


Welcome to E-XFL.COM

## What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

## Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

## Details

E·XFI

| 2 0 0 0 0 0                |                                                                                |
|----------------------------|--------------------------------------------------------------------------------|
| Product Status             | Obsolete                                                                       |
| Core Processor             | dsPIC                                                                          |
| Core Size                  | 16-Bit                                                                         |
| Speed                      | 20 MIPS                                                                        |
| Connectivity               | CANbus, I <sup>2</sup> C, SPI, UART/USART                                      |
| Peripherals                | AC'97, Brown-out Detect/Reset, I <sup>2</sup> S, POR, PWM, WDT                 |
| Number of I/O              | 30                                                                             |
| Program Memory Size        | 48KB (16K x 24)                                                                |
| Program Memory Type        | FLASH                                                                          |
| EEPROM Size                | 1K x 8                                                                         |
| RAM Size                   | 2K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 2.5V ~ 5.5V                                                                    |
| Data Converters            | A/D 13x12b                                                                     |
| Oscillator Type            | Internal                                                                       |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                             |
| Mounting Type              | Surface Mount                                                                  |
| Package / Case             | 44-TQFP                                                                        |
| Supplier Device Package    | 44-TQFP (10x10)                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic30f4013t-20e-pt |
|                            |                                                                                |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 2.2 Pins Used During Programming

The pins identified in Table 2-1 are used for device programming. Refer to the appropriate device data sheet for complete pin descriptions.

## TABLE 2-1: dsPIC30F PIN DESCRIPTIONS DURING PROGRAMMING

| Pin Name | Pin Type | Pin Description    |
|----------|----------|--------------------|
| MCLR/VPP | Р        | Programming Enable |
| Vdd      | Р        | Power Supply       |
| Vss      | Р        | Ground             |
| PGC      | I        | Serial Clock       |
| PGD      | I/O      | Serial Data        |

Legend: I = Input, O = Output, P = Power

## 2.3 Program Memory Map

The program memory space extends from 0x0 to 0xFFFFFE. Code storage is located at the base of the memory map and supports up to 144 Kbytes (48K instruction words). Code is stored in three, 48 Kbyte memory panels that reside on-chip. Table 2-2 shows the location and program memory size of each device.

Locations 0x800000 through 0x8005BE are reserved for executive code memory. This region stores either the programming executive or debugging executive. The programming executive is used for device programming, while the debug executive is used for incircuit debugging. This region of memory cannot be used to store user code.

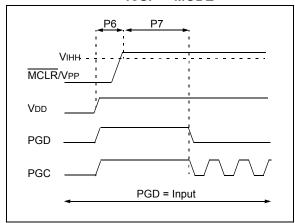
Locations 0xF80000 through 0xF8000E are reserved for the Configuration registers. The bits in these registers may be set to select various device options, and are described in **Section 5.7 "Configuration Bits Programming"**.

Locations 0xFF0000 and 0xFF0002 are reserved for the Device ID registers. These bits can be used by the programmer to identify what device type is being programmed and are described in **Section 10.0 "Device ID"**. The device ID reads out normally, even after code protection is applied.

Figure 2-2 illustrates the memory map for the dsPIC30F devices.

## 2.4 Data EEPROM Memory

The Data EEPROM array supports up to 4 Kbytes of data and is located in one memory panel. It is mapped in program memory space, residing at the end of User Memory Space (see Figure 2-2). Table 2-2 shows the location and size of data EEPROM in each device.


## TABLE 2-2: CODE MEMORY AND DATA EEPROM MAP AND SIZE

| Device        | Code Memory map<br>(Size in Instruction Words) | Data EEPROM Memory Map<br>(Size in Bytes) |
|---------------|------------------------------------------------|-------------------------------------------|
| dsPIC30F2010  | 0x000000-0x001FFE (4K)                         | 0x7FFC00-0x7FFFFE (1K)                    |
| dsPIC30F2011  | 0x000000-0x001FFE (4K)                         | None (0K)                                 |
| dsPIC30F2012  | 0x000000-0x001FFE (4K)                         | None (0K)                                 |
| dsPIC30F3010  | 0x000000-0x003FFE (8K)                         | 0x7FFC00-0x7FFFFE (1K)                    |
| dsPIC30F3011  | 0x000000-0x003FFE (8K)                         | 0x7FFC00-0x7FFFFE (1K)                    |
| dsPIC30F3012  | 0x000000-0x003FFE (8K)                         | 0x7FFC00-0x7FFFFE (1K)                    |
| dsPIC30F3013  | 0x000000-0x003FFE (8K)                         | 0x7FFC00-0x7FFFFE (1K)                    |
| dsPIC30F3014  | 0x000000-0x003FFE (8K)                         | 0x7FFC00-0x7FFFFE (1K)                    |
| dsPIC30F4011  | 0x000000-0x007FFE (16K)                        | 0x7FFC00-0x7FFFFE (1K)                    |
| dsPIC30F4012  | 0x000000-0x007FFE (16K)                        | 0x7FFC00-0x7FFFFE (1K)                    |
| dsPIC30F4013  | 0x000000-0x007FFE (16K)                        | 0x7FFC00-0x7FFFFE (1K)                    |
| dsPIC30F5011  | 0x000000-0x00AFFE (22K)                        | 0x7FFC00-0x7FFFFE (1K)                    |
| dsPIC30F5013  | 0x000000-0x00AFFE (22K)                        | 0x7FFC00-0x7FFFFE (1K)                    |
| dsPIC30F5015  | 0x000000-0x00AFFE (22K)                        | 0x7FFC00-0x7FFFFE (1K)                    |
| dsPIC30F5016  | 0x000000-0x00AFFE (22K)                        | 0x7FFC00-0x7FFFFE (1K)                    |
| dsPIC30F6010  | 0x000000-0x017FFE (48K)                        | 0x7FF000-0x7FFFFE (4K)                    |
| dsPIC30F6010A | 0x000000-0x017FFE (48K)                        | 0x7FF000-0x7FFFFF (4K)                    |
| dsPIC30F6011  | 0x000000-0x015FFE (44K)                        | 0x7FF800-0x7FFFFE (2K)                    |
| dsPIC30F6011A | 0x000000-0x015FFE (44K)                        | 0x7FF800-0x7FFFFE (2K)                    |
| dsPIC30F6012  | 0x000000-0x017FFE (48K)                        | 0x7FF000-0x7FFFFE (4K)                    |
| dsPIC30F6012A | 0x000000-0x017FFE (48K)                        | 0x7FF000-0x7FFFFE (4K)                    |
| dsPIC30F6013  | 0x000000-0x015FFE (44K)                        | 0x7FF800-0x7FFFFE (2K)                    |
| dsPIC30F6013A | 0x000000-0x015FFE (44K)                        | 0x7FF800-0x7FFFFE (2K)                    |
| dsPIC30F6014  | 0x000000-0x017FFE (48K)                        | 0x7FF000-0x7FFFFE (4K)                    |
| dsPIC30F6014A | 0x000000-0x017FFE (48K)                        | 0x7FF000-0x7FFFFE (4K)                    |
| dsPIC30F6015  | 0x000000-0x017FFE (48K)                        | 0x7FF000-0x7FFFFE (4K)                    |

## 5.2 Entering Enhanced ICSP Mode

The Enhanced ICSP mode is entered by holding PGC and PGD high, and then raising MCLR/VPP to VIHH (high voltage), as illustrated in Figure 5-2. In this mode, the code memory, data EEPROM and Configuration bits can be efficiently programmed using the programming executive commands that are serially transferred using PGC and PGD.

## FIGURE 5-2: ENTERING ENHANCED ICSP™ MODE



- Note 1: The sequence that places the device into Enhanced ICSP mode places all unused I/Os in the high-impedance state.
  - 2: Before entering Enhanced ICSP mode, clock switching must be disabled using ICSP, by programming the FCKSM<1:0> bits in the FOSC Configuration register to '11' or '10'.
  - **3:** When in Enhanced ICSP mode, the SPI output pin (SDO1) will toggle while the device is being programmed.

## 5.3 Chip Erase

Before a chip can be programmed, it must be erased. The Bulk Erase command (ERASEB) is used to perform this task. Executing this command with the MS command field set to 0x3 erases all code memory, data EEPROM and code-protect Configuration bits. The Chip Erase process sets all bits in these three memory regions to '1'.

Since non-code-protect Configuration bits cannot be erased, they must be manually set to '1' using multiple PROGC commands. One PROGC command must be sent for each Configuration register (see Section 5.7 "Configuration Bits Programming").

If Advanced Security features are enabled, then individual Segment Erase operations would need to be performed, depending on which segment needs to be programmed at a given stage of system programming. The user should have the flexibility to select specific segments for programming.

| Note: | The Device ID registers cannot be erased.  |
|-------|--------------------------------------------|
|       | These registers remain intact after a Chip |
|       | Erase is performed.                        |

## 5.4 Blank Check

The term "Blank Check" means to verify that the device has been successfully erased and has no programmed memory cells. A blank or erased memory cell reads as '1'. The following memories must be blank checked:

- · All implemented code memory
- · All implemented data EEPROM
- · All Configuration bits (for their default value)

The Device ID registers (0xFF0000:0xFF0002) can be ignored by the Blank Check since this region stores device information that cannot be erased. Additionally, all unimplemented memory space should be ignored from the Blank Check.

