
5.5.1 OVERVIEW

The Flash code memory array consists of 512 rows of thirty-two, 24-bit instructions. Each panel stores 16K instruction words, and each dsPIC30F device has either 1, 2 or 3 memory panels (see Table 5-2).

TABLE 5-2: DEVICE CODE MEMORY SIZE

Device	Code Size (24-bit Words)	Number of Rows	Number of Panels
dsPIC30F2010	4K	128	1
dsPIC30F2011	4K	128	1
dsPIC30F2012	4K	128	1
dsPIC30F3010	8K	256	1
dsPIC30F3011	8K	256	1
dsPIC30F3012	8K	256	1
dsPIC30F3013	8K	256	1
dsPIC30F3014	8K	256	1
dsPIC30F4011	16K	512	1
dsPIC30F4012	16K	512	1
dsPIC30F4013	16K	512	1
dsPIC30F5011	22K	704	2
dsPIC30F5013	30F5013 22K		2
dsPIC30F5015	22K	704	2
dsPIC30F5016	22K	704	2
dsPIC30F6010	48K	1536	3
dsPIC30F6010A	48K	1536	3
dsPIC30F6011	44K	1408	3
dsPIC30F6011A	44K	1408	3
dsPIC30F6012	48K	1536	3
dsPIC30F6012A	48K	1536	3
dsPIC30F6013	44K	1408	3
dsPIC30F6013A	44K	1408	3
dsPIC30F6014	48K	1536	3
dsPIC30F6014A	48K	1536	3
dsPIC30F6015	48K	1536	3

5.5.2 PROGRAMMING METHODOLOGY


Code memory is programmed with the PROGP command. PROGP programs one row of code memory to the memory address specified in the command. The number of PROGP commands required to program a device depends on the number of rows that must be programmed in the device.

A flowchart for programming of code memory is illustrated in Figure 5-3. In this example, all 48K instruction words of a dsPIC30F6014A device are programmed. First, the number of commands to send (called 'RemainingCmds' in the flowchart) is set to 1536 and the destination address (called 'BaseAddress') is set to '0'.

Next, one row in the device is programmed with a PROGP command. Each PROGP command contains data for one row of code memory of the dsPIC30F6014A. After the first command is processed successfully, 'RemainingCmds' is decremented by 1 and compared to 0. Since there are more PROGP commands to send, 'BaseAddress' is incremented by 0x40 to point to the next row of memory.

On the second PROGP command, the second row of each memory panel is programmed. This process is repeated until the entire device is programmed. No special handling must be performed when a panel boundary is crossed.

FIGURE 5-3: FLOWCHART FOR PROGRAMMING dsPIC30F6014A CODE MEMORY

5.6.3 PROGRAMMING VERIFICATION

Once the data EEPROM is programmed, the contents of memory can be verified to ensure that the programming was successful. Verification requires the data EEPROM to be read back and compared against the copy held in the programmer's buffer. The READD command reads back the programmed data EEPROM.

Alternatively, the programmer can perform the verification once the entire device is programmed using a checksum computation, as described in **Section 6.8** "Checksum Computation".

Note: TBLRDL instructions executed within a REPEAT loop must not be used to read from Data EEPROM. Instead, it is recommended to use PSV access.

5.7 Configuration Bits Programming

5.7.1 OVERVIEW

The dsPIC30F has Configuration bits stored in seven 16-bit registers. These bits can be set or cleared to select various device configurations. There are two types of Configuration bits: system-operation bits and code-protect bits. The system-operation bits determine the power-on settings for system-level components such as the oscillator and Watchdog Timer. The codeprotect bits prevent program memory from being read and written.

The FOSC Configuration register has three different register descriptions, based on the device. The FOSC Configuration register description for the dsPIC30F2010 and dsPIC30F6010/6011/6012/6013/6014 devices are shown in Table 5-4.

Note: If user software performs an erase operation on the configuration fuse, it must be followed by a write operation to this fuse with the desired value, even if the desired value is the same as the state of the erased fuse.

The FOSC Configuration register description for the dsPIC30F4011/4012 and dsPIC30F5011/5013 devices is shown in Table 5-5.

The FOSC Configuration register description for all remaining devices (dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013, dsPIC30F3014/4013, dsPIC30F5015 and dsPIC30F6011A/6012A/6013A/6014A) is shown in Table 5-6. Always use the correct register descriptions for your target processor.

The FWDT, FBORPOR, FBS, FSS, FGS and FICD Configuration registers are not device-dependent. The register descriptions for these Configuration registers are shown in Table 5-7.

