

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

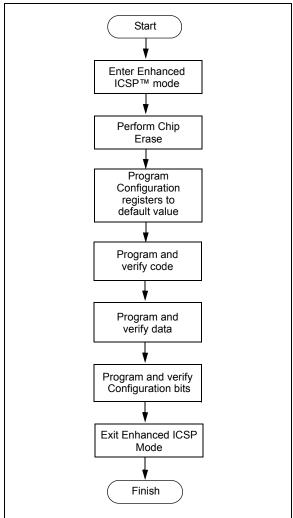
Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	52
Program Memory Size	66KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f5015-20i-pt

5.0 DEVICE PROGRAMMING

5.1 Overview of the Programming Process

Once the programming executive has been verified in memory (or loaded if not present), the dsPIC30F can be programmed using the command set shown in Table 5-1. A detailed description for each command is provided in Section 8.0 "Programming Executive Commands".

TABLE 5-1: COMMAND SET SUMMARY


Command	Description
SCHECK	Sanity check
READD	Read data EEPROM, Configuration registers and device ID
READP	Read code memory
PROGD	Program one row of data EEPROM and verify
PROGP	Program one row of code memory and verify
PROGC	Program Configuration bits and verify
ERASEB	Bulk Erase, or erase by segment
ERASED	Erase data EEPROM
ERASEP	Erase code memory
QBLANK	Query if the code memory and data EEPROM are blank
QVER	Query the software version

A high-level overview of the programming process is illustrated in Figure 5-1. The process begins by entering Enhanced ICSP mode. The chip is then bulk erased, which clears all memory to '1' and allows the device to be programmed. The Chip Erase is verified before programming begins. Next, the code memory, data Flash and Configuration bits are programmed. As these memories are programmed, they are each verified to ensure that programming was successful. If no errors are detected, the programming is complete and Enhanced ICSP mode is exited. If any of the verifications fail, the procedure should be repeated, starting from the Chip Erase.

If Advanced Security features are enabled, then individual Segment Erase operations need to be performed, based on user selections (i.e., based on the specific needs of the user application). The specific operations that are used typically depend on the order in which various segments need to be programmed for a given application or system.

Section 5.2 "Entering Enhanced ICSP Mode" through Section 5.8 "Exiting Enhanced ICSP Mode" describe the programming process in detail.

FIGURE 5-1: PROGRAMMING FLOW

5.5.3 PROGRAMMING VERIFICATION

Once code memory is programmed, the contents of memory can be verified to ensure that programming was successful. Verification requires code memory to be read back and compared against the copy held in the programmer's buffer.

The READP command can be used to read back all the programmed code memory.

Alternatively, you can have the programmer perform the verification once the entire device is programmed using a checksum computation, as described in **Section 6.8 "Checksum Computation"**.

5.6 Data EEPROM Programming

5.6.1 OVERVIEW

The panel architecture for the data EEPROM memory array consists of 128 rows of sixteen 16-bit data words. Each panel stores 2K words. All devices have either one or no memory panels. Devices with data EEPROM provide either 512 words, 1024 words or 2048 words of memory on the one panel (see Table 5-3).

TABLE 5-3: DATA EEPROM SIZE

Device	Data EEPROM Size (Words)	Number of Rows
dsPIC30F2010	512	32
dsPIC30F2011	0	0
dsPIC30F2012	0	0
dsPIC30F3010	512	32
dsPIC30F3011	512	32
dsPIC30F3012	512	32
dsPIC30F3013	512	32
dsPIC30F3014	512	32
dsPIC30F4011	512	32
dsPIC30F4012	512	32
dsPIC30F4013	512	32
dsPIC30F5011	512	32
dsPIC30F5013	512	32
dsPIC30F5015	512	32
dsPIC30F5016	512	32
dsPIC30F6010	2048	128
dsPIC30F6010A	2048	128
dsPIC30F6011	1024	64
dsPIC30F6011A	1024	64
dsPIC30F6012	2048	128
dsPIC30F6012A	2048	128
dsPIC30F6013	1024	64
dsPIC30F6013A	1024	64
dsPIC30F6014	2048	128
dsPIC30F6014A	2048	128
dsPIC30F6015	2048	128

5.6.2 PROGRAMMING METHODOLOGY

The programming executive uses the PROGD command to program the data EEPROM. Figure 5-4 illustrates the flowchart of the process. Firstly, the number of rows to program (RemainingRows) is based on the device size, and the destination address (DestAddress) is set to '0'. In this example, 128 rows (2048 words) of data EEPROM will be programmed.