The QBLANK command is used for the Blank Check. It determines if the code memory and data EEPROM are erased by testing these memory regions. A 'BLANK' or 'NOT BLANK' response is returned. The READD command is used to read the Configuration registers. If it is determined that the device is not blank, it must be erased (see Section 5.3 "Chip Erase") before attempting to program the chip.

## 5.5.3 PROGRAMMING VERIFICATION

Once code memory is programmed, the contents of memory can be verified to ensure that programming was successful. Verification requires code memory to be read back and compared against the copy held in the programmer's buffer.

The READP command can be used to read back all the programmed code memory.

Alternatively, you can have the programmer perform the verification once the entire device is programmed using a checksum computation, as described in Section 6.8 "Checksum Computation".

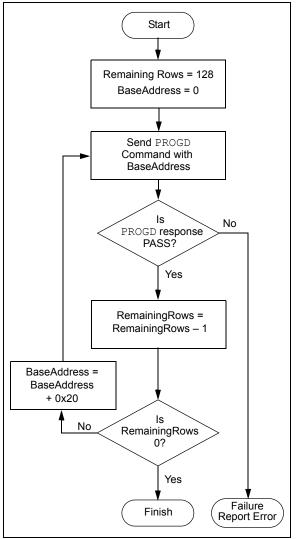
## 5.6 Data EEPROM Programming

## 5.6.1 OVERVIEW

The panel architecture for the data EEPROM memory array consists of 128 rows of sixteen 16-bit data words. Each panel stores 2K words. All devices have either one or no memory panels. Devices with data EEPROM provide either 512 words, 1024 words or 2048 words of memory on the one panel (see Table 5-3).

TABLE 5-3:DATA EEPROM SIZE

| TADLE J-J. DATA LEFROW SIZE |                             |                   |  |  |  |  |  |  |
|-----------------------------|-----------------------------|-------------------|--|--|--|--|--|--|
| Device                      | Data EEPROM<br>Size (Words) | Number of<br>Rows |  |  |  |  |  |  |
| dsPIC30F2010                | 512                         | 32                |  |  |  |  |  |  |
| dsPIC30F2011                | 0                           | 0                 |  |  |  |  |  |  |
| dsPIC30F2012                | 0                           | 0                 |  |  |  |  |  |  |
| dsPIC30F3010                | 512                         | 32                |  |  |  |  |  |  |
| dsPIC30F3011                | 512                         | 32                |  |  |  |  |  |  |
| dsPIC30F3012                | 512                         | 32                |  |  |  |  |  |  |
| dsPIC30F3013                | 512                         | 32                |  |  |  |  |  |  |
| dsPIC30F3014                | 512                         | 32                |  |  |  |  |  |  |
| dsPIC30F4011                | 512                         | 32                |  |  |  |  |  |  |
| dsPIC30F4012                | 512                         | 32                |  |  |  |  |  |  |
| dsPIC30F4013                | 512                         | 32                |  |  |  |  |  |  |
| dsPIC30F5011                | 512                         | 32                |  |  |  |  |  |  |
| dsPIC30F5013                | 512                         | 32                |  |  |  |  |  |  |
| dsPIC30F5015                | 512                         | 32                |  |  |  |  |  |  |
| dsPIC30F5016                | 512                         | 32                |  |  |  |  |  |  |
| dsPIC30F6010                | 2048                        | 128               |  |  |  |  |  |  |
| dsPIC30F6010A               | 2048                        | 128               |  |  |  |  |  |  |
| dsPIC30F6011                | 1024                        | 64                |  |  |  |  |  |  |
| dsPIC30F6011A               | 1024                        | 64                |  |  |  |  |  |  |
| dsPIC30F6012                | 2048                        | 128               |  |  |  |  |  |  |
| dsPIC30F6012A               | 2048                        | 128               |  |  |  |  |  |  |
| dsPIC30F6013                | 1024                        | 64                |  |  |  |  |  |  |
| dsPIC30F6013A               | 1024                        | 64                |  |  |  |  |  |  |
| dsPIC30F6014                | 2048                        | 128               |  |  |  |  |  |  |
| dsPIC30F6014A               | 2048                        | 128               |  |  |  |  |  |  |
| dsPIC30F6015                | 2048                        | 128               |  |  |  |  |  |  |


## 5.6.2 PROGRAMMING METHODOLOGY

The programming executive uses the PROGD command to program the data EEPROM. Figure 5-4 illustrates the flowchart of the process. Firstly, the number of rows to program (RemainingRows) is based on the device size, and the destination address (DestAddress) is set to '0'. In this example, 128 rows (2048 words) of data EEPROM will be programmed.

The first PROGD command programs the first row of data EEPROM. Once the command completes successfully, 'RemainingRows' is decremented by 1 and compared with 0. Since there are 127 more rows to program, 'BaseAddress' is incremented by 0x20 to point to the next row of data EEPROM. This process is then repeated until all 128 rows of data EEPROM are programmed.

FIGURE 5-4:

## FLOWCHART FOR PROGRAMMING dsPIC30F6014A DATA EEPROM



## 5.6.3 PROGRAMMING VERIFICATION

Once the data EEPROM is programmed, the contents of memory can be verified to ensure that the programming was successful. Verification requires the data EEPROM to be read back and compared against the copy held in the programmer's buffer. The READD command reads back the programmed data EEPROM.

Alternatively, the programmer can perform the verification once the entire device is programmed using a checksum computation, as described in **Section 6.8 "Checksum Computation"**.

Note: TBLRDL instructions executed within a REPEAT loop must not be used to read from Data EEPROM. Instead, it is recommended to use PSV access.

## 5.7 Configuration Bits Programming

## 5.7.1 OVERVIEW

The dsPIC30F has Configuration bits stored in seven 16-bit registers. These bits can be set or cleared to select various device configurations. There are two types of Configuration bits: system-operation bits and code-protect bits. The system-operation bits determine the power-on settings for system-level components such as the oscillator and Watchdog Timer. The codeprotect bits prevent program memory from being read and written. The FOSC Configuration register has three different register descriptions, based on the device. The FOSC Configuration register description for the dsPIC30F2010 and dsPIC30F6010/6011/6012/6013/ 6014 devices are shown in Table 5-4.

Note: If user software performs an erase operation on the configuration fuse, it must be followed by a write operation to this fuse with the desired value, even if the desired value is the same as the state of the erased fuse.

The FOSC Configuration register description for the dsPIC30F4011/4012 and dsPIC30F5011/5013 devices is shown in Table 5-5.

The FOSC Configuration register description for all remaining devices (dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013, dsPIC30F3014/ 4013, dsPIC30F5015 and dsPIC30F6011A/6012A/ 6013A/ 6014A) is shown in Table 5-6. Always use the correct register descriptions for your target processor.

The FWDT, FBORPOR, FBS, FSS, FGS and FICD Configuration registers are not device-dependent. The register descriptions for these Configuration registers are shown in Table 5-7.

The Device Configuration register maps are shown in Table 5-8 through Table 5-11.

| TABLE 5-4: | FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F2010 AND |
|------------|----------------------------------------------------------|
|            | dsPIC30F6010/6011/6012/6013/6014                         |

| Bit Field  | Register | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCKSM<1:0> | FOSC     | Clock Switching Mode<br>1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled<br>01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled<br>00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FOS<1:0>   | FOSC     | Oscillator Source Selection on POR<br>11 = Primary Oscillator<br>10 = Internal Low-Power RC Oscillator<br>01 = Internal Fast RC Oscillator<br>00 = Low-Power 32 kHz Oscillator (Timer1 Oscillator)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FPR<3:0>   | FOSC     | <ul> <li>Primary Oscillator Mode</li> <li>1111 = ECIO w/PLL 16X – External Clock mode with 16X PLL. OSC2 pin is I/O</li> <li>110 = ECIO w/PLL 8X – External Clock mode with 8X PLL. OSC2 pin is I/O</li> <li>101 = ECIO w/PLL 4X – External Clock mode with 4X PLL. OSC2 pin is I/O</li> <li>100 = ECIO – External Clock mode. OSC2 pin is I/O</li> <li>101 = EC – External Clock mode. OSC2 pin is system clock output (Fosc/4)</li> <li>101 = ERC – External RC Oscillator mode. OSC2 pin is system clock output (Fosc/4)</li> <li>1000 = ERCIO – External RC Oscillator mode. OSC2 pin is l/O</li> <li>0111 = XT w/PLL 16X – XT Crystal Oscillator mode with 16X PLL</li> <li>0101 = XT w/PLL 8X – XT Crystal Oscillator mode with 8X PLL</li> <li>0101 = XT w/PLL 4X – XT Crystal Oscillator mode with 4X PLL</li> <li>0101 = XT w/PLL 4X – XT Crystal Oscillator mode with 4X PLL</li> <li>0101 = XT - XT Crystal Oscillator mode (4 MHz-10 MHz crystal)</li> <li>001x = HS – HS Crystal Oscillator mode (200 kHz-4 MHz crystal)</li> </ul> |