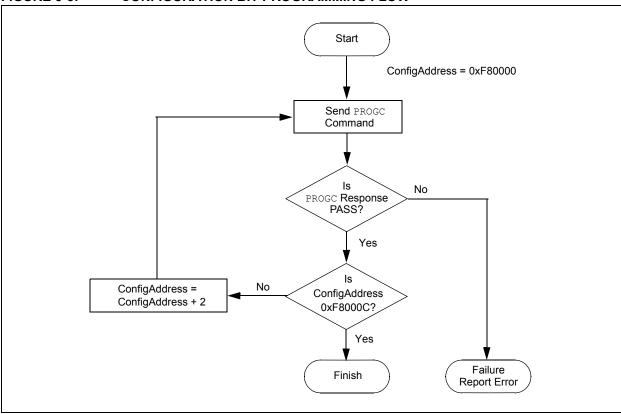
The Device Configuration register maps are shown in Table 5-8 through Table 5-11.

TABLE 5-4: FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F2010 AND dsPIC30F6010/6011/6012/6013/6014

Bit Field	Register	Description
FCKSM<1:0>	FOSC	Clock Switching Mode 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
FOS<1:0>	FOSC	Oscillator Source Selection on POR 11 = Primary Oscillator 10 = Internal Low-Power RC Oscillator 01 = Internal Fast RC Oscillator 00 = Low-Power 32 kHz Oscillator (Timer1 Oscillator)
FPR<3:0>	FOSC	Primary Oscillator Mode 1111 = ECIO w/PLL 16X - External Clock mode with 16X PLL. OSC2 pin is I/O 1110 = ECIO w/PLL 8X - External Clock mode with 8X PLL. OSC2 pin is I/O 1101 = ECIO w/PLL 4X - External Clock mode with 4X PLL. OSC2 pin is I/O 1100 = ECIO - External Clock mode. OSC2 pin is I/O 1011 = EC - External Clock mode. OSC2 pin is system clock output (Fosc/4) 1010 = Reserved (do not use) 1001 = ERC - External RC Oscillator mode. OSC2 pin is system clock output (Fosc/4) 1000 = ERCIO - External RC Oscillator mode. OSC2 pin is I/O 0111 = XT w/PLL 16X - XT Crystal Oscillator mode with 16X PLL 0110 = XT w/PLL 8X - XT Crystal Oscillator mode with 8X PLL 0101 = XT w/PLL 4X - XT Crystal Oscillator mode with 4X PLL 0100 = XT - XT Crystal Oscillator mode (4 MHz-10 MHz crystal) 001x = HS - HS Crystal Oscillator mode (10 MHz-25 MHz crystal) 000x = XTL - XTL Crystal Oscillator mode (200 kHz-4 MHz crystal)

TABLE 5-5: FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F4011/4012 AND dsPIC30F5011/5013

Bit Field	Register	Description
FCKSM<1:0>	FOSC	Clock Switching Mode 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
FOS<1:0>	FOSC	Oscillator Source Selection on POR 11 = Primary Oscillator 10 = Internal Low-Power RC Oscillator 01 = Internal Fast RC Oscillator 00 = Low-Power 32 kHz Oscillator (Timer1 Oscillator)
FPR<3:0>	FOSC	Primary Oscillator Mode 1111 = ECIO w/PLL 16X - External Clock mode with 16X PLL. OSC2 pin is I/O 1110 = ECIO w/PLL 8X - External Clock mode with 8X PLL. OSC2 pin is I/O 1101 = ECIO w/PLL 4X - External Clock mode with 4X PLL. OSC2 pin is I/O 1100 = ECIO - External Clock mode. OSC2 pin is I/O 1011 = EC - External Clock mode. OSC2 pin is system clock output (Fosc/4) 1010 = FRC w/PLL 8x - Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O 1001 = ERC - External RC Oscillator mode. OSC2 pin is system clock output (Fosc/4) 1000 = ERCIO - External RC Oscillator mode. OSC2 pin is I/O 0111 = XT w/PLL 16X - XT Crystal Oscillator mode with 16X PLL 0110 = XT w/PLL 8X - XT Crystal Oscillator mode with 8X PLL 0101 = XT w/PLL 4X - XT Crystal Oscillator mode with 4X PLL 0100 = XT - XT Crystal Oscillator mode (4 MHz-10 MHz crystal) 0011 = FRC w/PLL 16x - Internal fast RC oscillator with 16x PLL. OSC2 pin is I/O 0010 = HS - HS Crystal Oscillator mode (10 MHz-25 MHz crystal) 0001 = FRC w/PLL 4x - Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0000 = XTL - XTL Crystal Oscillator mode (200 kHz-4 MHz crystal)


