

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, I ² S, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	66KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f5013t-20i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 PROGRAMMING EXECUTIVE APPLICATION

3.1 Programming Executive Overview

The programming executive resides in executive memory and is executed when Enhanced ICSP Programming mode is entered. The programming executive provides the mechanism for the programmer (host device) to program and verify the dsPIC30F, using a simple command set and communication protocol.

The following capabilities are provided by the programming executive:

- Read memory
 - Code memory and data EEPROM
 - Configuration registers
 - Device ID
- Erase memory
 - Bulk Erase by segment
 - Code memory (by row)
 - Data EEPROM (by row)
- Program memory
 - Code memory
 - Data EEPROM
 - Configuration registers
- Query
 - Blank Device
 - Programming executive software version

The programming executive performs the low-level tasks required for erasing and programming. This allows the programmer to program the device by issuing the appropriate commands and data.

The programming procedure is outlined in **Section 5.0** "Device Programming".

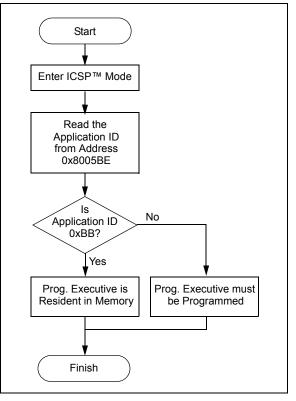
3.2 Programming Executive Code Memory

The programming executive is stored in executive code memory and executes from this reserved region of memory. It requires no resources from user code memory or data EEPROM.

3.3 Programming Executive Data RAM

The programming executive uses the device's data RAM for variable storage and program execution. Once the programming executive has run, no assumptions should be made about the contents of data RAM.

4.0 CONFIRMING THE CONTENTS OF EXECUTIVE MEMORY


Before programming can begin, the programmer must confirm that the programming executive is stored in executive memory. The procedure for this task is illustrated in Figure 4-1.

First, ICSP mode is entered. The unique application ID word stored in executive memory is then read. If the programming executive is resident, the application ID word is 0xBB, which means programming can resume as normal. However, if the application ID word is not 0xBB, the programming executive must be programmed to Executive Code memory using the method described in Section 12.0 "Programming the Programming Executive to Memory".

Section 11.0 "ICSP™ Mode" describes the process for the ICSP programming method. Section 11.13 "Reading the Application ID Word" describes the procedure for reading the application ID word in ICSP mode.

CONFIRMING PRESENCE OF THE PROGRAMMING EXECUTIVE

5.5 Code Memory Programming

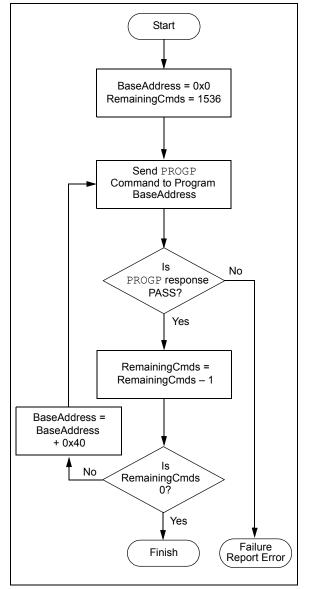
5.5.1 OVERVIEW

The Flash code memory array consists of 512 rows of thirty-two, 24-bit instructions. Each panel stores 16K instruction words, and each dsPIC30F device has either 1, 2 or 3 memory panels (see Table 5-2).

Device	Code Size (24-bit Words)	Number of Rows	Number of Panels
dsPIC30F2010	4K	128	1
dsPIC30F2011	4K	128	1
dsPIC30F2012	4K	128	1
dsPIC30F3010	8K	256	1
dsPIC30F3011	8K	256	1
dsPIC30F3012	8K	256	1
dsPIC30F3013	8K	256	1
dsPIC30F3014	8K	256	1
dsPIC30F4011	16K	512	1
dsPIC30F4012	16K	512	1
dsPIC30F4013	16K	512	1
dsPIC30F5011	22K	704	2
dsPIC30F5013	22K	704	2
dsPIC30F5015	22K	704	2
dsPIC30F5016	22K	704	2
dsPIC30F6010	48K	1536	3
dsPIC30F6010A	48K	1536	3
dsPIC30F6011	44K	1408	3
dsPIC30F6011A	44K	1408	3
dsPIC30F6012	48K	1536	3
dsPIC30F6012A	48K	1536	3
dsPIC30F6013	44K	1408	3
dsPIC30F6013A	44K	1408	3
dsPIC30F6014	48K	1536	3
dsPIC30F6014A	48K	1536	3
dsPIC30F6015	48K	1536	3

TABLE 5-2: DEVICE CODE MEMORY SIZE

5.5.2 PROGRAMMING METHODOLOGY


Code memory is programmed with the PROGP command. PROGP programs one row of code memory to the memory address specified in the command. The number of PROGP commands required to program a device depends on the number of rows that must be programmed in the device.