## TABLE 5-6: FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013/3014, dsPIC30F4013, dsPIC30F5015/5016, dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015

|     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OSC | Clock Switching Mode<br>1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled<br>01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled<br>00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| OSC | Oscillator Source Selection on POR<br>111 = Primary Oscillator<br>110 = Reserved<br>101 = Reserved<br>100 = Reserved<br>011 = Reserved<br>010 = Internal Low-Power RC Oscillator<br>001 = Internal Fast RC Oscillator (no PLL)<br>000 = Low-Power 32 kHz Oscillator (Timer1 Oscillator)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DSC | Primary Oscillator Mode (when FOS<2:0> = 111b)<br>11xxx = Reserved (do not use)<br>10111 = HS/3 w/PLL 16X – HS/3 crystal oscillator with 16X PLL<br>(10 MHz-25 MHz crystal)<br>10101 = HS/3 w/PLL 8X – HS/3 crystal oscillator with 8X PLL<br>(10 MHz-25 MHz crystal)<br>10101 = HS/3 w/PLL 4X – HS/3 crystal oscillator with 4X PLL<br>(10 MHz-25 MHz crystal)<br>10100 = Reserved (do not use)<br>10011 = HS/2 w/PLL 16X – HS/2 crystal oscillator with 16X PLL<br>(10 MHz-25 MHz crystal)<br>10010 = HS/2 w/PLL 8X – HS/2 crystal oscillator with 8X PLL<br>(10 MHz-25 MHz crystal)<br>10001 = HS/2 w/PLL 8X – HS/2 crystal oscillator with 8X PLL<br>(10 MHz-25 MHz crystal)<br>10001 = HS/2 w/PLL 4X – HS/2 crystal oscillator with 4X PLL<br>(10 MHz-25 MHz crystal)<br>10000 = Reserved (do not use)<br>01111 = ECIO w/PLL 16x – External clock with 16x PLL. OSC2 pin is I/O<br>01101 = ECIO w/PLL 16x – External clock with 8x PLL. OSC2 pin is I/O<br>01101 = ECIO w/PLL 4x – External clock with 4x PLL. OSC2 pin is I/O<br>01101 = ECIO w/PLL 4x – External clock with 4x PLL. OSC2 pin is I/O<br>01101 = ECIO w/PLL 8x – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O<br>01010 = Reserved (do not use)<br>01011 = Reserved (do not use)<br>01011 = XT w/PLL 16X – XT crystal oscillator with 16X PLL<br>0110 = XT w/PLL 4X – XT crystal oscillator with 8X PLL<br>0110 = XT w/PLL 4X – XT crystal oscillator with 8X PLL<br>0110 = XT w/PLL 4X – XT crystal oscillator with 8X PLL<br>0110 = TRC w/PLL 4X – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O<br>0111 = FRC w/PLL 4X – XT crystal oscillator with 8X PLL<br>0100 = Reserved (do not use)<br>00011 = FRC w/PLL 4X – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O<br>00010 = Reserved (do not use)<br>00011 = FRC w/PLL 4X – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O<br>00010 = Reserved (do not use) |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## TABLE 5-10: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013/3014, dsPIC30F4013 AND dsPIC30F5015/5016)

| Address  | Name    | Bit 15 | Bit 14 | Bit 13 | Bit 12             | Bit 11 | Bit 10                | Bit 9               | Bit 8                   | Bit 7 | Bit 6 | Bit 5 | Bit 4  | Bit 3 | Bit 2                   | Bit 1              | Bit 0  |
|----------|---------|--------|--------|--------|--------------------|--------|-----------------------|---------------------|-------------------------|-------|-------|-------|--------|-------|-------------------------|--------------------|--------|
| 0xF80000 | FOSC    | FCKSN  | 1<1:0> | —      | —                  |        |                       | FOS<2:0>            |                         | —     | _     | _     |        |       | FPR<4:0>                |                    |        |
| 0xF80002 | FWDT    | FWDTEN | _      | _      | _                  | _      | _                     | _                   | _                       | _     | _     | FWPS  | A<1:0> |       | FWPSE                   | 3<3:0>             |        |
| 0xF80004 | FBORPOR | MCLREN | _      | _      | _                  | _      | PWMPIN <sup>(1)</sup> | HPOL <sup>(1)</sup> | LPOL <sup>(1)</sup>     | BOREN | _     | BORV  | /<1:0> | _     | _                       | FPWR               | T<1:0> |
| 0xF80006 | FBS     | _      | _      | Reser  | ved <sup>(2)</sup> | _      | _                     | _                   | Reserved <sup>(2)</sup> | _     | _     | _     | _      |       | Reserv                  | /ed <sup>(2)</sup> |        |
| 0xF80008 | FSS     | _      | _      | Reser  | ved <sup>(2)</sup> | _      | _                     | Rese                | erved <sup>(2)</sup>    | _     | _     | _     | _      |       | Reserv                  | /ed <sup>(2)</sup> |        |
| 0xF8000A | FGS     | —      | _      | _      | _                  | -      | _                     | _                   | _                       | —     | —     | _     | —      | _     | Reserved <sup>(3)</sup> | GCP                | GWRP   |
| 0xF8000C | FICD    | BKBUG  | COE    | —      | —                  | _      | —                     | _                   | —                       | —     | _     | _     | _      | _     | —                       | ICS<               | <1:0>  |

1: On the 2011, 2012, 3012, 3013, 3014 and 4013, these bits are reserved (read as '1' and must be programmed as '1'). 2: Reserved bits read as '1' and must be programmed as '1'. Note

3: The FGS<2> bit is a read-only copy of the GCP bit (FGS<1>).

## TABLE 5-11: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015)

| Address  | Name    | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10                | Bit 9               | Bit 8               | Bit 7 | Bit 6 | Bit 5 | Bit 4  | Bit 3 | Bit 2    | Bit 1  | Bit 0  |
|----------|---------|--------|--------|--------|--------|--------|-----------------------|---------------------|---------------------|-------|-------|-------|--------|-------|----------|--------|--------|
| 0xF80000 | FOSC    | FCKSN  | l<1:0> | —      | -      |        |                       | FOS<2:0>            |                     | _     | _     | _     |        |       | FPR<4:0> |        |        |
| 0xF80002 | FWDT    | FWDTEN | —      | _      | _      | _      | _                     | _                   | _                   | _     | _     | FWPS  | A<1:0> |       | FWPSE    | 3<3:0> |        |
| 0xF80004 | FBORPOR | MCLREN | _      | _      | _      | _      | PWMPIN <sup>(1)</sup> | HPOL <sup>(1)</sup> | LPOL <sup>(1)</sup> | BOREN | _     | BORV  | /<1:0> | _     | _        | FPWR   | T<1:0> |
| 0xF80006 | FBS     | _      | _      | RBS    | <1:0>  | _      | —                     | _                   | EBS                 | —     | _     | _     | —      |       | BSS<2:0> |        | BWRP   |
| 0xF80008 | FSS     | _      | _      | RSS    | <1:0>  | -      | _                     | ESS                 | s<1:0>              | —     | _     | —     | _      |       | SSS<2:0> |        | SWRP   |
| 0xF8000A | FGS     | _      | _      | _      | _      | _      | _                     | _                   | _                   | —     | _     | _     | —      | _     | GSS<     | :1:0>  | GWRP   |
| 0xF8000C | FICD    | BKBUG  | COE    | —      | _      |        | —                     |                     |                     | _     | _     | —     | _      | _     | _        | ICS<   | <1:0>  |

Note 1: On the 6011A, 6012A, 6013A and 6014A, these bits are reserved (read as '1' and must be programmed as '1').

## 6.0 OTHER PROGRAMMING **FEATURES**

### 6.1 Erasing Memory

Memory is erased by using an ERASEB, ERASED or ERASEP command, as detailed in Section 8.5 "Command Descriptions". Code memory can be erased by row using ERASEP. Data EEPROM can be erased by row using ERASED. When memory is erased, the affected memory locations are set to '1's.

ERASEB provides several Bulk Erase options. Performing a Chip Erase with the ERASEB command clears all code memory, data EEPROM and code protection registers. Alternatively, ERASEB can be used to selectively erase either all code memory or data EEPROM. Erase options are summarized in Table 6-1.

| Command   | Affected Region                                                                       |
|-----------|---------------------------------------------------------------------------------------|
| ERASEB    | Entire chip <sup>(1)</sup> or all code memory or all data EEPROM, or erase by segment |
| ERASED    | Specified rows of data EEPROM                                                         |
| ERASEP(2) | Specified rows of code memory                                                         |

**TABLE 6-1: ERASE OPTIONS** 

The system operation Configuration Note 1: registers and device ID registers are not erasable.

> 2: ERASEP cannot be used to erase codeprotect Configuration bits. These bits must be erased using ERASEB.

### 6.2 Modifying Memory

Instead of bulk-erasing the device before programming, it is possible that you may want to modify only a section of an already programmed device. In this situation, Chip Erase is not a realistic option.

Instead, you can erase selective rows of code memory and data EEPROM using ERASEP and ERASED, respectively. You can then reprogram the modified rows with the PROGP and PROGD command pairs. In these cases, when code memory is programmed, single-panel programming must be specified in the PROGP command.