The first PROGD command programs the first row of data EEPROM. Once the command completes successfully, 'RemainingRows' is decremented by 1 and compared with 0. Since there are 127 more rows to program, 'BaseAddress' is incremented by 0x20 to point to the next row of data EEPROM. This process is then repeated until all 128 rows of data EEPROM are programmed.

FIGURE 5-4: FLOWCHART FOR PROGRAMMING dsPIC30F6014A DATA EEPROM

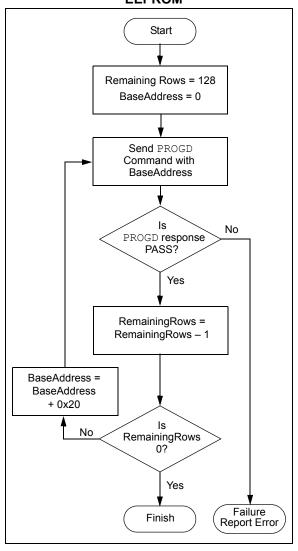


TABLE 5-6: FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013/3014, dsPIC30F4013, dsPIC30F5015/5016, dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015

Bit Field	Register	Description
FCKSM<1:0>	FOSC	Clock Switching Mode 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
		01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
		00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
FOS<2:0>	FOSC	Oscillator Source Selection on POR
		111 = Primary Oscillator 110 = Reserved
		110 - Reserved
		100 = Reserved
		011 = Reserved
		010 = Internal Low-Power RC Oscillator
		001 = Internal Fast RC Oscillator (no PLL)
		000 = Low-Power 32 kHz Oscillator (Timer1 Oscillator)
FPR<4:0>	FOSC	Primary Oscillator Mode (when FOS<2:0> = 111b)
		11xxx = Reserved (do not use) 10111 = HS/3 w/PLL 16X – HS/3 crystal oscillator with 16X PLL
		(10 MHz-25 MHz crystal)
		10110 = HS/3 w/PLL 8X – HS/3 crystal oscillator with 8X PLL
		(10 MHz-25 MHz crystal)
		10101 = HS/3 w/PLL 4X – HS/3 crystal oscillator with 4X PLL
		(10 MHz-25 MHz crystal)
		10100 = Reserved (do not use) 10011 = HS/2 w/PLL 16X – HS/2 crystal oscillator with 16X PLL
		(10 MHz-25 MHz crystal)
		10010 = HS/2 w/PLL 8X – HS/2 crystal oscillator with 8X PLL
		(10 MHz-25 MHz crystal
		10001 = HS/2 w/PLL 4X – HS/2 crystal oscillator with 4X PLL
		(10 MHz-25 MHz crystal)
		10000 = Reserved (do not use)
		01111 = ECIO w/PLL 16x – External clock with 16x PLL. OSC2 pin is I/O 01110 = ECIO w/PLL 8x – External clock with 8x PLL. OSC2 pin is I/O
		01110 = ECIO w/PLL 4x - External clock with 4x PLL. OSC2 pin is I/O
		01100 = Reserved (do not use)
		01011 = Reserved (do not use)
		01010 = FRC w/PLL 8x – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O
		01001 = Reserved (do not use)
		01000 = Reserved (do not use)
		00111 = XT w/PLL 16X – XT crystal oscillator with 16X PLL 00110 = XT w/PLL 8X – XT crystal oscillator with 8X PLL
		00110 - XT W/PLL 4X - XT crystal oscillator with 4X PLL
		00100 = Reserved (do not use)
		00011 = FRC w/PLL 16x – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O
		00010 = Reserved (do not use)
		00001 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O
		00000 = Reserved (do not use)

TABLE 5-6: FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013/3014, dsPIC30F4013, dsPIC30F5015/5016, dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015 (CONTINUED)

Bit Field	Register	Description
FPR<4:0>	FOSC	Alternate Oscillator Mode (when FOS<2:0> = 011b)
		1xxxx = Reserved (do not use)
		0111x = Reserved (do not use)
		01101 = Reserved (do not use)
		01100 = ECIO – External clock. OSC2 pin is I/O
		01011 = EC – External clock. OSC2 pin is system clock output (Fosc/4)
		01010 = Reserved (do not use)
		01001 = ERC – External RC oscillator. OSC2 pin is system clock output (Fosc/4)
		01000 = ERCIO – External RC oscillator. OSC2 pin is I/O
		00111 = Reserved (do not use)
		00110 = Reserved (do not use)
		00101 = Reserved (do not use)
		00100 = XT – XT crystal oscillator (4 MHz-10 MHz crystal)
		00010 = HS – HS crystal oscillator (10 MHz-25 MHz crystal)
		00001 = Reserved (do not use)
		00000 = XTL – XTL crystal oscillator (200 kHz-4 MHz crystal)