A flowchart for programming of code memory is illustrated in Figure 5-3. In this example, all 48K instruction words of a dsPIC30F6014A device are programmed. First, the number of commands to send (called 'RemainingCmds' in the flowchart) is set to 1536 and the destination address (called 'BaseAddress') is set to '0'. Next, one row in the device is programmed with a PROGP command. Each PROGP command contains data for one row of code memory of the dsPIC30F6014A. After the first command is processed successfully, 'RemainingCmds' is decremented by 1 and compared to 0. Since there are more PROGP commands to send, 'BaseAddress' is incremented by 0x40 to point to the next row of memory.

On the second PROGP command, the second row of each memory panel is programmed. This process is repeated until the entire device is programmed. No special handling must be performed when a panel boundary is crossed.

FLOWCHART FOR PROGRAMMING dsPIC30F6014A CODE MEMORY

TABLE 5-6: FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013/3014, dsPIC30F4013, dsPIC30F5015/5016, dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015

	Description
OSC	Clock Switching Mode 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
OSC	Oscillator Source Selection on POR 111 = Primary Oscillator 110 = Reserved 101 = Reserved 100 = Reserved 011 = Reserved 010 = Internal Low-Power RC Oscillator 001 = Internal Fast RC Oscillator (no PLL) 000 = Low-Power 32 kHz Oscillator (Timer1 Oscillator)
DSC	Primary Oscillator Mode (when FOS<2:0> = 111b) 11xxx = Reserved (do not use) 10111 = HS/3 w/PLL 16X – HS/3 crystal oscillator with 16X PLL (10 MHz-25 MHz crystal) 10101 = HS/3 w/PLL 8X – HS/3 crystal oscillator with 8X PLL (10 MHz-25 MHz crystal) 10101 = HS/3 w/PLL 4X – HS/3 crystal oscillator with 4X PLL (10 MHz-25 MHz crystal) 10100 = Reserved (do not use) 10011 = HS/2 w/PLL 16X – HS/2 crystal oscillator with 16X PLL (10 MHz-25 MHz crystal) 10010 = HS/2 w/PLL 8X – HS/2 crystal oscillator with 8X PLL (10 MHz-25 MHz crystal) 10001 = HS/2 w/PLL 8X – HS/2 crystal oscillator with 8X PLL (10 MHz-25 MHz crystal) 10001 = HS/2 w/PLL 4X – HS/2 crystal oscillator with 4X PLL (10 MHz-25 MHz crystal) 10000 = Reserved (do not use) 01111 = ECIO w/PLL 16x – External clock with 16x PLL. OSC2 pin is I/O 01101 = ECIO w/PLL 16x – External clock with 8x PLL. OSC2 pin is I/O 01101 = ECIO w/PLL 4x – External clock with 4x PLL. OSC2 pin is I/O 01101 = ECIO w/PLL 4x – External clock with 4x PLL. OSC2 pin is I/O 01101 = ECIO w/PLL 8x – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O 01010 = Reserved (do not use) 01011 = Reserved (do not use) 01011 = XT w/PLL 16X – XT crystal oscillator with 16X PLL 0110 = XT w/PLL 4X – XT crystal oscillator with 8X PLL 0110 = XT w/PLL 4X – XT crystal oscillator with 8X PLL 0110 = XT w/PLL 4X – XT crystal oscillator with 8X PLL 0110 = TRC w/PLL 4X – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O 0111 = FRC w/PLL 4X – XT crystal oscillator with 8X PLL 0100 = Reserved (do not use) 00011 = FRC w/PLL 4X – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O 00010 = Reserved (do not use) 00011 = FRC w/PLL 4X – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 00010 = Reserved (do not use)

TABLE 5-6: FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013/3014, dsPIC30F4013, dsPIC30F5015/5016, dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015 (CONTINUED)

Bit Field	Register	Description
FPR<4:0>	FOSC	Alternate Oscillator Mode (when FOS<2:0> = 011b)
		1xxxx = Reserved (do not use)
		0111x = Reserved (do not use)
		01101 = Reserved (do not use)
		01100 = ECIO – External clock. OSC2 pin is I/O
		01011 = EC – External clock. OSC2 pin is system clock output (Fosc/4)
		01010 = Reserved (do not use)
		01001 = ERC – External RC oscillator. OSC2 pin is system clock output (Fosc/4)
		01000 = ERCIO – External RC oscillator. OSC2 pin is I/O
		00111 = Reserved (do not use)
		00110 = Reserved (do not use)
		00101 = Reserved (do not use)
		00100 = XT – XT crystal oscillator (4 MHz-10 MHz crystal)
		00010 = HS – HS crystal oscillator (10 MHz-25 MHz crystal)
		00001 = Reserved (do not use)
		00000 = XTL – XTL crystal oscillator (200 kHz-4 MHz crystal)