For modification of Advanced Code Protection bits for a particular segment, the entire chip must first be erased with the ERASEB command. Alternatively, on devices that support Advanced Security, individual segments (code and/or data EEPROM) may be erased, by suitably changing the MS (Memory Select) field in the ERASEB command. The code-protect Configuration bits can then be reprogrammed using the PROGC command.

Note: If read or write code protection is enabled for a segment, no modifications can be made to that segment until code protection is disabled. Code protection can only be disabled by performing a Chip Erase or by performing a Segment Erase operation for the required segment.

### 6.3 Reading Memory

The READD command reads the data EEPROM, Configuration bits and device ID of the device. This command only returns 16-bit data and operates on 16-bit registers. READD can be used to return the entire contents of data EEPROM.

The READP command reads the code memory of the device. This command only returns 24-bit data packed as described in Section 8.3 "Packed Data Format". READP can be used to read up to 32K instruction words of code memory.

| Note: |                                         |
|-------|-----------------------------------------|
|       | location causes the programming         |
|       | executive to reset. All READD and READP |
|       | commands must specify only valid        |
|       | memory locations.                       |

### 6.4 Programming Executive Software Version

At times, it may be necessary to determine the version of programming executive stored in executive memory. The QVER command performs this function. See Section 8.5.11 "QVER Command" for more details about this command.

### Data EEPROM Information in the 6.5 **Hexadecimal File**

To allow portability of code, the programmer must read the data EEPROM information from the hexadecimal file. If data EEPROM information is not present, a simple warning message should be issued by the programmer. Similarly, when saving a hexadecimal file, all data EEPROM information must be included. An option to not include the data EEPROM information can be provided.

Microchip Technology Inc. believes that this feature is important for the benefit of the end customer.

## 8.5 Command Descriptions

All commands that are supported by the programming executive are described in Section 8.5.1 "SCHECK Command" through Section 8.5.11 "QVER Command".

## 8.5.1 SCHECK COMMAND

| 15 | 12     | 11 0   | ) |
|----|--------|--------|---|
|    | Opcode | Length |   |

| Field  | Description |
|--------|-------------|
| Opcode | 0x0         |
| Length | 0x1         |

The SCHECK command instructs the programming executive to do nothing, but generate a response. This command is used as a "sanity check" to verify that the programming executive is operational.

## Expected Response (2 words):

0x1000 0x0002

Note: This instruction is not required for programming, but is provided for development purposes only.

## 8.5.2 READD COMMAND

| 15        | 12       | 11 | 8     | 7        | 0 |
|-----------|----------|----|-------|----------|---|
| Opcode    |          |    |       | Length   |   |
| Reserved0 |          |    |       | Ν        |   |
|           | Reserved |    |       | Addr_MSB |   |
|           |          |    | Addr_ | LS       |   |

| Field     | Description                                  |
|-----------|----------------------------------------------|
| Opcode    | 0x1                                          |
| Length    | 0x4                                          |
| Reserved0 | 0x0                                          |
| N         | Number of 16-bit words to read (max of 2048) |
| Reserved1 | 0x0                                          |
| Addr_MSB  | MSB of 24-bit source address                 |
| Addr_LS   | LS 16 bits of 24-bit source address          |

The READD command instructs the programming executive to read N 16-bit words of memory starting from the 24-bit address specified by Addr\_MSB and Addr\_LS. This command can only be used to read 16-bit data. It can be used to read data EEPROM, Configuration registers and the device ID.

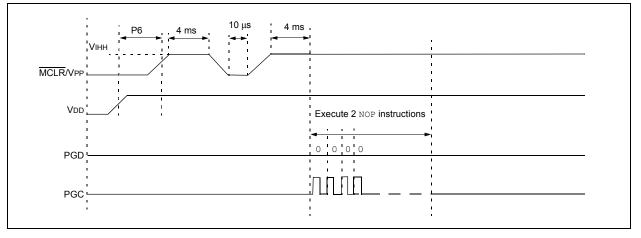
## Expected Response (2+N words):

0x1100 N + 2 Data word 1

Data word N

Note: Reading unimplemented memory will cause the programming executive to reset.

| Bit Field                                                                                                                | Register                 | Description                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------|
| DEVID<15:0>                                                                                                              | DEVID                    | Encodes the device ID.                                                                                   |
| PROC<3:0>                                                                                                                | DEVREV                   | Encodes the process of the device (always read as 0x001).                                                |
| REV<5:0>                                                                                                                 | DEVREV                   | Encodes the major revision number of the device.<br>000000 = A<br>000001 = B<br>000010 = C               |
| DOT<5:0>                                                                                                                 | DEVREV                   | Encodes the minor revision number of the device.<br>000000 = 0<br>000001 = 1<br>000010 = 2<br>000011 = 3 |
| Examples:                                                                                                                |                          |                                                                                                          |
| Rev A.1 = 0000 000                                                                                                       | 0 0000 0001              |                                                                                                          |
| Rev A.2 = 0000 000                                                                                                       | 0 0000 0010              |                                                                                                          |
| Rev B.0 = 0000 000                                                                                                       | 0 0100 0000              |                                                                                                          |
| This formula applies to                                                                                                  | o all dsPIC30F device    | es, with the exception of the following:                                                                 |
| <ul> <li>dsPIC30F6010</li> <li>dsPIC30F6011</li> <li>dsPIC30F6012</li> <li>dsPIC30F6013</li> <li>dsPIC30F6014</li> </ul> |                          | -                                                                                                        |
| Refer to Table 10-1 fo                                                                                                   | r the actual revision II | ٦                                                                                                        |


# TABLE 10-3: DEVICE ID BITS DESCRIPTION

## 11.3 Entering ICSP Mode

The ICSP mode is entered by holding PGC and PGD low, raising  $\overline{\text{MCLR}/\text{VPP}}$  to VIHH (high voltage), and then performing additional steps as illustrated in Figure 11-4.

- Note 1: The sequence that places the device into ICSP mode places all unused I/O pins to the high-impedance state.
  - **2:** Once ICSP mode is entered, the PC is set to 0x0 (the Reset vector).
  - 3: Before leaving the Reset vector, execute two GOTO instructions, followed by a single NOP instruction must be executed.

FIGURE 11-4: ENTERING ICSP™ MODE



# TABLE 11-4:SERIAL INSTRUCTION EXECUTION FOR BULK ERASING PROGRAM MEMORY<br/>(ONLY IN NORMAL-VOLTAGE SYSTEMS) (CONTINUED)

| Command<br>(Binary) | Data<br>(Hexadecimal) | Description                                                                                  |
|---------------------|-----------------------|----------------------------------------------------------------------------------------------|
| 0000                | 200558                | MOV #0x55, W8                                                                                |
| 0000                | 883B38                | MOV W8, NVMKEY                                                                               |
| 0000                | 200AA9                | MOV #0xAA, W9                                                                                |
| 0000                | 883B39                | MOV W9, NVMKEY                                                                               |
| Step 11: Initia     | te the erase cycle.   |                                                                                              |
| 0000                | A8E761                | BSET NVMCON, #WR                                                                             |
| 0000                | 000000                | NOP                                                                                          |
| 0000                | 000000                | NOP                                                                                          |
| -                   | -                     | Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and Timing Requirements") |
| 0000                | 000000                | NOP                                                                                          |
| 0000                | 000000                | NOP                                                                                          |
| 0000                | A9E761                | BCLR NVMCON, #WR                                                                             |
| 0000                | 000000                | NOP                                                                                          |
| 0000                | 000000                | NOP                                                                                          |

**Note 1:** Steps 2-8 are only required for the dsPIC30F5011/5013 devices. These steps may be skipped for all other devices in the dsPIC30F family.

# TABLE 11-5:SERIAL INSTRUCTION EXECUTION FOR ERASING PROGRAM MEMORY<br/>(EITHER IN LOW-VOLTAGE OR NORMAL-VOLTAGE SYSTEMS) (CONTINUED)