TABLE 5-7: CONFIGURATION BITS DESCRIPTION

Bit Field	Register	Description
FWPSA<1:0>	FWDT	Watchdog Timer Prescaler A 11 = 1:512 10 = 1:64 01 = 1:8 00 = 1:1
FWPSB<3:0>	FWDT	Watchdog Timer Prescaler B 1111 = 1:16 1110 = 1:15
FWDTEN	FWDT	Watchdog Enable 1 = Watchdog enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect) 0 = Watchdog disabled (LPRC oscillator can be disabled by clearing the SWDTEN bit in the RCON register)
MCLREN	FBORPOR	Master Clear Enable 1 = Master Clear pin (MCLR) is enabled 0 = MCLR pin is disabled
PWMPIN	FBORPOR	Motor Control PWM Module Pin Mode 1 = PWM module pins controlled by PORT register at device Reset (tri-stated) 0 = PWM module pins controlled by PWM module at device Reset (configured as output pins)
HPOL	FBORPOR	Motor Control PWM Module High-Side Polarity 1 = PWM module high-side output pins have active-high output polarity 0 = PWM module high-side output pins have active-low output polarity
LPOL	FBORPOR	Motor Control PWM Module Low-Side Polarity 1 = PWM module low-side output pins have active-high output polarity 0 = PWM module low-side output pins have active-low output polarity
BOREN	FBORPOR	PBOR Enable 1 = PBOR enabled 0 = PBOR disabled
BORV<1:0>	FBORPOR	Brown-out Voltage Select 11 = 2.0V (not a valid operating selection) 10 = 2.7V 01 = 4.2V 00 = 4.5V
FPWRT<1:0>	FBORPOR	Power-on Reset Timer Value Select 11 = PWRT = 64 ms 10 = PWRT = 16 ms 01 = PWRT = 4 ms 00 = Power-up Timer disabled
RBS<1:0>	FBS	Boot Segment Data RAM Code Protection (only present in dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015) 11 = No Data RAM is reserved for Boot Segment 10 = Small-sized Boot RAM [128 bytes of RAM are reserved for Boot Segment] 01 = Medium-sized Boot RAM [256 bytes of RAM are reserved for Boot Segment] 00 = Large-sized Boot RAM [512 bytes of RAM are reserved for Boot Segment in dsPIC30F5011/5013, and 1024 bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015]

8.5.3 READP COMMAND

15	12	11	8	7		0
Opc	ode			Le	ngth	
			N			
	Rese	rved			Addr_MSB	
Addr_LS						

Field	Description
Opcode	0x2
Length	0x4
N	Number of 24-bit instructions to read (max of 32768)
Reserved	0x0
Addr_MSB	MSB of 24-bit source address
Addr_LS	LS 16 bits of 24-bit source address

The READP command instructs the programming executive to read N 24-bit words of code memory starting from the 24-bit address specified by Addr MSB and Addr LS. This command can only be used to read 24-bit data. All data returned in response to this command uses the packed data format described in Section 8.3 "Packed Data Format".

Expected Response (2 + 3 * N/2 words for N even): 0x1200

2 + 3 * N/2

Least significant program memory word 1

Least significant data word N

Expected Response (4 + 3 * (N - 1)/2 words for N odd):

0x1200

4 + 3 * (N - 1)/2

Least significant program memory word 1

MSB of program memory word N (zero padded)

Note:	Readin	ıg u	nimplemented	memory	will
	cause	the	programming	executive	to
	reset.				

8.5.4 PROGD COMMAND

15	12	11	8	7		0
Opcode				Leng	th	
	Rese	rved			Addr_MSB	
			Addr_	LS		
			D_^	1		
			D_2	2		
			D_1	6		

Field	Description
Opcode	0x4
Length	0x13
Reserved	0x0
Addr_MSB	MSB of 24-bit destination address
Addr_LS	LS 16 bits of 24-bit destination address
D_1	16-bit data word 1
D_2	16-bit data word 2
•••	16-bit data words 3 through 15
D_16	16-bit data word 16

The PROGD command instructs the programming executive to program one row of data EEPROM. The data to be programmed is specified by the 16 data words (D_1, D_2,..., D_16) and is programmed to the destination address specified by Addr MSB and Addr LSB. The destination address should be a multiple of 0x20.