TABLE 5-7:	CONFIGUE	RATION BITS DESCRIPTION
Bit Field	Register	Description
FWPSA<1:0>		Watchdog Timer Prescaler A 11 = 1:512 10 = 1:64 01 = 1:8 00 = 1:1
FWPSB<3:0>	FWDT	Watchdog Timer Prescaler B 1111 = 1:16 1110 = 1:15 0001 = 1:2 0000 = 1:1
FWDTEN	FWDT	 Watchdog Enable 1 = Watchdog enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect) 0 = Watchdog disabled (LPRC oscillator can be disabled by clearing the SWDTEN bit in the RCON register)
MCLREN	FBORPOR	Master Clear Enable1 = Master Clear pin (MCLR) is enabled0 = MCLR pin is disabled
PWMPIN	FBORPOR	Motor Control PWM Module Pin Mode 1 = PWM module pins controlled by PORT register at device Reset (tri-stated) 0 = PWM module pins controlled by PWM module at device Reset (configured as out- put pins)
HPOL	FBORPOR	Motor Control PWM Module High-Side Polarity 1 = PWM module high-side output pins have active-high output polarity 0 = PWM module high-side output pins have active-low output polarity
LPOL	FBORPOR	Motor Control PWM Module Low-Side Polarity 1 = PWM module low-side output pins have active-high output polarity 0 = PWM module low-side output pins have active-low output polarity
BOREN	FBORPOR	PBOR Enable 1 = PBOR enabled 0 = PBOR disabled
BORV<1:0>	FBORPOR	Brown-out Voltage Select 11 = 2.0V (not a valid operating selection) 10 = 2.7V 01 = 4.2V 00 = 4.5V
FPWRT<1:0>	FBORPOR	Power-on Reset Timer Value Select 11 = PWRT = 64 ms 10 = PWRT = 16 ms 01 = PWRT = 4 ms 00 = Power-up Timer disabled
RBS<1:0>	FBS	Boot Segment Data RAM Code Protection (only present in dsPIC30F5011/5013/ 6010A/6011A/6012A/6013A/6014A/6015) 11 = No Data RAM is reserved for Boot Segment 10 = Small-sized Boot RAM [128 bytes of RAM are reserved for Boot Segment] 01 = Medium-sized Boot RAM [256 bytes of RAM are reserved for Boot Segment] 00 = Large-sized Boot RAM [512 bytes of RAM are reserved for Boot Segment in dsPIC30F5011/5013, and 1024 bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015]

TABLE 5-7: CONFIGURATION BITS DESCRIPTION

TABLE 5-7:	CONFIGUR	ATION BITS DESCRIPTION (CONTINUED)
Bit Field	Register	Description
SSS<2:0>	FSS	 Secure Segment Program Memory Code Protection (only present in dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015) 111 = No Secure Segment 110 = Standard security; Small-sized Secure Program Flash [Secure Segment starts after BS and ends at 0x001FFF] 101 = Standard security; Medium-sized Secure Program Flash [Secure Segment starts after BS and ends at 0x003FFF] 100 = Standard security; Large-sized Secure Program Flash [Secure Segment starts after BS and ends at 0x007FFF] 011 = No Secure Segment 010 = High security; Small-sized Secure Program Flash [Secure Segment starts after BS and ends at 0x007FFF] 011 = High security; Medium-sized Secure Program Flash [Secure Segment starts after BS and ends at 0x001FFF] 001 = High security; Medium-sized Secure Program Flash [Secure Segment starts after BS and ends at 0x001FFF] 001 = High security; Medium-sized Secure Program Flash [Secure Segment starts after BS and ends at 0x003FFF] 001 = High security; Medium-sized Secure Program Flash [Secure Segment starts after BS and ends at 0x003FFF] 001 = High security; Large-sized Secure Program Flash [Secure Segment starts after BS and ends at 0x003FFF] 000 = High security; Large-sized Secure Program Flash [Secure Segment starts after BS and ends at 0x003FFF]
SWRP	FSS	Secure Segment Program Memory Write Protection (only present in dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015) 1 = Secure Segment program memory is not write-protected 0 = Secure program memory is write-protected
GSS<1:0>	FGS	General Segment Program Memory Code Protection (only present in dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015) 11 = Code protection is disabled 10 = Standard security code protection is enabled 0x = High security code protection is enabled
GCP	FGS	General Segment Program Memory Code Protection (present in all devices except dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015) 1 = General Segment program memory is not code-protected 0 = General Segment program memory is code-protected
GWRP	FGS	General Segment Program Memory Write Protection 1 = General Segment program memory is not write-protected 0 = General Segment program memory is write-protected
BKBUG	FICD	Debugger/Emulator Enable 1 = Device will reset into Operational mode 0 = Device will reset into Debug/Emulation mode
COE	FICD	Debugger/Emulator Enable 1 = Device will reset into Operational mode 0 = Device will reset into Clip-on Emulation mode
ICS<1:0>	FICD	ICD Communication Channel Select 11 = Communicate on PGC/EMUC and PGD/EMUD 10 = Communicate on EMUC1 and EMUD1 01 = Communicate on EMUC2 and EMUD2 00 = Communicate on EMUC3 and EMUD3
RESERVED	FBS, FSS, FGS	Reserved (read as '1', write as '1')
—	All	Unimplemented (read as '0', write as '0')

TABLE 5-7: CONFIGURATION BITS DESCRIPTION (CONTINUED)

TABLE 5-8: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F2010, dsPIC30F4011/4012 AND dsPIC30F6010/ 6011/6012/6013/ 6014)

Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSN	1<1:0>	—	_	-	_	FOS	<1:0>	—	_	—	—		FPR<3:0>		
0xF80002	FWDT	FWDTEN	_	_	_	_	_	_	_	_	_	FWPS	A<1:0>		FWPSB<3:0>		
0xF80004	FBORPOR	MCLREN	_	_	_	_	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	BOREN	_	BORV	/<1:0>	_	_	FPWR	T<1:0>
0xF80006	FBS	—	_	Reser	ved ⁽²⁾	_	_	_	Reserved ⁽²⁾	_	_	_	_		Reserv	/ed ⁽²⁾	
0xF80008	FSS	—	_	Reser	ved ⁽²⁾	-	_	Rese	rved ⁽²⁾	—	_	_	_		Reserv	/ed ⁽²⁾	
0xF8000A	FGS	—	_	_	_	-	_	—	—	_	_	_	_	_	Reserved ⁽²⁾	GCP	GWRP
0xF8000C	FICD	BKBUG	COE	_	_	—	—	—	—	_	—	_	_	_	_	ICS<	:1:0>

 On the 6011, 6012, 6013 and 6014, these bits are reserved (read as '1' and must be programmed as '1').
 Reserved bits read as '1' and must be programmed as '1'. Note

TABLE 5-9: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F5011/5013)

Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSM	1<1:0>	—	—	-	_	FOS	i<1:0>	—	_	—	—	FPR<3:0>			
0xF80002	FWDT	FWDTEN	_	_	_	—	_	_	_	_	_	FWPS	A<1:0>		FWPSE	3<3:0>	
0xF80004	FBORPOR	MCLREN	_	_	_	—	F	Reserved ⁽¹⁾		BOREN	_	BOR\	/<1:0>	—	_	FPWR	T<1:0>
0xF80006	FBS	_	_	RBS	<1:0>	_	_	—	EBS	—	_	—	—		BSS<2:0>		BWRP
0xF80008	FSS	_	_	RSS	<1:0>	_	—	ESS	<1:0>	_	_	_	_		SSS<2:0>		SWRP
0xF8000A	FGS	_		—	_	—	_	_	_	_	_	—	—	_	GSS<	1:0>	GWRP
0xF8000C	FICD	BKBUG	COE	_	_	—	_	_	_	_	_	_	_	—	_	ICS<	<1:0>

Note 1: Reserved bits read as '1' and must be programmed as '1'.

Opcode	Mnemonic	Length (16-bit words)	Time Out	Description
0x0	SCHECK	1	1 ms	Sanity check.
0x1	READD	4	1 ms/row	Read N 16-bit words of data EEPROM, Configuration registers or device ID starting from specified address.
0x2	READP	4	1 ms/row	Read N 24-bit instruction words of code memory starting from specified address.
0x3	Reserved	N/A	N/A	This command is reserved. It will return a NACK.
0x4	PROGD ⁽²⁾	19	5 ms	Program one row of data EEPROM at the specified address, then verify.
0x5	PROGP(1)	51	5 ms	Program one row of code memory at the specified address, then verify.
0x6	PROGC	4	5 ms	Write byte or 16-bit word to specified Configuration register.
0x7	ERASEB	2	5 ms	Bulk Erase (entire code memory or data EEPROM), or erase by segment.
0x8	ERASED ⁽²⁾	3	5 ms/row	Erase rows of data EEPROM from specified address.
0x9	ERASEP(1)	3	5 ms/row	Erase rows of code memory from specified address.
0xA	QBLANK	3	300 ms	Query if the code memory and data EEPROM are blank.
0xB	QVER	1	1 ms	Query the programming executive software version.

TABLE 8-1: PROGRAMMING EXECUTIVE COMMAND SET

Note 1: One row of code memory consists of (32) 24-bit words. Refer to Table 5-2 for device-specific information.
2: One row of data EEPROM consists of (16) 16-bit words. Refer to Table 5-3 for device-specific information.

8.5.5 PROGP COMMAND

15	12	11	8	7		0				
Орс	ode			L	ength					
	Rese	rved			Addr_MSB					
			Addr_	LS						
			D_^	1						
			D_2	2						
D_N										

Field	Description
Opcode	0x5
Length	0x33
Reserved	0x0
Addr_MSB	MSB of 24-bit destination address
Addr_LS	LS 16 bits of 24-bit destination address
D_1	16-bit data word 1
D_2	16-bit data word 2
	16-bit data word 3 through 47
D_48	16-bit data word 48

The PROGP command instructs the programming executive to program one row of code memory (32 instruction words) to the specified memory address. Programming begins with the row address specified in the command. The destination address should be a multiple of 0x40.

The data to program to memory, located in command words D_1 through D_48, must be arranged using the packed instruction word format shown in Figure 8-2.

After all data has been programmed to code memory, the programming executive verifies the programmed data against the data in the command.

Expected Response (2 words): 0x1500 0x0002

Note: Refer to Table 5-2 for code memory size information.

8.5.6 PROGC COMMAND

15	12	11	8	7		0			
Орс	ode			L	ength				
	Rese	rved			Addr_MSB				
			Addr_	LS					
	Data								

Field	Description	
Opcode	0x6	
Length	0x4	
Reserved	0x0	
Addr_MSB	MSB of 24-bit destination address	
Addr_LS	LS 16 bits of 24-bit destination address	
Data	Data to program	

The PROGC command programs data to the specified Configuration register and verifies the programming. Configuration registers are 16 bits wide, and this command allows one Configuration register to be programmed.