| Command<br>(Binary)                                                                                                                                                           | I Data<br>(Hexadecimal)                                                                                                                                                                                             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                               |                                                                                                                                                                                                                     | stored in NVMADRU:NVMADR. When W6 rolls over to 0x0, NVMADRU must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| incr                                                                                                                                                                          | emented.                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0000                                                                                                                                                                          | 430307                                                                                                                                                                                                              | ADD W6, W7, W6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0000                                                                                                                                                                          | AF0042                                                                                                                                                                                                              | BTSC SR, #C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0000                                                                                                                                                                          | EC2764                                                                                                                                                                                                              | INC NVMADRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0000                                                                                                                                                                          | 883B16                                                                                                                                                                                                              | MOV W6, NVMADR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Step 7: Res                                                                                                                                                                   | et device internal PO                                                                                                                                                                                               | ).<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0000                                                                                                                                                                          | 040100                                                                                                                                                                                                              | GOTO 0x100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0000                                                                                                                                                                          | 000000                                                                                                                                                                                                              | NOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Step 8: Rep                                                                                                                                                                   | eat Steps 3-7 until a                                                                                                                                                                                               | Il rows of code memory are erased.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Step 9: Initia                                                                                                                                                                | alize NVMADR and                                                                                                                                                                                                    | NVMADRU to erase executive memory and initialize W7 for row address updates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                               | EB0300                                                                                                                                                                                                              | CLR W6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0000                                                                                                                                                                          | 883B16                                                                                                                                                                                                              | MOV W6, NVMADR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0000                                                                                                                                                                          | 200807                                                                                                                                                                                                              | MOV #0x80, W7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0000                                                                                                                                                                          | 883B27                                                                                                                                                                                                              | MOV W7, NVMADRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0000                                                                                                                                                                          | 200407                                                                                                                                                                                                              | MOV #0x40, W7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Step 10:</b> Se                                                                                                                                                            | et NVMCON to erase                                                                                                                                                                                                  | 1 row of executive memory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0000                                                                                                                                                                          | 24071A                                                                                                                                                                                                              | MOV #0x4071, W10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0000                                                                                                                                                                          | 883B0A                                                                                                                                                                                                              | MOV W10, NVMCON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Step 11: Un                                                                                                                                                                   | lock the NVMCON t                                                                                                                                                                                                   | o erase 1 row of executive memory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0000                                                                                                                                                                          | 200558                                                                                                                                                                                                              | MOV #0x55, W8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0000                                                                                                                                                                          | 883B38                                                                                                                                                                                                              | MOV W8, NVMKEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0000                                                                                                                                                                          | 200AA9                                                                                                                                                                                                              | MOV #0xAA, W9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0000                                                                                                                                                                          | 883B39                                                                                                                                                                                                              | MOV W9, NVMKEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Step 12: Ini                                                                                                                                                                  | tiate the erase cycle                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0000                                                                                                                                                                          | A8E761                                                                                                                                                                                                              | BSET NVMCON, #WR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0000                                                                                                                                                                          | 000000                                                                                                                                                                                                              | NOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0000                                                                                                                                                                          | 000000                                                                                                                                                                                                              | NOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _                                                                                                                                                                             |                                                                                                                                                                                                                     | Eutompolity time VD12o/ me (coo Section 13.0 "AC/DC Characteristics and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                               | _                                                                                                                                                                                                                   | Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0000                                                                                                                                                                          | _                                                                                                                                                                                                                   | Timing Requirements")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                               | 000000                                                                                                                                                                                                              | Timing Requirements")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0000                                                                                                                                                                          | 000000                                                                                                                                                                                                              | Timing Requirements")<br>NOP<br>NOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0000<br>0000                                                                                                                                                                  |                                                                                                                                                                                                                     | Timing Requirements")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0000<br>0000<br>0000                                                                                                                                                          | 000000<br>A9E761                                                                                                                                                                                                    | Timing Requirements")<br>NOP<br>NOP<br>BCLR NVMCON, #WR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0000<br>0000<br>0000<br>0000<br><b>Step 13: U</b> p                                                                                                                           | 000000<br>A9E761<br>000000<br>000000                                                                                                                                                                                | Timing Requirements")<br>NOP<br>NOP<br>BCLR NVMCON, #WR<br>NOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0000<br>0000<br>0000<br>0000<br>Step 13: Up                                                                                                                                   | 000000<br>A9E761<br>000000<br>000000<br>odate the row addres                                                                                                                                                        | Timing Requirements")<br>NOP<br>NOP<br>BCLR NVMCON, #WR<br>NOP<br>NOP<br>Se stored in NVMADR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0000<br>0000<br>0000<br>0000<br>Step 13: Up                                                                                                                                   | 000000<br>A9E761<br>000000<br>000000                                                                                                                                                                                | Timing Requirements")<br>NOP<br>NOP<br>BCLR NVMCON, #WR<br>NOP<br>NOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0000<br>0000<br>0000<br>0000<br>Step 13: Up<br>0000<br>0000                                                                                                                   | 000000<br>A9E761<br>000000<br>odate the row addres<br>430307<br>883B16                                                                                                                                              | Timing Requirements")         NOP         NOP         BCLR NVMCON, #WR         NOP         NOP         Stored in NVMADR.         ADD       W6, W7, W6         MOV       W6, NVMADR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0000<br>0000<br>0000<br>Step 13: Up<br>0000<br>0000<br>Step 14: Re                                                                                                            | 000000<br>A9E761<br>000000<br>odate the row addres<br>430307<br>883B16<br>eset device internal F                                                                                                                    | Timing Requirements")         NOP         NOP         BCLR NVMCON, #WR         NOP         NOP         SS stored in NVMADR.         ADD       W6, W7, W6         MOV       W6, NVMADR         PC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0000<br>0000<br>0000<br>0000<br>Step 13: Up<br>0000<br>0000<br>Step 14: Re                                                                                                    | 000000<br>A9E761<br>000000<br>odate the row addres<br>430307<br>883B16<br>eset device internal F<br>040100                                                                                                          | Timing Requirements")         NOP         NOP         BCLR NVMCON, #WR         NOP         NOP         Ses stored in NVMADR.         ADD       W6, W7, W6         MOV       W6, NVMADR         PC.         GOTO 0x100                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                                                                                                   | 000000<br>A9E761<br>000000<br>odate the row addres<br>430307<br>883B16<br>eset device internal F<br>040100<br>00000                                                                                                 | Timing Requirements")         NOP         NOP         BCLR NVMCON, #WR         NOP         NOP         SS stored in NVMADR.         ADD       W6, W7, W6         MOV       W6, NVMADR         PC.         GOTO 0x100         NOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2000<br>2000<br>Step 13: Up<br>2000<br>Step 14: Re<br>2000<br>Step 15: Re                                                                                                     | 000000<br>A9E761<br>000000<br>odate the row address<br>430307<br>883B16<br>eset device internal F<br>040100<br>000000<br>epeat Steps 10-14 ur                                                                       | Timing Requirements")         NOP         NOP         BCLR NVMCON, #WR         NOP         NOP         NOP         SS stored in NVMADR.         ADD       W6, W7, W6         MOV       W6, NVMADR         PC.         GOTO 0x100         NOP         ntil all 24 rows of executive memory are erased.                                                                                                                                                                                                                                                                                                                                                                                              |
| 2000<br>2000<br>Step 13: Up<br>2000<br>Step 14: Re<br>2000<br>Step 15: Re<br>Step 16: Ini                                                                                     | 000000<br>A9E761<br>000000<br>odate the row addres<br>430307<br>883B16<br>eset device internal F<br>040100<br>00000<br>epeat Steps 10-14 ur<br>tialize NVMADR and                                                   | Timing Requirements")         NOP         NOP         BCLR NVMCON, #WR         NOP         NOP         SS stored in NVMADR.         ADD       W6, W7, W6         MOV       W6, NVMADR         PC.         GOTO 0x100         NOP         ntil all 24 rows of executive memory are erased.         NVMADRU to erase data memory and initialize W7 for row address updates.                                                                                                                                                                                                                                                                                                                          |
| 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                                                                                                   | 000000<br>A9E761<br>000000<br>odate the row addres<br>430307<br>883B16<br>eset device internal F<br>040100<br>000000<br>epeat Steps 10-14 ur<br>tialize NVMADR and<br>2xxxx6                                        | Timing Requirements")         NOP         NOP         BCLR NVMCON, #WR         NOP         NOP         NOP         St stored in NVMADR.         ADD       W6, W7, W6         MOV       W6, NVMADR         PC.         GOTO 0x100         NOP         ntil all 24 rows of executive memory are erased.         INVMADRU to erase data memory and initialize W7 for row address updates.         MOV       # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6</lower>                                                                                                                                                                                                           |
| 0000<br>0000<br><b>Step 13: Up</b><br>0000<br><b>Step 14: Re</b><br>0000<br><b>Step 15: Re</b><br><b>Step 16: Ini</b><br>0000<br>0000                                         | 000000<br>A9E761<br>000000<br>odate the row addres<br>430307<br>883B16<br>eset device internal F<br>040100<br>000000<br>epeat Steps 10-14 ur<br>tialize NVMADR and<br>2xxxx6<br>883B16                              | Timing Requirements")         NOP         NOP         BCLR NVMCON, #WR         NOP         NOP         NOP         NOP         State         ADD       W6, W7, W6         MOV       W6, NVMADR         PC.         GOTO 0x100         NOP         NOP         NOP         ADL         WVMADRU         OC.         GOTO 0x100         NOP         NOP         MOV         # NVMADRU to erase data memory and initialize W7 for row address updates.         MOV       # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6         MOV       W6, NVMADR</lower>                                                                                                                  |
| 0000<br>0000<br><b>Step 13: Up</b><br>0000<br><b>Step 14: Re</b><br>0000<br><b>Step 15: Re</b><br><b>Step 16: Ini</b><br>0000<br>0000<br>0000                                 | 000000<br>A9E761<br>000000<br>odate the row addres<br>430307<br>883B16<br>eset device internal F<br>040100<br>000000<br>epeat Steps 10-14 ur<br>tialize NVMADR and<br>2XXXX6<br>883B16<br>2007F6                    | Timing Requirements")         NOP         NOP         BCLR NVMCON, #WR         NOP         State         ADD       W6, W7, W6         MOV       W6, NVMADR         PC.         GOTO 0x100         NOP         NOP         thil all 24 rows of executive memory are erased.         INVMADRU to erase data memory and initialize W7 for row address updates.         MOV       # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6         MOV       #0x7F, W6</lower>                                                                      |
| 0000<br>0000<br>Step 13: Up<br>0000<br>Step 14: Re<br>0000<br>Step 15: Re                                                                                                     | 000000<br>A9E761<br>000000<br>odate the row addres<br>430307<br>883B16<br>eset device internal F<br>040100<br>000000<br>epeat Steps 10-14 ur<br>tialize NVMADR and<br>2xxxx6<br>883B16                              | Timing Requirements")         NOP         NOP         BCLR NVMCON, #WR         NOP         NOP         NOP         NOP         State         ADD       W6, W7, W6         MOV       W6, NVMADR         PC.         GOTO 0x100         NOP         NOP         NOP         ADL         WVMADRU         OC.         GOTO 0x100         NOP         NOP         MOV         # NVMADRU to erase data memory and initialize W7 for row address updates.         MOV       # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6         MOV       W6, NVMADR</lower>                                                                                                                  |
| 0000<br>0000<br><b>Step 13: Up</b><br>0000<br><b>Step 14: Re</b><br>0000<br><b>Step 15: Re</b><br><b>Step 16: Ini</b><br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000 | 000000<br>A9E761<br>000000<br>odate the row address<br>430307<br>883B16<br>eset device internal F<br>040100<br>00000<br>epeat Steps 10-14 ur<br>tialize NVMADR and<br>2XXXX6<br>83B16<br>2007F6<br>883B16<br>200207 | Timing Requirements")         NOP         NOP         BCLR NVMCON, #WR         NOP         NOP         NOP         NOP         NOP         NOP         NOP         NOP         NOP         State         ADD       W6, W7, W6         MOV       W6, NVMADR         PC.         GOTO 0x100         NOP         NOP         NOP         NUMADRU to erase data memory are erased.         INVMADRU to erase data memory and initialize W7 for row address updates.         MOV       # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6         MOV       #0x7F, W6         MOV       #0x7F, W6         MOV       #0x20, W7</lower>                                              |
| 0000<br>0000<br><b>Step 13: Up</b><br>0000<br><b>Step 14: Re</b><br>0000<br><b>Step 15: Re</b><br><b>Step 16: Ini</b><br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000 | 000000<br>A9E761<br>000000<br>odate the row address<br>430307<br>883B16<br>eset device internal F<br>040100<br>00000<br>epeat Steps 10-14 ur<br>tialize NVMADR and<br>2XXXX6<br>83B16<br>2007F6<br>883B16<br>200207 | Timing Requirements")         NOP         NOP         BCLR NVMCON, #WR         NOP         State         ADD       W6, W7, W6         MOV       W6, NVMADR         PC.         GOTO 0x100         NOP         NOP         thil all 24 rows of executive memory are erased.         INVMADRU to erase data memory and initialize W7 for row address updates.         MOV       # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6         MOV       #0x7F, W6         MOV       #0x7F, W6         MOV       W6, NVMADR</lower> |