Once the row of data EEPROM has been programmed, the programming executive verifies the programmed data against the data in the command.

Expected Response (2 words):

0x1400 0x0002

> Note: Refer to Table 5-3 for data EEPROM size information.

8.5.9 ERASEP COMMAND

15	12	11	8	7	0
Opco	ode			Length	
Num_Rows			Addr_MSB		
			Addr_	LS	

Field	Description
Opcode	0x9
Length	0x3
Num_Rows	Number of rows to erase
Addr_MSB	MSB of 24-bit base address
Addr_LS	LS 16 bits of 24-bit base address

The ERASEP command erases the specified number of rows of code memory from the specified base address. The specified base address must be a multiple of 0x40.

Once the erase is performed, all targeted words of code memory contain 0xFFFFFF.

Expected Response (2 words):

0x1900 0x0002

Note: The ERASEP command cannot be used to erase the Configuration registers or device ID. Code-protect Configuration registers can only be erased with the ERASEB command, while the device ID is read-only.

8.5.10 OBLANK COMMAND

15 12	11 0
Opcode	Length
	PSize
Reserved	DSize

Field	Description
Opcode	0xA
Length	0x3
PSize	Length of program memory to check (in 24-bit words), max of 49152
Reserved	0x0
DSize	Length of data memory to check (in 16-bit words), max of 2048

The QBLANK command queries the programming executive to determine if the contents of code memory and data EEPROM are blank (contains all '1's). The size of code memory and data EEPROM to check must be specified in the command.

The Blank Check for code memory begins at 0x0 and advances toward larger addresses for the specified number of instruction words. The Blank Check for data EEPROM begins at 0x7FFFFE and advances toward smaller addresses for the specified number of data words.

QBLANK returns a QE_Code of 0xF0 if the specified code memory and data EEPROM are blank. Otherwise, QBLANK returns a QE_Code of 0x0F.

Expected Response (2 words for blank device):

0x1AF0 0x0002

Expected Response (2 words for non-blank device):

0x1A0F 0x0002

Note: The QBLANK command does not check the system Configuration registers. The READD command must be used to determine the state of the Configuration registers.

8.5.11 QVER COMMAND

15 12	11 0
Opcode	Length

Field	Description	
Opcode	0xB	
Length	0x1	

The QVER command queries the version of the programming executive software stored in test memory. The "version.revision" information is returned in the response's QE_Code using a single byte with the following format: main version in upper nibble and revision in the lower nibble (i.e., 0x23 is version 2.3 of programming executive software).

Expected Response (2 words):

0x1BMN (where "MN" stands for version M.N) 0x0002

9.0 PROGRAMMING EXECUTIVE RESPONSES

9.1 Overview

The programming executive sends a response to the programmer for each command that it receives. The response indicates if the command was processed correctly, and includes any required response or error data

The programming executive response set is shown in Table 9-1. This table contains the opcode, mnemonic and description for each response. The response format is described in **Section 9.2** "**Response Format**".

TABLE 9-1: PROGRAMMING EXECUTIVE RESPONSE SET

Opcode	Mnemonic	Description
0x1	PASS	Command successfully processed.
0x2	FAIL	Command unsuccessfully processed.
0x3	NACK	Command not known.

9.2 Response Format

As shown in Example 9-1, all programming executive responses have a general format consisting of a two word header and any required data for the command. Table 9-2 lists the fields and their descriptions.

EXAMPLE 9-1: FORMAT

15 12	11 8	7	0
Opcode	Last_Cmd	QE_Code	
	Lenç	gth	
	D_1 (if ap	plicable)	
D_N (if applicable)			

TABLE 9-2: FIELDS AND DESCRIPTIONS

Field	Description
Opcode	Response opcode.
Last_Cmd	Programmer command that generated the response.
QE_Code	Query code or Error code.
Length	Response length in 16-bit words (includes 2 header words.)
D_1	First 16-bit data word (if applicable).
D_N	Last 16-bit data word (if applicable).

9.2.1 Opcode FIELD

The Opcode is a 4-bit field in the first word of the response. The Opcode indicates how the command was processed (see Table 9-1). If the command is processed successfully, the response opcode is PASS. If there is an error in processing the command, the response opcode is FAIL, and the QE_Code indicates the reason for the failure. If the command sent to the programming executive is not identified, the programming executive returns a NACK response.

9.2.2 Last_Cmd FIELD

The Last_Cmd is a 4-bit field in the first word of the response and indicates the command that the programming executive processed. Since the programming executive can only process one command at a time, this field is technically not required. However, it can be used to verify whether the programming executive correctly received the command that the programmer transmitted.