Expected Response (2 words): 0x1600 0x0002

Note: This command can only be used for programming Configuration registers.

8.5.9 ERASEP COMMAND

15	12	11	8	7	0
Орс	ode			Length	
Num_Rows		Addr_MSB			
Addr_LS					

Field	Description	
Opcode	0x9	
Length	0x3	
Num_Rows	Number of rows to erase	
Addr_MSB	MSB of 24-bit base address	
Addr_LS	LS 16 bits of 24-bit base address	

The ERASEP command erases the specified number of rows of code memory from the specified base address. The specified base address must be a multiple of 0x40.

Once the erase is performed, all targeted words of code memory contain 0xFFFFF.

Expected Response (2 words):

0x1900 0x0002

> Note: The ERASEP command cannot be used to erase the Configuration registers or device ID. Code-protect Configuration registers can only be erased with the ERASEB command, while the device ID is read-only.

8.5.10 QBLANK COMMAND

15 12	11 0		
Opcode	Length		
	PSize		
Reserved	DSize		

Field	Description	
Opcode	0xA	
Length	0x3	
PSize	Length of program memory to check (in 24-bit words), max of 49152	
Reserved	0x0	
DSize	Length of data memory to check (in 16-bit words), max of 2048	

The QBLANK command queries the programming executive to determine if the contents of code memory and data EEPROM are blank (contains all '1's). The size of code memory and data EEPROM to check must be specified in the command.

The Blank Check for code memory begins at 0x0 and advances toward larger addresses for the specified number of instruction words. The Blank Check for data EEPROM begins at 0x7FFFFE and advances toward smaller addresses for the specified number of data words.

QBLANK returns a QE_Code of 0xF0 if the specified code memory and data EEPROM are blank. Otherwise, QBLANK returns a QE_Code of 0x0F.

Expected Response (2 words for blank device): 0x1AF0

0x0002

Expected Response (2 words for non-blank device): 0x1A0F 0x0002

Note: The QBLANK command does not check the system Configuration registers. The READD command must be used to determine the state of the Configuration registers.

dsPIC30F Flash Programming Specification

8.5.11 QVER COMMAND

15	12	11

15 12	11 0
Opcode	Length

Field	Description	
Opcode	0xB	
Length	0x1	

The QVER command queries the version of the programming executive software stored in test memory. The "version.revision" information is returned in the response's QE Code using a single byte with the following format: main version in upper nibble and revision in the lower nibble (i.e., 0x23 is version 2.3 of programming executive software).

Expected Response (2 words):

0x1BMN (where "MN" stands for version M.N) 0x0002

9.0 **PROGRAMMING EXECUTIVE** RESPONSES

9.1 Overview

The programming executive sends a response to the programmer for each command that it receives. The response indicates if the command was processed correctly, and includes any required response or error data.

The programming executive response set is shown in Table 9-1. This table contains the opcode, mnemonic and description for each response. The response format is described in Section 9.2 "Response Format".

TABLE 9-1: PROGRAMMING EXECUTIVE RESPONSE SET

Opcode	Mnemonic	Description
0x1	PASS	Command successfully processed.
0x2	FAIL	Command unsuccessfully processed.
0x3	NACK	Command not known.

9.2 **Response Format**

As shown in Example 9-1, all programming executive responses have a general format consisting of a two word header and any required data for the command. Table 9-2 lists the fields and their descriptions.

EXAMPLE 9-1: FORMAT

15 12	11 8	7	0
Opcode	Last_Cmd	QE_Code	
	Lenç	gth	
D_1 (if applicable)			
D_N (if applicable)			

TABLE 9-2: FIELDS AND DESCRIPTIONS

Field	Description	
Opcode	Response opcode.	
Last_Cmd	Programmer command that generated the response.	
QE_Code	Query code or Error code.	
Length	Response length in 16-bit words (includes 2 header words.)	
D_1	First 16-bit data word (if applicable).	
D_N	Last 16-bit data word (if applicable).	

9.2.1 **Opcode FIELD**

The Opcode is a 4-bit field in the first word of the response. The Opcode indicates how the command was processed (see Table 9-1). If the command is processed successfully, the response opcode is PASS. If there is an error in processing the command, the response opcode is FAIL, and the QE Code indicates the reason for the failure. If the command sent to the programming executive is not identified, the programming executive returns a NACK response.

9.2.2 Last Cmd FIELD

The Last Cmd is a 4-bit field in the first word of the response and indicates the command that the programming executive processed. Since the programming executive can only process one command at a time, this field is technically not required. However, it can be used to verify whether the programming executive correctly received the command that the programmer transmitted.

11.0 ICSP™ MODE

11.1 ICSP Mode

ICSP mode is a special programming protocol that allows you to read and write to the dsPIC30F programming executive. The ICSP mode is the second (and slower) method used to program the device. This mode also has the ability to read the contents of executive memory to determine whether the programming executive is present. This capability is accomplished by applying control codes and instructions serially to the device using pins PGC and PGD.