TABLE 5-7: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Bit Field	Register	Description
EBS	FBS	Boot Segment Data EEPROM Code Protection (only present in dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015) 1 = No Data EEPROM is reserved for Boot Segment 0 = 128 bytes of Data EEPROM are reserved for Boot Segment in dsPIC30F5011/5013, and 256 bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015
BSS<2:0>	FBS	Boot Segment Program Memory Code Protection (only present in dsPlC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015) 111 = No Boot Segment 110 = Standard security; Small-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0003FF] 101 = Standard security; Medium-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x000FFF] 100 = Standard security; Large-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0001FF] 011 = No Boot Segment 010 = High security; Small-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0003FF] 001 = High security; Medium-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x000FFF] 000 = High security; Large-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0001FFF]
BWRP	FBS	Boot Segment Program Memory Write Protection (only present in dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015) 1 = Boot Segment program memory is not write-protected 0 = Boot Segment program memory is write-protected
RSS<1:0>	FSS	Secure Segment Data RAM Code Protection (only present in dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015) 11 = No Data RAM is reserved for Secure Segment 10 = Small-sized Secure RAM [(256 - N) bytes of RAM are reserved for Secure Segment] 01 = Medium-sized Secure RAM [(768 - N) bytes of RAM are reserved for Secure Segment in dsPIC30F5011/5013, and (2048 - N) bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015] 00 = Large-sized Secure RAM [(1024 - N) bytes of RAM are reserved for Secure Segment in dsPIC30F5011/5013, and (4096 - N) bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015] where N = Number of bytes of RAM reserved for Boot Sector.
ESS<1:0>	FSS	Secure Segment Data EEPROM Code Protection (only present in dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015) 11 = No Data EEPROM is reserved for Secure Segment 10 = Small-sized Secure Data EEPROM [(128 - N) bytes of Data EEPROM are reserved for Secure Segment in dsPIC30F5011/5013, and (256 - N) bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015] 01 = Medium-sized Secure Data EEPROM [(256 - N) bytes of Data EEPROM are reserved for Secure Segment in dsPIC30F5011/5013, and (512 - N) bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015] 00 = Large-sized Secure Data EEPROM [(512 - N) bytes of Data EEPROM are reserved for Secure Segment in dsPIC30F5011/5013, (1024 - N) bytes in dsPIC30F6011A/6013A, and (2048 - N) bytes in dsPIC30F6010A/6012A/6014A/6015] where N = Number of bytes of Data EEPROM reserved for Boot Sector.

5.8 Exiting Enhanced ICSP Mode

The Enhanced ICSP mode is exited by removing power from the device or bringing $\overline{\text{MCLR}}$ to VIL. When normal user mode is next entered, the program that was stored using Enhanced ICSP will execute.

FIGURE 5-5: CONFIGURATION BIT PROGRAMMING FLOW

8.0 PROGRAMMING EXECUTIVE COMMANDS

8.1 Command Set

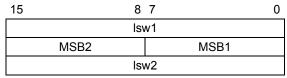
The programming executive command set is shown in Table 8-1. This table contains the opcode, mnemonic, length, time out and description for each command. Functional details on each command are provided in the command descriptions (see Section 8.5 "Command Descriptions").

8.2 Command Format

All programming executive commands have a general format consisting of a 16-bit header and any required data for the command (see Figure 8-1). The 16-bit header consists of a 4-bit opcode field, which is used to identify the command, followed by a 12-bit command length field.

FIGURE 8-1: COMMAND FORMAT

15 12	11	0
Opcode	Length	·
Comm	nand Data First Word (if required)	
	•	
	•	
Comm	nand Data Last Word (if required)	


The command opcode must match one of those in the command set. Any command that is received which does not match the list in Table 8-1 will return a "NACK" response (see Section 9.2.1 "Opcode Field").

The command length is represented in 16-bit words since the SPI operates in 16-bit mode. The programming executive uses the Command Length field to determine the number of words to read from the SPI port. If the value of this field is incorrect, the command will not be properly received by the programming executive.

8.3 Packed Data Format

When 24-bit instruction words are transferred across the 16-bit SPI interface, they are packed to conserve space using the format shown in Figure 8-2. This format minimizes traffic over the SPI and provides the programming executive with data that is properly aligned for performing table write operations.

FIGURE 8-2: PACKED INSTRUCTION WORD FORMAT

Iswx: Least significant 16 bits of instruction word MSBx: Most Significant Byte of instruction word

Note: When the number of instruction words transferred is odd, MSB2 is zero and Isw2 cannot be transmitted.

8.4 Programming Executive Error Handling

The programming executive will "NACK" all unsupported commands. Additionally, due to the memory constraints of the programming executive, no checking is performed on the data contained in the Programmer command. It is the responsibility of the programmer to command the programming executive with valid command arguments, or the programming operation may fail. Additional information on error handling is provided in Section 9.2.3 "QE_Code Field".

8.5 Command Descriptions

All commands that are supported by the programming executive are described in Section 8.5.1 "SCHECK Command" through Section 8.5.11 "QVER Command".

8.5.1 SCHECK COMMAND

15	12	11 0
	Opcode	Length

Field	Description
Opcode	0x0
Length	0x1

The SCHECK command instructs the programming executive to do nothing, but generate a response. This command is used as a "sanity check" to verify that the programming executive is operational.

Expected Response (2 words):

0x1000 0x0002

Note: This instruction is not required for programming, but is provided for development purposes only.

8.5.2 READD COMMAND

15	12	11	8	7	0
Opcode				Length	
Reserve	ed0	N			
Reserved1			Addr_MSB		
Addr_LS					

Field	Description
Opcode	0x1
Length	0x4
Reserved0	0x0
N	Number of 16-bit words to read (max of 2048)
Reserved1	0x0
Addr_MSB	MSB of 24-bit source address
Addr_LS	LS 16 bits of 24-bit source address

The READD command instructs the programming executive to read N 16-bit words of memory starting from the 24-bit address specified by Addr_MSB and Addr_LS. This command can only be used to read 16-bit data. It can be used to read data EEPROM, Configuration registers and the device ID.