TABLE 10-3: DEVICE ID BITS DESCRIPTION

Bit Field	Register	Description	
DEVID<15:0>	DEVID	Encodes the device ID.	
PROC<3:0>	DEVREV	Encodes the process of the device (always read as 0x001).	
REV<5:0>	DEVREV	Encodes the major revision number of the device. 000000 = A 000001 = B 000010 = C	
DOT<5:0>	DEVREV	Encodes the minor revision number of the device. 000000 = 0 000001 = 1 000010 = 2 000011 = 3	

Examples:

Rev A.1 = 0000 0000 0000 0001

Rev A.2 = 0000 0000 0000 0010

Rev B.0 = 0000 0000 0100 0000

This formula applies to all dsPIC30F devices, with the exception of the following:

- dsPIC30F6010
- dsPIC30F6011
- dsPIC30F6012
- dsPIC30F6013
- dsPIC30F6014

Refer to Table 10-1 for the actual revision IDs.

TABLE 11-4: SERIAL INSTRUCTION EXECUTION FOR BULK ERASING PROGRAM MEMORY (ONLY IN NORMAL-VOLTAGE SYSTEMS) (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description	
0000	200558	MOV #0x55, W8	
0000	883B38	MOV W8, NVMKEY	
0000	200AA9	MOV #0xAA, W9	
0000	883B39	MOV W9, NVMKEY	
Step 11: Initia	te the erase cycle.		
0000	A8E761	BSET NVMCON, #WR	
0000	000000	NOP	
0000	000000	NOP	
_	_	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and	
		Timing Requirements")	
0000	000000	NOP	
0000	000000	NOP	
0000	A9E761	BCLR NVMCON, #WR	
0000	000000	NOP	
0000	000000	NOP	

Note 1: Steps 2-8 are only required for the dsPIC30F5011/5013 devices. These steps may be skipped for all other devices in the dsPIC30F family.

TABLE 11-7: SERIAL INSTRUCTION EXECUTION FOR WRITING CONFIGURATION REGISTERS (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description
Step 6: Write	the Configuration reg	gister data to the write latch and increment the write pointer.
0000	BB1B96	TBLWTL W6, [W7++]
0000	000000	NOP
0000	000000	NOP
Step 7: Unlock	k the NVMCON for p	programming.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 8: Initiate	e the write cycle.	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_	_	Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and
		Timing Requirements")
0000	000000	NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
Step 9: Reset	device internal PC.	
0000	040100	GOTO 0x100
0000	000000	NOP
Step 10: Repe	eat steps 3-9 until all	7 Configuration registers are cleared.

TABLE 11-8: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY (CONTINUED)

0000		
	ne read pointer (W6	and load the (next set of) write latches.
0000	EB0300	CLR W6
0000	000000	NOP
0000	BB0BB6	TBLWTL [W6++], [W7]
0000	000000	NOP
0000	000000	NOP
0000	BBDBB6	TBLWTH.B [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BBEBB6	TBLWTH.B [W6++], [++W7]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BB0BB6	TBLWTL [W6++], [W7]
0000	000000	NOP
0000	000000	NOP
0000	BBDBB6	TBLWTH.B [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BBEBB6	TBLWTH.B [W6++], [++W7]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
Step 6: Repe	at steps 4-5 eight ti	nes to load the write latches for 32 instructions.
Step 7: Unloc	k the NVMCON for	writing.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 8: Initiat	e the write cycle.	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_	_	Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and
		Timing Requirements")
0000	000000	NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
	t device internal PC	
0000	040100	GOTO 0x100
0000	000000	NOP
		I code memory is programmed.

11.9 Writing Data EEPROM

The procedure for writing data EEPROM is very similar to the procedure for writing code memory, except that fewer words are programmed in each operation. When writing data EEPROM, one row of data EEPROM is programmed at a time. Each row consists of sixteen 16-bit data words. Since fewer words are programmed

during each operation, only working registers W0:W3 are used as temporary holding registers for the data to be programmed.

Table 11-9 shows the ICSP programming details for writing data EEPROM. Note that a different NVMCON value is required to write to data EEPROM, and that the TBLPAG register is hard-coded to 0x7F (the upper byte address of all locations of data EEPROM).

