
Microchip Technology - DSPIC30F5015T-20E/PT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor dsPIC

Core Size 16-Bit

Speed 20 MIPS

Connectivity CANbus, I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT

Number of I/O 52

Program Memory Size 66KB (22K x 24)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 2.5V ~ 5.5V

Data Converters A/D 16x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 64-TQFP

Supplier Device Package 64-TQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/dspic30f5015t-20e-pt

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/dspic30f5015t-20e-pt-4429414
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

dsPIC30F Flash Programming Specification
3.0 PROGRAMMING EXECUTIVE
APPLICATION

3.1 Programming Executive Overview
The programming executive resides in executive
memory and is executed when Enhanced ICSP
Programming mode is entered. The programming exec-
utive provides the mechanism for the programmer (host
device) to program and verify the dsPIC30F, using a
simple command set and communication protocol.

The following capabilities are provided by the
programming executive:

• Read memory
- Code memory and data EEPROM
- Configuration registers
- Device ID

• Erase memory
- Bulk Erase by segment
- Code memory (by row)
- Data EEPROM (by row)

• Program memory
- Code memory
- Data EEPROM
- Configuration registers

• Query
- Blank Device
- Programming executive software version

The programming executive performs the low-level
tasks required for erasing and programming. This
allows the programmer to program the device by
issuing the appropriate commands and data.

The programming procedure is outlined in Section 5.0
“Device Programming”.

3.2 Programming Executive Code
Memory

The programming executive is stored in executive code
memory and executes from this reserved region of
memory. It requires no resources from user code
memory or data EEPROM.

3.3 Programming Executive Data RAM
The programming executive uses the device’s data
RAM for variable storage and program execution. Once
the programming executive has run, no assumptions
should be made about the contents of data RAM.

4.0 CONFIRMING THE CONTENTS
OF EXECUTIVE MEMORY

Before programming can begin, the programmer must
confirm that the programming executive is stored in exec-
utive memory. The procedure for this task is illustrated in
Figure 4-1.

First, ICSP mode is entered. The unique application ID
word stored in executive memory is then read. If the
programming executive is resident, the application ID
word is 0xBB, which means programming can resume
as normal. However, if the application ID word is not
0xBB, the programming executive must be
programmed to Executive Code memory using the
method described in Section 12.0 “Programming the
Programming Executive to Memory”.

Section 11.0 “ICSP™ Mode” describes the process
for the ICSP programming method. Section 11.13
“Reading the Application ID Word” describes the
procedure for reading the application ID word in ICSP
mode.

FIGURE 4-1: CONFIRMING PRESENCE
OF THE PROGRAMMING
EXECUTIVE

Is

Start

Enter ICSP™ Mode

Application ID
0xBB?

Resident in Memory

Yes

No

Prog. Executive is

Application ID
Read the

be Programmed
Prog. Executive must

from Address
0x8005BE

Finish
DS70102K-page 4 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
5.0 DEVICE PROGRAMMING

5.1 Overview of the Programming
Process

Once the programming executive has been verified
in memory (or loaded if not present), the dsPIC30F can
be programmed using the command set shown in
Table 5-1. A detailed description for each command is
provided in Section 8.0 “Programming Executive
Commands”.

TABLE 5-1: COMMAND SET SUMMARY
Command Description

SCHECK Sanity check
READD Read data EEPROM, Configuration

registers and device ID
READP Read code memory
PROGD Program one row of data EEPROM

and verify
PROGP Program one row of code memory and

verify
PROGC Program Configuration bits and verify
ERASEB Bulk Erase, or erase by segment
ERASED Erase data EEPROM
ERASEP Erase code memory
QBLANK Query if the code memory and data

EEPROM are blank
QVER Query the software version

A high-level overview of the programming process is
illustrated in Figure 5-1. The process begins by enter-
ing Enhanced ICSP mode. The chip is then bulk
erased, which clears all memory to ‘1’ and allows the
device to be programmed. The Chip Erase is verified
before programming begins. Next, the code memory,
data Flash and Configuration bits are programmed. As
these memories are programmed, they are each
verified to ensure that programming was successful. If
no errors are detected, the programming is complete
and Enhanced ICSP mode is exited. If any of the
verifications fail, the procedure should be repeated,
starting from the Chip Erase.

If Advanced Security features are enabled, then
individual Segment Erase operations need to be
performed, based on user selections (i.e., based on the
specific needs of the user application). The specific
operations that are used typically depend on the order
in which various segments need to be programmed for
a given application or system.