Expected Response (2+N words):

0x1100

N + 2

Data word 1

...

Data word N

Note:	Readin	ng unimplemented		memory	will
	cause	the	programming	executive	to
	reset.				

8.5.3 READP COMMAND

15	12	11	8	7		0
Opcode				Le	ngth	
	N					
Reserved					Addr_MSB	
	Addr_LS					

Field	Description
Opcode	0x2
Length	0x4
N	Number of 24-bit instructions to read (max of 32768)
Reserved	0x0
Addr_MSB	MSB of 24-bit source address
Addr_LS	LS 16 bits of 24-bit source address

The READP command instructs the programming executive to read N 24-bit words of code memory starting from the 24-bit address specified by Addr MSB and Addr LS. This command can only be used to read 24-bit data. All data returned in response to this command uses the packed data format described in Section 8.3 "Packed Data Format".

Expected Response (2 + 3 * N/2 words for N even): 0x1200

2 + 3 * N/2

Least significant program memory word 1

Least significant data word N

Expected Response (4 + 3 * (N - 1)/2 words for N odd):

0x1200

4 + 3 * (N - 1)/2

Least significant program memory word 1

MSB of program memory word N (zero padded)

Note:	Readin	ıg u	nimplemented	memory	will
	cause	the	programming	executive	to
	reset.				

8.5.4 PROGD COMMAND

15	12	11	8	7		0
Opc	Opcode			Leng	th	
	Reserved				Addr_MSB	
	Addr_LS					
			D_^	1		
	D_2					
	D_16					

Field	Description
Opcode	0x4
Length	0x13
Reserved	0x0
Addr_MSB	MSB of 24-bit destination address
Addr_LS	LS 16 bits of 24-bit destination address
D_1	16-bit data word 1
D_2	16-bit data word 2
•••	16-bit data words 3 through 15
D_16	16-bit data word 16

The PROGD command instructs the programming executive to program one row of data EEPROM. The data to be programmed is specified by the 16 data words (D_1, D_2,..., D_16) and is programmed to the destination address specified by Addr MSB and Addr LSB. The destination address should be a multiple of 0x20.

Once the row of data EEPROM has been programmed, the programming executive verifies the programmed data against the data in the command.

Expected Response (2 words):

0x1400 0x0002

> Note: Refer to Table 5-3 for data EEPROM size information.

11.0 ICSP™ MODE

11.1 ICSP Mode

ICSP mode is a special programming protocol that allows you to read and write to the dsPIC30F programming executive. The ICSP mode is the second (and slower) method used to program the device. This mode also has the ability to read the contents of executive memory to determine whether the programming executive is present. This capability is accomplished by applying control codes and instructions serially to the device using pins PGC and PGD.

In ICSP mode, the system clock is taken from the PGC pin, regardless of the device's oscillator Configuration bits. All instructions are first shifted serially into an internal buffer, then loaded into the Instruction register and executed. No program fetching occurs from internal memory. Instructions are fed in 24 bits at a time. PGD is used to shift data in and PGC is used as both the serial shift clock and the CPU execution clock.

Data is transmitted on the rising edge and latched on the falling edge of PGC. For all data transmissions, the Least Significant bit (LSb) is transmitted first.

- Note 1: During ICSP operation, the operating frequency of PGC must not exceed 5 MHz.
 - 2: Because ICSP is slower, it is recommended that only Enhanced ICSP (E-ICSP) mode be used for device programming, as described in Section 5.1 "Overview of the Programming Process".

11.2 ICSP Operation

Upon entry into ICSP mode, the CPU is idle. Execution of the CPU is governed by an internal state machine. A 4-bit control code is clocked in using PGC and PGD, and this control code is used to command the CPU (see Table 11-1).

The SIX control code is used to send instructions to the CPU for execution, while the REGOUT control code is used to read data out of the device via the VISI register. The operation details of ICSP mode are provided in Section 11.2.1 "SIX Serial Instruction Execution" and Section 11.2.2 "REGOUT Serial Instruction Execution".

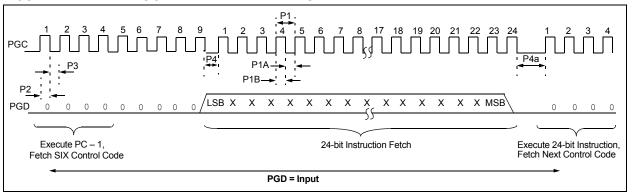
TABLE 11-1: CPU CONTROL CODES IN ICSP™ MODE

4-bit Control Code	Mnemonic	Description
0000b	SIX	Shift in 24-bit instruction and execute.
0001b	REGOUT	Shift out the VISI register.
0010b-1111b	N/A	Reserved.