TABLE 11-9: SERIAL INSTRUCTION EXECUTION FOR WRITING DATA EEPROM

Command (Binary)	Data (Hexadecimal)	Description
Step 1: Exit th	ne Reset vector.	
0000	040100	GOTO 0x100
0000	040100	GOTO 0x100
0000	000000	NOP
Step 2: Set th	e NVMCON to write	16 data words.
0000	24005A	MOV #0x4005, W10
0000	883B0A	MOV W10, NVMCON
Step 3: Initiali	ze the write pointer	(W7) for TBLWT instruction.
0000	2007F0	MOV #0x7F, W0
0000	880190	MOV WO, TBLPAG
0000	2xxxx7	MOV # <destinationaddress15:0>, W7</destinationaddress15:0>
Step 4: Load	W0:W3 with the nex	t 4 data words to program.
0000	2xxxx0	MOV # <wordo>, WO</wordo>
0000	2xxxx1	MOV # <word1>, W1</word1>
0000	2xxxx2	MOV # <word2>, W2</word2>
0000	2xxxx3	MOV # <word3>, W3</word3>
Step 5: Set th	e read pointer (W6)	and load the (next set of) write latches.
0000	EB0300	CLR W6
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
Step 6: Renea	at steps 4-5 four time	es to load the write latches for 16 data words.
p	at otopo i o ioui tiili	to load the fille lateries for to data words.

TABLE 11-10: SERIAL INSTRUCTION EXECUTION FOR READING CODE MEMORY (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description	
Step 4: Outpu	t W0:W5 using th	ne VISI register and REGOUT command.	
0000	883C20	MOV WO, VISI	
0000	000000	NOP	
0001	<visi></visi>	Clock out contents of VISI register	
0000	000000	NOP	
0000	883C21	MOV W1, VISI	
0000	000000	NOP	
0001	<visi></visi>	Clock out contents of VISI register	
0000	000000	NOP	
0000	883C22	MOV W2, VISI	
0000	000000	NOP	
0001	<visi></visi>	Clock out contents of VISI register	
0000	000000	NOP	
0000	883C23	MOV W3, VISI	
0000	000000	NOP	
0001	<visi></visi>	Clock out contents of VISI register	
0000	000000	NOP	
0000	883C24	MOV W4, VISI	
0000	000000	NOP	
0001	<visi></visi>	Clock out contents of VISI register	
0000	000000	NOP	
0000	883C25	MOV W5, VISI	
0000	000000	NOP	
0001	<visi></visi>	Clock out contents of VISI register	
0000	000000	NOP	
Step 5: Reset the device internal PC.			
0000	040100	GOTO 0x100	
0000	000000	NOP	
Step 6: Repeat steps 3-5 until all desired code memory is read.			

11.11 Reading Configuration Memory

The procedure for reading configuration memory is similar to the procedure for reading code memory, except that 16-bit data words are read instead of 24-bit words. Since there are seven Configuration registers, they are read one register at a time.

Table 11-11 shows the ICSP programming details for reading all of the configuration memory. Note that the TBLPAG register is hard-coded to 0xF8 (the upper byte address of configuration memory), and the read pointer W6 is initialized to 0x0000.

TABLE 11-11: SERIAL INSTRUCTION EXECUTION FOR READING ALL CONFIGURATION MEMORY

Command (Binary)	Data (Hexadecimal)	Description				
Step 1: Exit t	Step 1: Exit the Reset vector.					
0000	040100	GOTO 0x100				
0000	040100	GOTO 0x100				
0000	000000	NOP				
Step 2: Initial	ize TBLPAG, and	the read pointer (W6) and the write pointer (W7) for TBLRD instruction.				
0000	200F80	MOV #0xF8, WO				
0000	880190	MOV WO, TBLPAG				
0000	EB0300	CLR W6				
0000	EB0380	CLR W7				
0000	000000	NOP				
Step 3: Read	the Configuration	register and write it to the VISI register (located at 0x784).				
0000	BA0BB6	TBLRDL [W6++], [W7]				
0000	000000	NOP				
0000	000000	NOP				
0000	883C20	MOV WO, VISI				
0000	000000	NOP				
Step 4: Outpu	ut the VISI registe	r using the REGOUT command.				
0001	<visi></visi>	Clock out contents of VISI register				
0000	000000	NOP				
Step 5: Rese	Step 5: Reset device internal PC.					
0000	040100	GOTO 0x100				
0000	000000	NOP				
Step 6: Repe	at steps 3-5 six tir	nes to read all of configuration memory.				

11.13 Reading the Application ID Word

The application ID word is stored at address 0x8005BE in executive code memory. To read this memory location, you must use the SIX control code to move this program memory location to the VISI register. The REGOUT control code must then be used to clock the contents of the VISI register out of the device. The corresponding control and instruction codes that must be serially transmitted to the device to perform this operation are shown in Table 11-13.