Section 5.2 “Entering Enhanced ICSP Mode”
through Section 5.8 “Exiting Enhanced ICSP Mode”
describe the programming process in detail.

FIGURE 5-1: PROGRAMMING FLOW

Start

Program and

Program and

Program and verify
 Configuration bits

Finish

verify code

verify data

Enter Enhanced

Exit Enhanced ICSP
Mode

Perform Chip
Erase

Program
Configuration
registers to

ICSP™ mode

default value
© 2010 Microchip Technology Inc. DS70102K-page 5

dsPIC30F Flash Programming Specification
5.2 Entering Enhanced ICSP Mode
The Enhanced ICSP mode is entered by holding PGC
and PGD high, and then raising MCLR/VPP to VIHH
(high voltage), as illustrated in Figure 5-2. In this mode,
the code memory, data EEPROM and Configuration
bits can be efficiently programmed using the program-
ming executive commands that are serially transferred
using PGC and PGD.

FIGURE 5-2: ENTERING ENHANCED
ICSP™ MODE

5.3 Chip Erase
Before a chip can be programmed, it must be erased.
The Bulk Erase command (ERASEB) is used to perform
this task. Executing this command with the MS
command field set to 0x3 erases all code memory, data
EEPROM and code-protect Configuration bits. The
Chip Erase process sets all bits in these three memory
regions to ‘1’.

Since non-code-protect Configuration bits cannot be
erased, they must be manually set to ‘1’ using multiple
PROGC commands. One PROGC command must be
sent for each Configuration register (see Section 5.7
“Configuration Bits Programming”).

If Advanced Security features are enabled, then indi-
vidual Segment Erase operations would need to be
performed, depending on which segment needs to be
programmed at a given stage of system programming.
The user should have the flexibility to select specific
segments for programming.

Note: The Device ID registers cannot be erased.
These registers remain intact after a Chip
Erase is performed.

5.4 Blank Check
The term “Blank Check” means to verify that the device
has been successfully erased and has no programmed
memory cells. A blank or erased memory cell reads as
‘1’. The following memories must be blank checked:

• All implemented code memory
• All implemented data EEPROM
• All Configuration bits (for their default value)

The Device ID registers (0xFF0000:0xFF0002) can be
ignored by the Blank Check since this region stores
device information that cannot be erased. Additionally,
all unimplemented memory space should be ignored
from the Blank Check.

The QBLANK command is used for the Blank Check. It
determines if the code memory and data EEPROM are
erased by testing these memory regions. A ‘BLANK’ or
‘NOT BLANK’ response is returned. The READD
command is used to read the Configuration registers. If
it is determined that the device is not blank, it must be
erased (see Section 5.3 “Chip Erase”) before
attempting to program the chip.

Note 1: The sequence that places the device into
Enhanced ICSP mode places all unused
I/Os in the high-impedance state.

2: Before entering Enhanced ICSP mode,
clock switching must be disabled using
ICSP, by programming the FCKSM<1:0>
bits in the FOSC Configuration register to
‘11’ or ‘10’.

3: When in Enhanced ICSP mode, the SPI
output pin (SDO1) will toggle while the
device is being programmed.

MCLR/VPP

P7

PGD

PGD = Input

PGC

VDD

VIHH

P6
DS70102K-page 6 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
TABLE 5-7: CONFIGURATION BITS DESCRIPTION
Bit Field Register Description

FWPSA<1:0> FWDT Watchdog Timer Prescaler A
11 = 1:512
10 = 1:64
01 = 1:8
00 = 1:1

FWPSB<3:0> FWDT Watchdog Timer Prescaler B
1111 = 1:16
1110 = 1:15

•
•
•

0001 = 1:2
0000 = 1:1

FWDTEN FWDT Watchdog Enable
1 = Watchdog enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN

bit in the RCON register will have no effect)
0 = Watchdog disabled (LPRC oscillator can be disabled by clearing the SWDTEN bit

in the RCON register)
MCLREN FBORPOR Master Clear Enable

1 = Master Clear pin (MCLR) is enabled
0 = MCLR pin is disabled

PWMPIN FBORPOR Motor Control PWM Module Pin Mode
1 = PWM module pins controlled by PORT register at device Reset (tri-stated)
0 = PWM module pins controlled by PWM module at device Reset (configured as out-

put pins)
HPOL FBORPOR Motor Control PWM Module High-Side Polarity

1 = PWM module high-side output pins have active-high output polarity
0 = PWM module high-side output pins have active-low output polarity