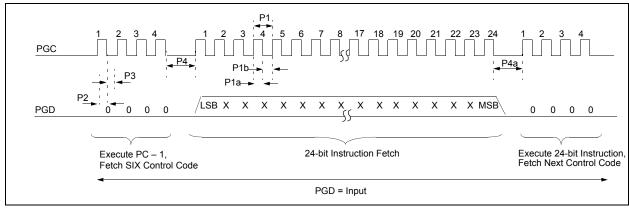
11.2.1 SIX SERIAL INSTRUCTION EXECUTION

The SIX control code allows execution of dsPIC30F assembly instructions. When the SIX code is received, the CPU is suspended for 24 clock cycles as the instruction is then clocked into the internal buffer. Once the instruction is shifted in, the state machine allows it to be executed over the next four clock cycles. While the received instruction is executed, the state machine simultaneously shifts in the next 4-bit command (see Figure 11-2).

- Note 1: Coming out of the ICSP entry sequence, the first 4-bit control code is always forced to SIX and a forced NOP instruction is executed by the CPU. Five additional PGC clocks are needed on startup, thereby resulting in a 9-bit SIX command instead of the normal 4-bit SIX command. After the forced SIX is clocked in, ICSP operation resumes as normal (the next 24 clock cycles load the first instruction word to the CPU). See Figure 11-1 for details.
 - 2: TBLRDH, TBLRDL, TBLWTH and TBLWTL instructions must be followed by a NOP instruction.


11.2.2 REGOUT SERIAL INSTRUCTION EXECUTION

The REGOUT control code allows for data to be extracted from the device in ICSP mode. It is used to clock the contents of the VISI register out of the device over the PGD pin. Once the REGOUT control code is received, eight clock cycles are required to process the command. During this time, the CPU is held idle. After these eight cycles, an additional 16 cycles are required to clock the data out (see Figure 11-3).


The REGOUT instruction is unique because the PGD pin is an input when the control code is transmitted to the device. However, once the control code is processed, the PGD pin becomes an output as the VISI register is shifted out. After the contents of the VISI are shifted out, PGD becomes an input again as the state machine holds the CPU idle until the next 4-bit control code is shifted in.

Note: Once the contents of VISI are shifted out, the dsPIC[®] DSC device maintains PGD as an output until the first rising edge of the next clock is received.

FIGURE 11-1: PROGRAM ENTRY AFTER RESET

FIGURE 11-2: SIX SERIAL EXECUTION

FIGURE 11-3: REGOUT SERIAL EXECUTION

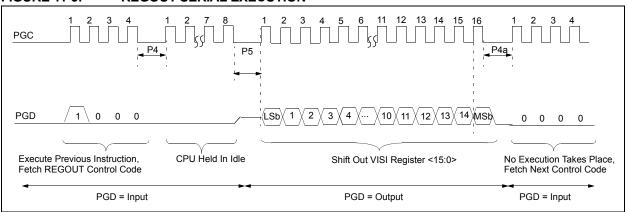


TABLE 11-5: SERIAL INSTRUCTION EXECUTION FOR ERASING PROGRAM MEMORY (EITHER IN LOW-VOLTAGE OR NORMAL-VOLTAGE SYSTEMS) (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description
Step 6: Upda	ate the row address s	stored in NVMADRU:NVMADR. When W6 rolls over to 0x0, NVMADRU must be
	emented.	
0000	430307	ADD W6, W7, W6
0000	AF0042	BTSC SR, #C
0000	EC2764	INC NVMADRU
0000	883B16	MOV W6, NVMADR
Step 7: Rese	et device internal PC.	
0000	040100	GOTO 0x100
0000	000000	NOP
		rows of code memory are erased.
Step 9: Initia	lize NVMADR and N	VMADRU to erase executive memory and initialize W7 for row address updates.
0000	EB0300	CLR W6
0000	883B16	MOV W6, NVMADR
0000	200807	MOV #0x80, W7 MOV W7, NVMADRU
0000	883B27 200407	MOV W7, NVMADRU MOV #0x40, W7
		1 row of executive memory.
0000	24071A	MOV #0x4071, W10
0000	883B0A	MOV W10, NVMCON
		erase 1 row of executive memory.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 12: Initi	ate the erase cycle.	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_	_	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and
0000	000000	Timing Requirements") NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
Step 13: Upo	date the row address	stored in NVMADR.
0000	430307	ADD W6, W7, W6
0000	883B16	MOV W6, NVMADR
Step 14: Res	set device internal PC	D.
0000	040100	GOTO 0x100
0000	000000	NOP
Step 15: Rep	peat Steps 10-14 unti	l all 24 rows of executive memory are erased.
Step 16: Initi	alize NVMADR and I	NVMADRU to erase data memory and initialize W7 for row address updates.
0000	2XXXX6	MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6</lower>
0000	883B16	MOV W6, NVMADR
0000	2007F6	MOV #0x7F, W6
0000	883B16	MOV W6, NVMADRU
0000	200207	MOV #0x20, W7
Step 17 : Set	NVMCON to erase	1 row of data memory.
0000	24075A	MOV #0x4075, W10
0000	883B0A	MOV W10, NVMCON