In ICSP mode, the system clock is taken from the PGC pin, regardless of the device's oscillator Configuration bits. All instructions are first shifted serially into an internal buffer, then loaded into the Instruction register and executed. No program fetching occurs from internal memory. Instructions are fed in 24 bits at a time. PGD is used to shift data in and PGC is used as both the serial shift clock and the CPU execution clock.

Data is transmitted on the rising edge and latched on the falling edge of PGC. For all data transmissions, the Least Significant bit (LSb) is transmitted first.

Note 1: During ICSP operation, the operating frequency of PGC must not exceed 5 MHz.
2: Because ICSP is slower, it is recommended that only Enhanced ICSP (E-ICSP) mode be used for device programming, as described in Section 5.1 "Overview of the Programming Process".

11.2 ICSP Operation

Upon entry into ICSP mode, the CPU is idle. Execution of the CPU is governed by an internal state machine. A 4-bit control code is clocked in using PGC and PGD, and this control code is used to command the CPU (see Table 11-1).

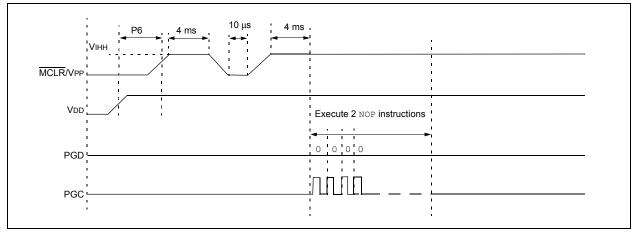
The SIX control code is used to send instructions to the CPU for execution, while the REGOUT control code is used to read data out of the device via the VISI register. The operation details of ICSP mode are provided in Section 11.2.1 "SIX Serial Instruction Execution" and Section 11.2.2 "REGOUT Serial Instruction Execution".

TABLE 11-1:CPU CONTROL CODES IN
ICSP™ MODE

4-bit Control Code	Mnemonic	Description
d0000b	SIX	Shift in 24-bit instruction and execute.
0001b	REGOUT	Shift out the VISI register.
0010b-1111b	N/A	Reserved.

11.2.1 SIX SERIAL INSTRUCTION EXECUTION

The SIX control code allows execution of dsPIC30F assembly instructions. When the SIX code is received, the CPU is suspended for 24 clock cycles as the instruction is then clocked into the internal buffer. Once the instruction is shifted in, the state machine allows it to be executed over the next four clock cycles. While the received instruction is executed, the state machine simultaneously shifts in the next 4-bit command (see Figure 11-2).


- Note 1: Coming out of the ICSP entry sequence, the first 4-bit control code is always forced to SIX and a forced NOP instruction is executed by the CPU. Five additional PGC clocks are needed on startup, thereby resulting in a 9-bit SIX command instead of the normal 4-bit SIX command. After the forced SIX is clocked in, ICSP operation resumes as normal (the next 24 clock cycles load the first instruction word to the CPU). See Figure 11-1 for details.
 - 2: TBLRDH, TBLRDL, TBLWTH and TBLWTL instructions must be followed by a NOP instruction.

11.3 Entering ICSP Mode

The ICSP mode is entered by holding PGC and PGD low, raising $\overline{\text{MCLR}/\text{VPP}}$ to VIHH (high voltage), and then performing additional steps as illustrated in Figure 11-4.

- Note 1: The sequence that places the device into ICSP mode places all unused I/O pins to the high-impedance state.
 - **2:** Once ICSP mode is entered, the PC is set to 0x0 (the Reset vector).
 - 3: Before leaving the Reset vector, execute two GOTO instructions, followed by a single NOP instruction must be executed.

FIGURE 11-4: ENTERING ICSP™ MODE

TABLE 11-5:SERIAL INSTRUCTION EXECUTION FOR ERASING PROGRAM MEMORY
(EITHER IN LOW-VOLTAGE OR NORMAL-VOLTAGE SYSTEMS) (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description
• •		stored in NVMADRU:NVMADR. When W6 rolls over to 0x0, NVMADRU must be
incre	emented.	
0000	430307	ADD W6, W7, W6
0000	AF0042	BTSC SR, #C
0000	EC2764	INC NVMADRU
0000	883B16	MOV W6, NVMADR
Step 7: Res	et device internal PC.	,
0000	040100	GOTO 0x100
0000	000000	NOP
Step 8: Rep	eat Steps 3-7 until all	rows of code memory are erased.
Step 9: Initia	alize NVMADR and N	VMADRU to erase executive memory and initialize W7 for row address updates.
0000	EB0300	CLR W6
0000	883B16	MOV W6, NVMADR
0000	200807	MOV #0x80, W7
0000	883B27	MOV W7, NVMADRU
0000	200407	MOV #0x40, W7
Step 10: Se	t NVMCON to erase	1 row of executive memory.
0000	24071A	MOV #0x4071, W10
0000	883B0A	MOV W10, NVMCON
Step 11: Un	lock the NVMCON to	erase 1 row of executive memory.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 12: Init	tiate the erase cycle.	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_	_	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and Timing Requirements")
0000	000000	NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
Step 13: Up	date the row address	stored in NVMADR.
0000	430307	ADD W6, W7, W6
0000	883B16	MOV W6, NVMADR
Step 14: Re	set device internal PO	Э.
0000	040100	GOTO 0x100
0000	000000	NOP
	peat Steps 10-14 unt	il all 24 rows of executive memory are erased.
Step 15: Re		-
		NVMADRU to erase data memory and initialize W7 for row address updates.
Step 16: Init	tialize NVMADR and	NVMADRU to erase data memory and initialize W7 for row address updates.
Step 16: Init	tialize NVMADR and I	MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6</lower>
Step 16: Init	tialize NVMADR and	
Step 16: Init	2xxxx6 883B16	MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6 MOV W6, NVMADR</lower>
Step 16: Init	2xxxx6 833B16 2007F6	MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6 MOV W6, NVMADR MOV #0x7F, W6</lower>
Step 16: Init	tialize NVMADR and 1 2xxxx6 883B16 2007F6 883B16 200207	MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6 MOV W6, NVMADR MOV #0x7F, W6 MOV W6, NVMADRU</lower>
Step 16: Init	tialize NVMADR and 1 2xxxx6 883B16 2007F6 883B16 200207	MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6 MOV W6, NVMADR MOV #0x7F, W6 MOV W6, NVMADRU MOV #0x20, W7</lower>