# 11.7 Writing Configuration Memory

The FOSC, FWDT, FBORPOR and FICD registers are not erasable. It is recommended that all Configuration registers be set to a default value after erasing program memory. The FWDT, FBORPOR and FICD registers can be set to a default all '1's value by programming 0xFFFF to each register. Since these registers contain unimplemented bits that read as '0' the default values shown in Table 11-6 will be read instead of 0xFFFF. The recommended default FOSC value is 0xC100, which selects the FRC clock oscillator setting.

The FGS, FBS and FSS Configuration registers are special since they enable code protection for the device. For security purposes, once any bit in these registers is programmed to '0' (to enable some code protection feature), it can only be set back to '1' by performing a Bulk Erase or Segment Erase as described in **Section 11.5 "Erasing Program Memory in Normal-Voltage Systems**". Programming these bits from a '0' to '1' is not possible, but they may be programmed from a '1' to a '0' to enable code protection.

Table 11-7 shows the ICSP programming details for clearing the Configuration registers. In Step 1, the Reset vector is exited. In Step 2, the write pointer (W7) is loaded with 0x0000, which is the original destination address (in TBLPAG 0xF8 of program memory). In Step 3, the NVMCON is set to program one Configura-

tion register. In Step 4, the TBLPAG register is initialized, to 0xF8, for writing to the Configuration registers. In Step 5, the value to write to the each Configuration register (0xFFFF) is loaded to W6. In Step 6, the Configuration register data is written to the write latch using the TBLWTL instruction. In Steps 7 and 8, the NVMCON is unlocked for programming and the programming cycle is initiated, as described in Section 11.4 "Flash Memory Programming in ICSP Mode". In Step 9, the internal PC is set to 0x100 as a safety measure to prevent the PC from incrementing into unimplemented memory. Lastly, Steps 3-9 are repeated six times until all seven Configuration registers are cleared.

| TABLE 11-6: | DEFAULT CONFIGURATION |
|-------------|-----------------------|
|             | REGISTER VALUES       |

| Address  | Register | Default Value |
|----------|----------|---------------|
| 0xF80000 | FOSC     | 0xC100        |
| 0xF80002 | FWDT     | 0x803F        |
| 0xF80004 | FBORPOR  | 0x87B3        |
| 0xF80006 | FBS      | 0x310F        |
| 0xF80008 | FSS      | 0x330F        |
| 0xF8000A | FGS      | 0x0007        |
| 0xF8000C | FICD     | 0xC003        |

# TABLE 11-7:SERIAL INSTRUCTION EXECUTION FOR WRITING CONFIGURATION<br/>REGISTERS

| Command<br>(Binary)  | Data<br>(Hexadecimal)      | Description                                     |
|----------------------|----------------------------|-------------------------------------------------|
| Step 1: Exit th      | e Reset vector.            |                                                 |
| 0000<br>0000<br>0000 | 040100<br>040100<br>000000 | GOTO 0x100<br>GOTO 0x100<br>NOP                 |
| Step 2: Initiali     | ze the write pointer (     | W7) for the TBLWT instruction.                  |
| 0000                 | 200007                     | MOV #0x0000, W7                                 |
| Step 3: Set th       | e NVMCON to progr          | am 1 Configuration register.                    |
| 0000                 | 24008A<br>883B0A           | MOV #0x4008, W10<br>MOV W10, NVMCON             |
| Step 4: Initiali     | ze the TBLPAG regis        | ster.                                           |
| 0000<br>0000         | 200F80<br>880190           | MOV #0xF8, W0<br>MOV W0, TBLPAG                 |
| Step 5: Load         | the Configuration reg      | jister data to W6.                              |
| 0000<br>0000         | 2xxxx0<br>000000           | MOV # <config_value>, W0<br/>NOP</config_value> |

| Command<br>(Binary)  | Data<br>(Hexadecimal)  | Description                                                            |
|----------------------|------------------------|------------------------------------------------------------------------|
|                      | he read pointer (W6)   | and load the (next set of) write latches.                              |
| 0000                 | EB0300                 | CLR W6                                                                 |
| 0000                 | 000000                 | NOP                                                                    |
| 0000                 | BB0BB6                 | TBLWTL [W6++], [W7]                                                    |
| 0000                 | 000000                 | NOP                                                                    |
| 0000                 | 000000                 | NOP                                                                    |
| 0000                 | BBDBB6                 | TBLWTH.B [W6++], [W7++]                                                |
| 0000                 | 000000                 | NOP                                                                    |
| 0000                 | 000000                 | NOP                                                                    |
| 0000                 | BBEBB6                 | TBLWTH.B [W6++], [++W7]                                                |
| 0000                 | 000000                 | NOP                                                                    |
| 0000                 | 000000                 | NOP                                                                    |
| 0000                 | BB1BB6                 | TBLWTL [W6++], [W7++]                                                  |
| 0000                 | 000000                 | NOP                                                                    |
| 0000                 | 000000                 | NOP                                                                    |
| 0000                 | BB0BB6                 | TBLWTL [W6++], [W7]                                                    |
| 0000                 | 000000                 | NOP                                                                    |
| 0000                 | 000000                 | NOP                                                                    |
| 0000                 | BBDBB6                 | TBLWTH.B [W6++], [W7++]                                                |
| 0000                 | 000000                 | NOP                                                                    |
| 0000                 | 000000                 | NOP                                                                    |
| 0000                 | BBEBB6                 | TBLWTH.B [W6++], [++W7]                                                |
| 0000                 | 000000                 | NOP                                                                    |
| 0000                 | 000000                 | NOP                                                                    |
| 0000                 | BB1BB6                 | TBLWTL [W6++], [W7++]                                                  |
| 0000                 | 000000                 | NOP                                                                    |
| 0000                 | 000000                 | NOP                                                                    |
| Step 6: Repe         | at steps 4-5 eight tir | nes to load the write latches for 32 instructions.                     |
| Step 7: Unloc        | ck the NVMCON for      | writing.                                                               |
| 0000                 | 200558                 | MOV #0x55, W8                                                          |
| 0000                 | 883B38                 | MOV W8, NVMKEY                                                         |
| 0000                 | 200AA9                 | MOV #0xAA, W9                                                          |
| 0000                 | 883B39                 | MOV W9, NVMKEY                                                         |
| Step 8: Initiat      | te the write cycle.    |                                                                        |
| 0000                 | A8E761                 | BSET NVMCON, #WR                                                       |
| 0000                 | 000000                 | NOP                                                                    |
| 0000                 | 000000                 | NOP                                                                    |
| _                    | _                      | Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and |
|                      |                        | Timing Requirements")                                                  |
| 0000                 | 000000                 | NOP                                                                    |
| 0000                 | 000000                 | NOP                                                                    |
| 0000                 | A9E761                 | BCLR NVMCON, #WR                                                       |
| 0000                 | 000000                 | NOP                                                                    |
|                      | 000000                 | NOP                                                                    |
| 0000                 | t dovice internal DC   |                                                                        |
|                      | i device internal PC.  |                                                                        |
| Step 9: Rese         |                        |                                                                        |
| 0000<br>Step 9: Rese | 040100<br>000000       | GOTO 0x100<br>NOP                                                      |