TABLE 11-8: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY (CONTINUED)

0000		
	ne read pointer (W6	and load the (next set of) write latches.
0000	EB0300	CLR W6
0000	000000	NOP
0000	BB0BB6	TBLWTL [W6++], [W7]
0000	000000	NOP
0000	000000	NOP
0000	BBDBB6	TBLWTH.B [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BBEBB6	TBLWTH.B [W6++], [++W7]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BB0BB6	TBLWTL [W6++], [W7]
0000	000000	NOP
0000	000000	NOP
0000	BBDBB6	TBLWTH.B [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BBEBB6	TBLWTH.B [W6++], [++W7]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
Step 6: Repe	at steps 4-5 eight ti	nes to load the write latches for 32 instructions.
Step 7: Unloc	k the NVMCON for	writing.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 8: Initiat	e the write cycle.	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_	_	Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and
		Timing Requirements")
0000	000000	NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
	t device internal PC	
0000	040100	GOTO 0x100
0000	000000	NOP
		I code memory is programmed.

TABLE 11-10: SERIAL INSTRUCTION EXECUTION FOR READING CODE MEMORY (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description	
Step 4: Outpu	t W0:W5 using th	ne VISI register and REGOUT command.	
0000	883C20	MOV WO, VISI	
0000	000000	NOP	
0001	<visi></visi>	Clock out contents of VISI register	
0000	000000	NOP	
0000	883C21	MOV W1, VISI	
0000	000000	NOP	
0001	<visi></visi>	Clock out contents of VISI register	
0000	000000	NOP	
0000	883C22	MOV W2, VISI	
0000	000000	NOP	
0001	<visi></visi>	Clock out contents of VISI register	
0000	000000	NOP	
0000	883C23	MOV W3, VISI	
0000	000000	NOP	
0001	<visi></visi>	Clock out contents of VISI register	
0000	000000	NOP	
0000	883C24	MOV W4, VISI	
0000	000000	NOP	
0001	<visi></visi>	Clock out contents of VISI register	
0000	000000	NOP	
0000	883C25	MOV W5, VISI	
0000	000000	NOP	
0001	<visi></visi>	Clock out contents of VISI register	
0000	000000	NOP	
Step 5: Reset	the device intern	al PC.	
0000	040100	GOTO 0x100	
0000	000000	NOP	
Step 6: Repeat steps 3-5 until all desired code memory is read.			

11.11 Reading Configuration Memory

The procedure for reading configuration memory is similar to the procedure for reading code memory, except that 16-bit data words are read instead of 24-bit words. Since there are seven Configuration registers, they are read one register at a time.

Table 11-11 shows the ICSP programming details for reading all of the configuration memory. Note that the TBLPAG register is hard-coded to 0xF8 (the upper byte address of configuration memory), and the read pointer W6 is initialized to 0x0000.

TABLE 11-11: SERIAL INSTRUCTION EXECUTION FOR READING ALL CONFIGURATION MEMORY

Command (Binary)	Data (Hexadecimal)	Description			
Step 1: Exit t	ne Reset vector.				
0000	040100	GOTO 0x100			
0000	040100	GOTO 0x100			
0000	000000	NOP			
Step 2: Initial	ize TBLPAG, and	the read pointer (W6) and the write pointer (W7) for TBLRD instruction.			
0000	200F80	MOV #0xF8, WO			
0000	880190	MOV WO, TBLPAG			
0000	EB0300	CLR W6			
0000	EB0380	CLR W7			
0000	000000	NOP			
Step 3: Read	the Configuration	register and write it to the VISI register (located at 0x784).			
0000	BA0BB6	TBLRDL [W6++], [W7]			
0000	000000	NOP			
0000	000000	NOP			
0000	883C20	MOV WO, VISI			
0000	000000	NOP			
Step 4: Outpu	ut the VISI registe	r using the REGOUT command.			
0001	<visi></visi>	Clock out contents of VISI register			
0000	000000	NOP			
Step 5: Rese	t device internal F	PC.			
0000	040100	GOTO 0x100			
0000	000000	NOP			
Step 6: Repe	Step 6: Repeat steps 3-5 six times to read all of configuration memory.				

12.0 PROGRAMMING THE PROGRAMMING EXECUTIVE TO MEMORY

12.1 Overview

If it is determined that the programming executive does not reside in executive memory (as described in Section 4.0 "Confirming the Contents of Executive Memory"), it must be programmed into executive memory using ICSP and the techniques described in Section 11.0 "ICSP™ Mode".

Storing the programming executive to executive memory is similar to normal programming of code memory. The executive memory must first be erased, and then the programming executive must be programmed 32 words at a time. This control flow is summarized in Table 12-1.