Once the programmer has clocked-out the application ID word, it must be inspected. If the application ID has the value 0xBB, the programming executive is resident in memory and the device can be programmed using the mechanism described in **Section 5.0 "Device Programming"**. However, if the application ID has any other value, the programming executive is not resident in memory. It must be loaded to memory before the device can be programmed. The procedure for loading the programming executive to the memory is described in **Section 12.0 "Programming the Programming Executive to Memory"**.

11.14 Exiting ICSP Mode

After confirming that the programming executive is resident in memory, or loading the programming executive, ICSP mode is exited by removing power to the device or bringing MCLR to VIL. Programming can then take place by following the procedure outlined in Section 5.0 "Device Programming".

TABLE 11-13: SERIAL INSTRUCTION EXECUTION FOR READING THE APPLICATION ID WORD

Command (Binary)	Data (Hexadecimal)	Description		
Step 1: Exit th	ne Reset vector.			
0000 0000 0000	040100 040100 000000	GOTO 0x100 GOTO 0x100 NOP		
Step 2: Initiali	ze TBLPAG and th	ne read pointer (W0) for TBLRD instruction.		
0000 0000 0000 0000 0000 0000 0000	200800 880190 205BE0 207841 000000 BA0890 000000 000000	MOV #0x80, W0 MOV W0, TBLPAG MOV #0x5BE, W0 MOV VISI, W1 NOP TBLRDL [W0], [W1] NOP		
Step 3: Outpu	ut the VISI register	using the REGOUT command.		
0001 0000	<visi></visi>	Clock out contents of the VISI register NOP		

TABLE 12-2: READING EXECUTIVE MEMORY (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description			
Step 4: Output	t W0:W5 using th	ne VISI register and REGOUT command.			
0000	883C20	MOV WO, VISI			
0000	000000	NOP			
0001	_	Clock out contents of VISI register			
0000	883C21	MOV W1, VISI			
0000	000000	NOP			
0001	_	Clock out contents of VISI register			
0000	883C22	MOV W2, VISI			
0000	000000	NOP			
0001	_	Clock out contents of VISI register			
0000	883C23	MOV W3, VISI			
0000	000000	NOP			
0001	_	Clock out contents of VISI register			
0000	883C24	MOV W4, VISI			
0000	000000	NOP			
0001	_	Clock out contents of VISI register			
0000	883C25	MOV W5, VISI			
0000	000000	NOP			
0001	_	Clock out contents of VISI register			
Step 5: Reset	Step 5: Reset the device internal PC.				
0000	040100	GOTO 0x100			
0000	000000	NOP			
Step 6: Repea	Step 6: Repeat Steps 3-5 until all 736 instruction words of executive memory are read.				

13.0 AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS

TABLE 13-1: AC/DC CHARACTERISTICS

AC/DC CHARACTERISTICS AC/DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating Temperature: 25° C is recommended			
Param. No.	Sym	Characteristic	Min	Max	Units	Conditions
D110	Vінн	High Programming Voltage on MCLR/VPP	9.00	13.25	V	_
D112	IPP	Programming Current on MCLR/VPP	_	300	μΑ	_
D113	IDDP	Supply Current during programming	_	30	mA	Row Erase Program memory
			_	30	mA	Row Erase Data EEPROM
			_	30	mA	Bulk Erase
D001	VDD	Supply voltage	2.5	5.5	V	_
D002	VDDBULK	Supply voltage for Bulk Erase programming	4.5	5.5	V	_
D031	VIL	Input Low Voltage	Vss	0.2 Vss	V	_
D041	VIH	Input High Voltage	0.8 VDD	VDD	V	_
D080	Vol	Output Low Voltage	_	0.6	V	IOL = 8.5 mA
D090	Vон	Output High Voltage	VDD - 0.7		V	Iон = -3.0 mA
D012	Сю	Capacitive Loading on I/O Pin (PGD)	_	50	pF	To meet AC specifications
P1	TSCLK	Serial Clock (PGC) period	50	_	ns	ICSP™ mode
			1	_	μs	Enhanced ICSP mode
P1a	TSCLKL	Serial Clock (PGC) low time	20		ns	ICSP mode
			400	1	ns	Enhanced ICSP mode
P1b	TSCLKH	Serial Clock (PGC) high time	20	_	ns	ICSP mode
			400	_	ns	Enhanced ICSP mode
P2	TSET1	Input Data Setup Timer to PGC ↓	15		ns	_
P3	THLD1	Input Data Hold Time from PGC \downarrow	15		ns	_
P4	TDLY1	Delay between 4-bit command and command operand	20		ns	_
P4a	TDLY1a	Delay between 4-bit command operand and next 4-bit command	20	_	ns	_
P5	TDLY2	Delay between last PGC ↓of command to first PGC ↑ of VISI output	20	_	ns	_
P6	TSET2	VDD ↑ setup time to MCLR/VPP	100		ns	_
P7	THLD2	Input data hold time from MCLR/VPP ↑	2	_	μs	ICSP mode
			5	_	ms	Enhanced ICSP mode
P8	TDLY3	Delay between last PGC ↓of command word to PGD driven ↑ by programming executive	20	_	μs	_
P9a	TDLY4	Programming Executive Command processing time	10	_	μs	_