## TABLE 11-8: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY (CONTINUED)

| Command<br>(Binary) | Data<br>(Hexadecimal) | Description                         |
|---------------------|-----------------------|-------------------------------------|
| Step 4: Output      | t W0:W5 using th      | e VISI register and REGOUT command. |
| 0000                | 883C20                | MOV W0, VISI                        |
| 0000                | 000000                | NOP                                 |
| 0001                | <visi></visi>         | Clock out contents of VISI register |
| 0000                | 000000                | NOP                                 |
| 0000                | 883C21                | MOV W1, VISI                        |
| 0000                | 000000                | NOP                                 |
| 0001                | <visi></visi>         | Clock out contents of VISI register |
| 0000                | 000000                | NOP                                 |
| 0000                | 883C22                | MOV W2, VISI                        |
| 0000                | 000000                | NOP                                 |
| 0001                | <visi></visi>         | Clock out contents of VISI register |
| 0000                | 000000                | NOP                                 |
| 0000                | 883C23                | MOV W3, VISI                        |
| 0000                | 000000                | NOP                                 |
| 0001                | <visi></visi>         | Clock out contents of VISI register |
| 0000                | 000000                | NOP                                 |
| 0000                | 883C24                | MOV W4, VISI                        |
| 0000                | 000000                | NOP                                 |
| 0001                | <visi></visi>         | Clock out contents of VISI register |
| 0000                | 000000                | NOP                                 |
| 0000                | 883C25                | MOV W5, VISI                        |
| 0000                | 000000                | NOP                                 |
| 0001                | <visi></visi>         | Clock out contents of VISI register |
| 0000                | 000000                | NOP                                 |
| Step 5: Reset       | the device intern     | al PC.                              |
| 0000                | 040100                | GOTO 0x100                          |
| 0000                | 000000                | NOP                                 |
| Step 6: Repea       | at steps 3-5 until a  | all desired code memory is read.    |

# TABLE 11-10: SERIAL INSTRUCTION EXECUTION FOR READING CODE MEMORY (CONTINUED)

## 11.11 Reading Configuration Memory

The procedure for reading configuration memory is similar to the procedure for reading code memory, except that 16-bit data words are read instead of 24-bit words. Since there are seven Configuration registers, they are read one register at a time. Table 11-11 shows the ICSP programming details for reading all of the configuration memory. Note that the TBLPAG register is hard-coded to 0xF8 (the upper byte address of configuration memory), and the read pointer W6 is initialized to 0x0000.

## TABLE 11-11: SERIAL INSTRUCTION EXECUTION FOR READING ALL CONFIGURATION MEMORY

| Step 1: Exit the Reset vector.           0000         040100         GOTO 0x100           0000         040100         GOTO 0x100           0000         00000         NOP           Step 2: Initialize TBLPAG, and the read pointer (W6) and the write pointer (W7) for TBLRD instruction.           0000         200F80         MOV         #0xF8, W0           0000         200F80         MOV         #0xF8, W0           0000         EB0300         CLR         W6           0000         EB0380         CLR         W7           0000         000000         NOP         Step 3: Read the Configuration register and write it to the VISI register (located at 0x784).           0000         000000         NOP         NOP           0000         000000         NOP         NOP           0000         883C20         MOV         W0, VISI           0000         000000         NOP         NOP           0000         000000         NOP         NOP           0000         Step 4: Output the VISI register using the REGOUT command.         NOP           0001 <visi>         Clock out contents of VISI register           0001         Step 5: Reset device internal PC.         VISI     <th>Command<br/>(Binary)</th><th>Data<br/>(Hexadecimal)</th><th>Description</th></visi>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Command<br>(Binary)                                                                           | Data<br>(Hexadecimal) | Description                                                             |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------|--|--|--|--|--|--|
| 0000         040100         GOTO 0x100           Step 2: Initializ         TBLPAG, and the read pointer (W6) and the write pointer (W7) for TBLRD instruction.           0000         200F80         MoV         #0xF8, W0           0000         B80190         MOV         W0, TBLPAG           0000         EB0300         CLR         W6           0000         EB0380         CLR         W7           0000         B0080         CLR         W7           0000         D00000         NOP           Step 3: Read the Configuration register and write it to the VISI register (located at 0x784).           0000         BA0BB6         TBLRDL         [W6++], [W7]           0000         D00000         NOP         MOV         W0, VISI           0000         BA0BB6         TBLRDL         [W6++], [W7]           0000         D00000         NOP         MOV         W0, VISI           0000         Ba3220         MOV         W0, VISI         MOV           Step 4: Output the VISI register using the REGOUT command.           0001         Clock out contents of VISI register           0000         NOP           Step 5: Reset device intermal P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Step 1: Exit the Reset vector.                                                                |                       |                                                                         |  |  |  |  |  |  |
| 0000         00000         NOP           Step 2: Initialize TBLPAG, and the read pointer (W6) and the write pointer (W7) for TBLRD instruction.           0000         200F80         MOV         #0xF8, W0           0000         880190         MOV         W0, TBLPAG           0000         EB0300         CLR         W6           0000         EB0380         CLR         W7           0000         O00000         NOP         V           Step 3: Read the Configuration register and write it to the VISI register (located at 0x784).           0000         BA0BB6         TBLRDL [W6++], [W7]           0000         000000         NOP           Step 4: Output the VISI register using the REGOUT command.           0001 <visi> Olock out contents of VISI register           0000         NOP           Step 5: Reset device internal PC.</visi>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0000                                                                                          | 040100                | GOTO 0x100                                                              |  |  |  |  |  |  |
| Step 2: Initialize TBLPAG, and the read pointer (W6) and the write pointer (W7) for TBLRD instruction.           0000         200F80         MOV         #0xF8, W0           0000         880190         MOV         W0, TBLPAG           0000         EB0300         CLR         W6           0000         EB0380         CLR         W7           0000         00000         NOP         V           Step 3: Read the Configuration register and write it to the VISI register (located at 0x784).           0000         000000         NOP           Step 3: Read the Configuration register and write it to the VISI register (located at 0x784).           0000         000000         NOP           0000         000000         NOP           0000         000000         NOP           0000         883c20         MOV         W0, VISI           0000         000000         NOP           Step 4: Output the VISI register using the REGOUT command.           0001 <visi>         Clock out contents of VISI register           0000         00000         NOP           Step 5: Reset device internal PC.</visi>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                               |                       |                                                                         |  |  |  |  |  |  |
| 0000         200F80         MOV         #0xF8, W0           0000         880190         MOV         W0, TBLPAG           0000         EB0300         CLR         W6           0000         EB0380         CLR         W7           0000         D00000         NOP         NOP           Step 3: Read the Configuration register and write it to the VISI register (located at 0x784).           0000         BA0BB6         TBLRDL [W6++], [W7]           0000         000000         NOP           0001 <visi command.<="" register="" regout="" td="" the="" using="">           0001         <visi>         Clock out contents of VISI register           0000         NOP         NOP           Step 5: Reset device internal PC.         VISI &gt;</visi></visi>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                               |                       |                                                                         |  |  |  |  |  |  |
| 0000         880190         MOV         W0, TBLPAG           0000         EB0300         CLR         W6           0000         EB0380         CLR         W7           0000         000000         NOP         Step 3: Read the Configuration register and write it to the VISI register (located at 0x784).           0000         BA0BB6         TBLRDL [W6++], [W7]           0000         000000         NOP           0000         883C20         MOV W0, VISI           0000         000000         NOP           Step 4: Output the VISI register using the REGOUT command.         Clock out contents of VISI register           0001 <visi>         Clock out contents of VISI register           0000         00000         NOP</visi>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Step 2: Initiali                                                                              | ze TBLPAG, and        | the read pointer (W6) and the write pointer (W7) for TBLRD instruction. |  |  |  |  |  |  |
| 0000         EB0300         CLR         W6           0000         EB0380         CLR         W7           0000         00000         NOP           Step 3: Read the Configuration register and write it to the VISI register (located at 0x784).           0000         BA0BB6         TBLRDL [W6++], [W7]           0000         000000         NOP           0001         CVISI register using the REGOUT command.           0001 <visi>         Clock out contents of VISI register           0000         000000         NOP           Step 5: Reset device internal PC.         VISI register</visi>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0000                                                                                          | 200F80                | MOV #0xF8, WO                                                           |  |  |  |  |  |  |
| 0000<br>0000         EB 0380<br>00000         CLR<br>NOP         W7<br>NOP           Step 3: Read         Configuration         register and write it to the VISI register (located at 0x784).           0000         BA0BB6         TBLRDL [W6++], [W7]           0000         000000         NOP           0001         CVISI         Clock out contents of VISI register           0001         CVISI>         Clock out contents of VISI register           0001         Step 5: Reset texter internal PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000                                                                                          | 880190                | MOV W0, TBLPAG                                                          |  |  |  |  |  |  |
| 0000         00000         NoP           Step 3: Read UCONFiguration register and write it to the VISI register (located at 0x784).           0000         BA0BB6         TBLRDL [W6++], [W7]           0000         000000         NoP           Step 4: Output: the VISI register using the REGOUT command.           0001 <visi>         Clock out contents of VISI register           0001         <visi>         Clock out contents of VISI register           0000         NoP         NoP</visi></visi>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0000                                                                                          | EB0300                | CLR W6                                                                  |  |  |  |  |  |  |
| Step 3: Read UP Configuration           Get Configuration           0000         BA0BB6         TBLRDL         [W6++],         [W7]           0000         000000         NOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000                                                                                          | EB0380                | CLR W7                                                                  |  |  |  |  |  |  |
| 0000         BA0BB6         TBLRDL [W6++], [W7]           0000         000000         NOP           0000         000000         NOP           0000         883C20         MOV         W0, VISI           0000         000000         NOP           0000         000000         NOP           Step 4: Output the VISI register using the REGOUT command.         0001           0001 <visi>         Clock out contents of VISI register           0000         000000         NOP</visi>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0000                                                                                          | 000000                | NOP                                                                     |  |  |  |  |  |  |
| 0000         00000         NOP           0000         00000         NOP           0000         883C20         MOV         W0, VISI           0000         000000         NOP           Step 4: Output the VISI register         using the REGOUT command.           0001 <visi>         Clock out contents of VISI register           0000         000000         NOP</visi>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Step 3: Read the Configuration register and write it to the VISI register (located at 0x784). |                       |                                                                         |  |  |  |  |  |  |
| 0000         00000         NOP           0000         883C20         MOV         W0, VISI           0000         000000         NOP           Step 4: Output the VISI register using the REGOUT command.           0001 <visi>         Clock out contents of VISI register           0000         NOP         NOP</visi>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0000                                                                                          | BA0BB6                | TBLRDL [W6++], [W7]                                                     |  |  |  |  |  |  |
| 0000         883C20         MOV         W0, VISI           0000         000000         NOP           Step 4: Output the VISI register using the REGOUT command.           0001 <visi>         Clock out contents of VISI register           0000         000000         NOP           Step 5: Reset device internal PC.</visi>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0000                                                                                          | 000000                | NOP                                                                     |  |  |  |  |  |  |
| 0000         NOP           Step 4: Output the VISI register         using the REGOUT command.           0001 <visi>         Clock out contents of VISI register           0000         000000         NOP</visi>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0000                                                                                          |                       | NOP                                                                     |  |  |  |  |  |  |
| Step 4: Output the VISI register using the REGOUT command.         0001 <visi>       Clock out contents of VISI register         0000       000000       NOP         Step 5: Reset device internal PC.</visi>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                       | MOV W0, VISI                                                            |  |  |  |  |  |  |
| 0001 <visi>       Clock out contents of VISI register         0000       000000       NOP         Step 5: Reset device internal PC.</visi>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0000                                                                                          | 000000                | NOP                                                                     |  |  |  |  |  |  |
| 0000         00000         NOP           Step 5: Reset device internal PC.         Image: Control of the state | Step 4: Output the VISI register using the REGOUT command.                                    |                       |                                                                         |  |  |  |  |  |  |
| Step 5: Reset device internal PC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0001                                                                                          | <visi></visi>         | Clock out contents of VISI register                                     |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000                                                                                          | 000000                | NOP                                                                     |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Step 5: Reset                                                                                 | device internal F     | С.                                                                      |  |  |  |  |  |  |
| 0000 040100 GOTO 0x100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0000                                                                                          | 040100                | GOTO 0x100                                                              |  |  |  |  |  |  |
| 0000 000000 NOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000                                                                                          | 000000                | NOP                                                                     |  |  |  |  |  |  |
| Step 6: Repeat steps 3-5 six times to read all of configuration memory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Step 6: Repea                                                                                 | at steps 3-5 six tir  | nes to read all of configuration memory.                                |  |  |  |  |  |  |