TABLE 12-1: PROGRAMMING THE PROGRAMMING EXECUTIVE

Command (Binary)	Data (Hexadecimal)	Description				
Step 1: Exit th	Step 1: Exit the Reset vector and erase executive memory.					
0000	040100	GOTO 0x100				
0000	040100	GOTO 0x100				
0000	000000	NOP				
Step 2: Initiali	ze the NVMCON to	erase executive memory.				
0000	24072A	MOV #0x4072, W10				
0000	883B0A	MOV W10, NVMCON				
Step 3: Unloc	k the NVMCON for	programming.				
0000	200558	MOV #0x55, W8				
0000	883B38	MOV W8, NVMKEY				
0000	200AA9	MOV #0xAA, W9				
0000	883B39	MOV W9, NVMKEY				
Step 4: Initiate	e the erase cycle.					
0000	A8E761	BSET NVMCON, #15				
0000	000000	NOP				
0000	000000	NOP				
_	_	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and				
		Timing Requirements")				
0000	000000	NOP				
0000	000000	NOP				
0000	A9E761	BCLR NVMCON, #15				
0000	000000	NOP				
0000	000000	NOP				
Step 5: Initiali	ze the TBLPAG and	the write pointer (W7).				
0000	200800	MOV #0x80, W0				
0000	880190	MOV WO, TBLPAG				
0000	EB0380	CLR W7				
0000	000000	NOP				
0000	000000	NOP				
•		program 32 instruction words.				
0000	24001A	MOV #0x4001, W10				
0000	883B0A	MOV W10, NVMCON				
		tt 4 words of packed programming executive code and initialize W6 for				
. •	• •	ing starts from the base of executive memory (0x800000) using W6 as a read				
pointe	er and W7 as a write	pointer.				
0000	2 <lsw0>0</lsw0>	MOV # <lswo>, WO</lswo>				
0000	2 <msb1:msb0>1</msb1:msb0>	MOV # <msb1:msb0>, W1</msb1:msb0>				
0000	2 <lsw1>2</lsw1>	MOV # <lsw1>, W2</lsw1>				
0000	2 <lsw2>3</lsw2>	MOV # <lsw2>, W3</lsw2>				
0000	2 <msb3:msb2>4</msb3:msb2>	MOV # <msb3:msb2>, W4</msb3:msb2>				
0000	2 <lsw3>5</lsw3>	MOV # <lsw3>, W5</lsw3>				

12.2 Programming Verification

After the programming executive has been programmed to executive memory using ICSP, it must be verified. Verification is performed by reading out the contents of executive memory and comparing it with the image of the programming executive stored in the programmer.

Reading the contents of executive memory can be performed using the same technique described in Section 11.10 "Reading Code Memory". A procedure for reading executive memory is shown in Table 12-2. Note that in Step 2, the TBLPAG register is set to 0x80 such that executive memory may be read.

TABLE 12-2: READING EXECUTIVE MEMORY

Command (Binary)	Data (Hexadecimal)		Description
Step 1: Exit th	ne Reset vector.		
0000	040100	GOTO 0x100	
0000	040100	GOTO 0x100	
0000	000000	NOP	
Step 2: Initiali	ze TBLPAG and t	he read point	ter (W6) for TBLRD instruction.
0000	200800	MOV	#0x80, W0
0000	880190	MOV	WO, TBLPAG
0000	EB0300	CLR	W6
Step 3: Initiali	ze the write point	er (W7), and	store the next four locations of executive memory to W0:W5.
0000	EB0380	CLR	W7
0000	000000	NOP	
0000	BA1B96	TBLRDL	[W6], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BADBB6	TBLRDH.B	[W6++], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BADBD6	TBLRDH.B	[++W6], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BA1BB6	TBLRDL	[W6++], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BA1B96	TBLRDL	[W6], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BADBB6	TBLRDH.B	[W6++], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BADBD6	TBLRDH.B	[++W6], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BA1BB6	TBLRDL	[W6++], [W7]
0000	000000	NOP	
0000	000000	NOP	