APPENDIX A: DEVICE-SPECIFIC INFORMATION

A.1 Checksum Computation

The checksum computation is described in **Section 6.8** "Checksum Computation". Table A-1 shows how this 16-bit computation can be made for each dsPIC30F device. Computations for read code protection are shown both enabled and disabled. The checksum values assume that the Configuration registers are also erased. However, when code protection is enabled, the value of the FGS register is assumed to be 0x5.

TABLE A-1: CHECKSUM COMPUTATION

A.2 dsPIC30F5011 and dsPIC30F5013

A.2.1 ICSP PROGRAMMING

The dsPIC30F5011 and dsPIC30F5013 processors require that the FBS and FSS registers be programmed with 0x0000 before the device is chip erased. The steps to perform this action are shown in Table 11-4.

A.2.2 ENHANCED ICSP PROGRAMMING

The dsPIC30F5011 and dsPIC30F5013 processors require that the FBS and FSS registers be programmed with 0x0000 using the PROGC command before the ERASEB command is used to erase the chip.

Device	Read Code Protection	Checksum Computation	Erased Value	Value with 0xAAAAAA at 0x0 and Last Code Address
dsPIC30F2010	Disabled	CFGB+SUM(0:001FFF)	0xD406	0xD208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F2011	Disabled	CFGB+SUM(0:001FFF)	0xD406	0xD208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F2012	Disabled	CFGB+SUM(0:001FFF)	0xD406	0xD208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3010	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3011	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3012	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3013	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3014	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F4011	Disabled	CFGB+SUM(0:007FFF)	0x4406	0x4208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F4012	Disabled	CFGB+SUM(0:007FFF)	0x4406	0x4208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F4013	Disabled	CFGB+SUM(0:007FFF)	0x4406	0x4208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F5011	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404
dsPIC30F5013	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404
dsPIC30F5015	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404

Item Description:

SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory)

CFGB = **Configuration Block (masked)** = Byte sum of ((FOSC&0xC10F) + (FWDT&0x803F) + (FBORPOR&0x87B3) + (FBS&0x310F) + (FSS&0x330F) + (FGS&0x0007) + (FICD&0xC003))

APPENDIX C: REVISION HISTORY

Note: Revision histories were not recorded for revisions A through H. The previous revision (J), was published in August 2007.

Revision K (November 2010)

This version of the document includes the following updates:

- Added Note three to Section 5.2 "Entering Enhanced ICSP Mode"
- Updated the first paragraph of Section 10.0 "Device ID"
- Updated Table 10-1: Device IDs
- Removed the VARIANT bit and updated the bit definition for the DEVID register in Table 10-2: dsPIC30F Device ID Registers
- Removed the VARIANT bit and updated the bit field definition and description for the DEVID register in Table 10-3: Device ID Bits Description
- Updated Note 3 in Section 11.3 "Entering ICSP Mode"
- Updated Step 11 in Table 11-4: Serial Instruction Execution for BUlk Erasing Program Memory (Only in Normal-voltage Systems)
- Updated Steps 5, 12 and 19 in Table 11-5: Serial Instruction Execution for Erasing Program Memory (Either in Low-voltage or Normal-voltage Systems)
- Updated Steps 5, 6 and 8 in Table 11-7: Serial Instruction Execution for Writing Configuration Registers
- Updated Steps 6 and 8 in Table 11-8: Serial Instruction Execution for Writing Code Memory
- Updated Steps 6 and 8 in Table 11-9: Serial Instruction Execution for Writing Data EEPROM
- Updated Entering ICSP™ Mode (see Figure 11-4)
- Updated Steps 4 and 11 in Table 12-1: Programming the Programming Executive
- Renamed parameters: P12 to P12a and P13 to P13a, and added parameters P12b and P13b in Table 13-1: AC/DC Characteristics