| Device        | Read Code<br>Protection | Checksum Computation | Erased<br>Value | Value with<br>0xAAAAAA at 0x0<br>and Last<br>Code Address |
|---------------|-------------------------|----------------------|-----------------|-----------------------------------------------------------|
| dsPIC30F5016  | Disabled                | CFGB+SUM(0:00AFFF)   | 0xFC06          | 0xFA08                                                    |
|               | Enabled                 | CFGB                 | 0x0404          | 0x0404                                                    |
| dsPIC30F6010  | Disabled                | CFGB+SUM(0:017FFF)   | 0xC406          | 0xC208                                                    |
|               | Enabled                 | CFGB                 | 0x0404          | 0x0404                                                    |
| dsPIC30F6010A | Disabled                | CFGB+SUM(0:017FFF)   | 0xC406          | 0xC208                                                    |
|               | Enabled                 | CFGB                 | 0x0404          | 0x0404                                                    |
| dsPIC30F6011  | Disabled                | CFGB+SUM(0:015FFF)   | 0xF406          | 0xF208                                                    |
|               | Enabled                 | CFGB                 | 0x0404          | 0x0404                                                    |
| dsPIC30F6011A | Disabled                | CFGB+SUM(0:015FFF)   | 0xF406          | 0xF208                                                    |
|               | Enabled                 | CFGB                 | 0x0404          | 0x0404                                                    |
| dsPIC30F6012  | Disabled                | CFGB+SUM(0:017FFF)   | 0xC406          | 0xC208                                                    |
|               | Enabled                 | CFGB                 | 0x0404          | 0x0404                                                    |
| dsPIC30F6012A | Disabled                | CFGB+SUM(0:017FFF)   | 0xC406          | 0xC208                                                    |
|               | Enabled                 | CFGB                 | 0x0404          | 0x0404                                                    |
| dsPIC30F6013  | Disabled                | CFGB+SUM(0:015FFF)   | 0xF406          | 0xF208                                                    |
|               | Enabled                 | CFGB                 | 0x0404          | 0x0404                                                    |
| dsPIC30F6013A | Disabled                | CFGB+SUM(0:015FFF)   | 0xF406          | 0xF208                                                    |
|               | Enabled                 | CFGB                 | 0x0404          | 0x0404                                                    |
| dsPIC30F6014  | Disabled                | CFGB+SUM(0:017FFF)   | 0xC406          | 0xC208                                                    |
|               | Enabled                 | CFGB                 | 0x0404          | 0x0404                                                    |
| dsPIC30F6014A | Disabled                | CFGB+SUM(0:017FFF)   | 0xC406          | 0xC208                                                    |
|               | Enabled                 | CFGB                 | 0x0404          | 0x0404                                                    |
| dsPIC30F6015  | Disabled                | CFGB+SUM(0:017FFF)   | 0xC406          | 0xC208                                                    |
|               | Enabled                 | CFGB                 | 0x0404          | 0x0404                                                    |

# TABLE A-1: CHECKSUM COMPUTATION (CONTINUED)

Item Description:

**SUM(a:b)** = Byte sum of locations a to b inclusive (all 3 bytes of code memory)

**CFGB** = Configuration Block (masked) = Byte sum of ((FOSC&0xC10F) + (FWDT&0x803F) + (FBORPOR&0x87B3) + (FBS&0x310F) + (FSS&0x330F) + (FGS&0x0007) + (FICD&0xC003))

NOTES:

## Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

# QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

## Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC<sup>32</sup> logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-636-4

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.



# **Worldwide Sales and Service**

## AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address:

www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

**Dallas** Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

## ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

**China - Beijing** Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

**China - Chengdu** Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

**China - Chongqing** Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

**China - Hong Kong SAR** Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

**China - Shanghai** Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

**China - Shenzhen** Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

**China - Wuhan** Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

**China - Xian** Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

**China - Xiamen** Tel: 86-592-2388138 Fax: 86-592-2388130

**China - Zhuhai** Tel: 86-756-3210040 Fax: 86-756-3210049

# ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

**India - New Delhi** Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

**Japan - Yokohama** Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

**Malaysia - Penang** Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

**Taiwan - Hsin Chu** Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

**Thailand - Bangkok** Tel: 66-2-694-1351 Fax: 66-2-694-1350

## EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

**Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

**Italy - Milan** Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

**Spain - Madrid** Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

**UK - Wokingham** Tel: 44-118-921-5869 Fax: 44-118-921-5820

08/04/10