(Binary)	Data (Hexadecimal)	Description			
Step 5: Set the read pointer (W6) and load the (next set of) write latches.					
0000	EB0300	CLR W6			
0000	000000	NOP			
0000	BB0BB6	TBLWTL [W6++], [W7]			
0000	000000	NOP			
0000	000000	NOP			
0000	BBDBB6	TBLWTH.B [W6++], [W7++]			
0000	000000	NOP			
0000	000000	NOP			
0000	BBEBB6	TBLWTH.B [W6++], [++W7]			
0000	000000	NOP			
0000	000000	NOP			
0000	BB1BB6	TBLWTL [W6++], [W7++]			
0000	000000	NOP			
0000	000000	NOP			
0000	BB0BB6	TBLWTL [W6++], [W7]			
0000	000000	NOP			
0000	000000	NOP			
0000	BBDBB6	TBLWTH.B [W6++], [W7++]			
0000	000000	NOP			
0000	000000	NOP			
0000	BBEBB6	TBLWTH.B [W6++], [++W7]			
0000	000000	NOP			
0000	000000	NOP			
0000	BB1BB6	TBLWTL [W6++], [W7++]			
0000	000000	NOP			
0000	000000	NOP			
Step 6: Repe	at steps 4-5 eight ti	mes to load the write latches for 32 instructions.			
Step 7: Unloc	ck the NVMCON for	writing.			
0000	200558	MOV #0x55, W8			
0000	883B38	MOV W8, NVMKEY			
0000	200AA9	MOV #0xAA, W9			
0000	883B39	MOV W9, NVMKEY			
Stop 8: Initia	te the write cycle.				
Step 6. millia					
	A8E761	BSET NVMCON, #WR			
0000		BSET NVMCON, #WR NOP			
0000	000000				
0000 0000 0000		NOP NOP			
0000 0000 0000	000000 000000	NOP NOP Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and			
0000 0000 0000 	000000 000000	NOP NOP			
0000 0000 0000 	000000 000000 - 000000	NOP NOP Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and Timing Requirements") NOP			
0000 0000 0000 0000 0000	000000 000000 - 000000 000000	NOP NOP Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and Timing Requirements") NOP NOP			
0000 0000 	000000 000000 - 000000	NOP NOP Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and Timing Requirements") NOP			
0000 0000 0000 	000000 000000 - 000000 000000 A9E761	NOP NOP Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP			
0000 0000 	000000 000000 - 000000 A9E761 000000 000000	NOP NOP Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP			
0000 0000 	000000 000000 - 000000 000000 A9E761 000000 000000 t device internal PC	NOP NOP Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP			
0000 0000 	000000 000000 - 000000 A9E761 000000 000000	NOP NOP Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP			

TABLE 11-8: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY (CONTINUED)

11.9 Writing Data EEPROM

The procedure for writing data EEPROM is very similar to the procedure for writing code memory, except that fewer words are programmed in each operation. When writing data EEPROM, one row of data EEPROM is programmed at a time. Each row consists of sixteen 16-bit data words. Since fewer words are programmed during each operation, only working registers W0:W3 are used as temporary holding registers for the data to be programmed.

Table 11-9 shows the ICSP programming details for writing data EEPROM. Note that a different NVMCON value is required to write to data EEPROM, and that the TBLPAG register is hard-coded to 0x7F (the upper byte address of all locations of data EEPROM).