13.0 AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS

TABLE 13-1: AC/DC CHARACTERISTICS

AC/DC CHARACTERISTICS AC/DC CHARACTERISTICS				Standard Operating Conditions (unless otherwise stated) Operating Temperature: 25° C is recommended			
Param. No.	Sym	Characteristic	Min	Max	Units	Conditions	
D110	Vінн	High Programming Voltage on MCLR/VPP	9.00	13.25	V	_	
D112	IPP	Programming Current on MCLR/VPP	_	300	μΑ	_	
D113	IDDP	Supply Current during programming	_	30	mA	Row Erase Program memory	
			_	30	mA	Row Erase Data EEPROM	
			_	30	mA	Bulk Erase	
D001	VDD	Supply voltage	2.5	5.5	V	_	
D002	VDDBULK	Supply voltage for Bulk Erase programming	4.5	5.5	V	_	
D031	VIL	Input Low Voltage	Vss	0.2 Vss	V	_	
D041	VIH	Input High Voltage	0.8 VDD	VDD	V	_	
D080	Vol	Output Low Voltage	_	0.6	V	IOL = 8.5 mA	
D090	Vон	Output High Voltage	VDD - 0.7		V	Iон = -3.0 mA	
D012	Сю	Capacitive Loading on I/O Pin (PGD)	_	50	pF	To meet AC specifications	
P1	TSCLK	Serial Clock (PGC) period	50	_	ns	ICSP™ mode	
			1	_	μs	Enhanced ICSP mode	
P1a	TSCLKL	Serial Clock (PGC) low time	20		ns	ICSP mode	
			400	1	ns	Enhanced ICSP mode	
P1b	TSCLKH	Serial Clock (PGC) high time	20	_	ns	ICSP mode	
			400	_	ns	Enhanced ICSP mode	
P2	TSET1	Input Data Setup Timer to PGC ↓	15		ns	_	
P3	THLD1	Input Data Hold Time from PGC \downarrow	15		ns	_	
P4	TDLY1	Delay between 4-bit command and command operand	20		ns	_	
P4a	TDLY1a	Delay between 4-bit command operand and next 4-bit command	20	_	ns	_	
P5	TDLY2	Delay between last PGC ↓of command to first PGC ↑ of VISI output	20	_	ns	_	
P6	TSET2	VDD ↑ setup time to MCLR/VPP	100		ns	_	
P7	THLD2	Input data hold time from MCLR/VPP ↑	2	_	μs	ICSP mode	
			5	_	ms	Enhanced ICSP mode	
P8	TDLY3	Delay between last PGC ↓of command word to PGD driven ↑ by programming executive	20	_	μs	_	
P9a	TDLY4	Programming Executive Command processing time	10	_	μs	_	

APPENDIX B: HEX FILE FORMAT

Flash programmers process the standard HEX format used by the Microchip development tools. The format supported is the Intel[®] HEX 32 Format (INHX32). Please refer to Appendix A in the "MPASM User's Guide" (DS33014) for more information about hex file formats.

The basic format of the hex file is:

:BBAAAATTHHHH...HHHHCC

Each data record begins with a 9-character prefix and always ends with a 2-character checksum. All records begin with ':' regardless of the format. The individual elements are described below.

- BB is a two-digit hexadecimal byte count representing the number of data bytes that appear on the line. Divide this number by two to get the number of words per line.
- AAAA is a four-digit hexadecimal address representing the starting address of the data record. Format is high byte first followed by low byte. The address is doubled because this format only supports 8-bits. Divide the value by two to find the real device address.
- TT is a two-digit record type that will be '00' for data records, '01' for end-of-file records and '04' for extended-address record.
- HHHH is a four-digit hexadecimal data word. Format is low byte followed by high byte. There will be BB/2 data words following TT.
- CC is a two-digit hexadecimal checksum that is the two's complement of the sum of all the preceding bytes in the line record.

Because the Intel hex file format is byte-oriented, and the 16-bit program counter is not, program memory sections require special treatment. Each 24-bit program word is extended to 32 bits by inserting a so-called "phantom byte". Each program memory address is multiplied by 2 to yield a byte address.

As an example, a section that is located at 0x100 in program memory will be represented in the hex file as 0x200.

The hex file will be produced with the following contents:

- :020000040000fa
- :040200003322110096
- :0000001FF

Notice that the data record (line 2) has a load address of 0200, while the source code specified address 0x100. Note also that the data is represented in "little-endian" format, meaning the Least Significant Byte (LSB) appears first. The phantom byte appears last, just before the checksum.

APPENDIX C: REVISION HISTORY

Note: Revision histories were not recorded for revisions A through H. The previous revision (J), was published in August 2007.

Revision K (November 2010)

This version of the document includes the following updates:

- Added Note three to Section 5.2 "Entering Enhanced ICSP Mode"
- Updated the first paragraph of Section 10.0 "Device ID"
- Updated Table 10-1: Device IDs
- Removed the VARIANT bit and updated the bit definition for the DEVID register in Table 10-2: dsPIC30F Device ID Registers
- Removed the VARIANT bit and updated the bit field definition and description for the DEVID register in Table 10-3: Device ID Bits Description
- Updated Note 3 in Section 11.3 "Entering ICSP Mode"
- Updated Step 11 in Table 11-4: Serial Instruction Execution for BUlk Erasing Program Memory (Only in Normal-voltage Systems)
- Updated Steps 5, 12 and 19 in Table 11-5: Serial Instruction Execution for Erasing Program Memory (Either in Low-voltage or Normal-voltage Systems)
- Updated Steps 5, 6 and 8 in Table 11-7: Serial Instruction Execution for Writing Configuration Registers
- Updated Steps 6 and 8 in Table 11-8: Serial Instruction Execution for Writing Code Memory
- Updated Steps 6 and 8 in Table 11-9: Serial Instruction Execution for Writing Data EEPROM
- Updated Entering ICSP™ Mode (see Figure 11-4)
- Updated Steps 4 and 11 in Table 12-1: Programming the Programming Executive
- Renamed parameters: P12 to P12a and P13 to P13a, and added parameters P12b and P13b in Table 13-1: AC/DC Characteristics