	OFRIAL INOTRUCTION EVECUTION FOR WRITING RATA FERROM
TABLE 11-9:	SERIAL INSTRUCTION EXECUTION FOR WRITING DATA EEPROM

Command (Binary)	Data (Hexadecimal)	Description
Step 1: Exit th	e Reset vector.	
0000	040100	GOTO 0x100
0000	040100	GOTO 0x100
0000	000000	NOP
Step 2: Set the	e NVMCON to write	16 data words.
0000	24005A	MOV #0x4005, W10
0000	883B0A	MOV W10, NVMCON
Step 3: Initializ	ze the write pointer	W7) for TBLWT instruction.
0000	2007F0	MOV #0x7F, W0
0000	880190	MOV W0, TBLPAG
0000	2xxxx7	MOV # <destinationaddress15:0>, W7</destinationaddress15:0>
Step 4: Load \	W0:W3 with the nex	4 data words to program.
0000	2xxxx0	MOV # <wordo>, WO</wordo>
0000	2xxxx1	MOV # <word1>, W1</word1>
0000	2xxxx2	MOV # <word2>, W2</word2>
0000	2xxxx3	MOV # <word3>, W3</word3>
Step 5: Set the	e read pointer (W6)	and load the (next set of) write latches.
0000	EB0300	CLR W6
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
Step 6: Repea	at steps 4-5 four time	es to load the write latches for 16 data words.

Command (Binary)	Data (Hexadecimal)	Description
Step 4: Output	t W0:W5 using th	e VISI register and REGOUT command.
0000	883C20	MOV W0, VISI
0000	000000	NOP
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
0000	883C21	MOV W1, VISI
0000	000000	NOP
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
0000	883C22	MOV W2, VISI
0000	000000	NOP
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
0000	883C23	MOV W3, VISI
0000	000000	NOP
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
0000	883C24	MOV W4, VISI
0000	000000	NOP
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
0000	883C25	MOV W5, VISI
0000	000000	NOP
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
Step 5: Reset	the device intern	al PC.
0000	040100	GOTO 0x100
0000	000000	NOP
Step 6: Repea	at steps 3-5 until a	all desired code memory is read.

TABLE 11-10: SERIAL INSTRUCTION EXECUTION FOR READING CODE MEMORY (CONTINUED)

AC/DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating Temperature: 25° C is recommended				
Param. No.	Sym	Characteristic	Min	Мах	Units	Conditions	
P9b	TDLY5	Delay between PGD ↓by programming executive to PGD released by programming executive	15	_	μs	—	
P10	TDLY6	Delay between PGD released by programming executive to first PGC ↑ of response	5	_	μs	_	
P11	TDLY7	Delay between clocking out response words	10	—	μs	-	
P12a	TPROG	Row Programming cycle time	1	4	ms	ICSP mode	
P12b	TPROG	Row Programming cycle time	0.8	2.6	ms	Enhanced ICSP mode	
P13a	Tera	Bulk/Row Erase cycle time	1	4	ms	ICSP mode	
P13b	Tera	Bulk/Row Erase cycle time	0.8	2.6	ms	Enhanced ICSP mode	

TABLE 13-1: AC/DC CHARACTERISTICS (CONTINUED)

Device	Read Code Protection	Checksum Computation	Erased Value	Value with 0xAAAAAA at 0x0 and Last Code Address	
dsPIC30F5016	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6010	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6010A	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6011	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6011A	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6012	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6012A	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6013	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6013A	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6014	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6014A	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208	
	Enabled	CFGB	0x0404	0x0404	
dsPIC30F6015	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208	
	Enabled	CFGB	0x0404	0x0404	

TABLE A-1: CHECKSUM COMPUTATION (CONTINUED)

Item Description:

SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory)

CFGB = Configuration Block (masked) = Byte sum of ((FOSC&0xC10F) + (FWDT&0x803F) + (FBORPOR&0x87B3) + (FBS&0x310F) + (FSS&0x330F) + (FGS&0x0007) + (FICD&0xC003))

APPENDIX C: REVISION HISTORY

Note: Revision histories were not recorded for revisions A through H. The previous revision (J), was published in August 2007.

Revision K (November 2010)

This version of the document includes the following updates:

- Added Note three to Section 5.2 "Entering Enhanced ICSP Mode"
- Updated the first paragraph of Section 10.0 "Device ID"
- Updated Table 10-1: Device IDs
- Removed the VARIANT bit and updated the bit definition for the DEVID register in Table 10-2: dsPIC30F Device ID Registers
- Removed the VARIANT bit and updated the bit field definition and description for the DEVID register in Table 10-3: Device ID Bits Description
- Updated Note 3 in Section 11.3 "Entering ICSP Mode"
- Updated Step 11 in Table 11-4: Serial Instruction Execution for BUIk Erasing Program Memory (Only in Normal-voltage Systems)
- Updated Steps 5, 12 and 19 in Table 11-5: Serial Instruction Execution for Erasing Program Memory (Either in Low-voltage or Normal-voltage Systems)
- Updated Steps 5, 6 and 8 in Table 11-7: Serial Instruction Execution for Writing Configuration Registers
- Updated Steps 6 and 8 in Table 11-8: Serial Instruction Execution for Writing Code Memory
- Updated Steps 6 and 8 in Table 11-9: Serial Instruction Execution for Writing Data EEPROM
- Updated Entering ICSP[™] Mode (see Figure 11-4)
- Updated Steps 4 and 11 in Table 12-1: Programming the Programming Executive
- Renamed parameters: P12 to P12a and P13 to P13a, and added parameters P12b and P13b in Table 13-1: AC/DC Characteristics