LPOL FBORPOR Motor Control PWM Module Low-Side Polarity
1 = PWM module low-side output pins have active-high output polarity
0 = PWM module low-side output pins have active-low output polarity

BOREN FBORPOR PBOR Enable
1 = PBOR enabled
0 = PBOR disabled

BORV<1:0> FBORPOR Brown-out Voltage Select
11 = 2.0V (not a valid operating selection)
10 = 2.7V
01 = 4.2V
00 = 4.5V

FPWRT<1:0> FBORPOR Power-on Reset Timer Value Select
11 = PWRT = 64 ms
10 = PWRT = 16 ms
01 = PWRT = 4 ms
00 = Power-up Timer disabled

RBS<1:0> FBS Boot Segment Data RAM Code Protection (only present in dsPIC30F5011/5013/
6010A/6011A/6012A/6013A/6014A/6015)
11 = No Data RAM is reserved for Boot Segment
10 = Small-sized Boot RAM

[128 bytes of RAM are reserved for Boot Segment]
01 = Medium-sized Boot RAM

[256 bytes of RAM are reserved for Boot Segment]
00 = Large-sized Boot RAM

[512 bytes of RAM are reserved for Boot Segment in dsPIC30F5011/5013, and
1024 bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015]
© 2010 Microchip Technology Inc. DS70102K-page 13

©
 2010 M

icrochip Technology Inc.
D

S
70102K

-page 17

dsPIC
30F Flash Program

m
ing Specification

TA 12/3013/3014, dsPIC30F4013 AND

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x FPR<4:0>

0x :0> FWPSB<3:0>

0x 0> — — FPWRT<1:0>

0x — Reserved(2)

0x — Reserved(2)

0x — — Reserved(3) GCP GWRP

0x — — — ICS<1:0>

No

TA AND dsPIC30F6015)
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x FPR<4:0>

0x :0> FWPSB<3:0>

0x 0> — — FPWRT<1:0>

0x — BSS<2:0>

0x — SSS<2:0>

0x — — GSS<1:0> GWRP

0x — — — ICS<1:0>

No

BWRP

SWRP
BLE 5-10: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F2011/2012, dsPIC30F3010/3011/30
dsPIC30F5015/5016)

Address Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5

F80000 FOSC FCKSM<1:0> — — — FOS<2:0> — — —

F80002 FWDT FWDTEN — — — — — — — — — FWPSA<1

F80004 FBORPOR MCLREN — — — — PWMPIN(1) HPOL(1) LPOL(1) BOREN — BORV<1:

F80006 FBS — — Reserved(2) — — — Reserved(2) — — —

F80008 FSS — — Reserved(2) — — Reserved(2) — — —

F8000A FGS — — — — — — — — — — —

F8000C FICD BKBUG COE — — — — — — — — —

te 1: On the 2011, 2012, 3012, 3013, 3014 and 4013, these bits are reserved (read as ‘1’ and must be programmed as ‘1’).
2: Reserved bits read as ‘1’ and must be programmed as ‘1’.
3: The FGS<2> bit is a read-only copy of the GCP bit (FGS<1>).

BLE 5-11: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F6010A/6011A/6012A/6013A/6014A
Address Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5

F80000 FOSC FCKSM<1:0> — — — FOS<2:0> — — —

F80002 FWDT FWDTEN — — — — — — — — — FWPSA<1

F80004 FBORPOR MCLREN — — — — PWMPIN(1) HPOL(1) LPOL(1) BOREN — BORV<1:

F80006 FBS — — RBS<1:0> — — — EBS — — —

F80008 FSS — — RSS<1:0> — — ESS<1:0> — — —

F8000A FGS — — — — — — — — — — —

F8000C FICD BKBUG COE — — — — — — — — —

te 1: On the 6011A, 6012A, 6013A and 6014A, these bits are reserved (read as ‘1’ and must be programmed as ‘1’).

dsPIC30F Flash Programming Specification
5.7.2 PROGRAMMING METHODOLOGY
System operation Configuration bits are inherently
different than all other memory cells. Unlike code
memory, data EEPROM and code-protect
Configuration bits, the system operation bits cannot be
erased. If the chip is erased with the ERASEB
command, the system-operation bits retain their
previous value. Consequently, you should make no
assumption about the value of the system operation
bits. They should always be programmed to their
desired setting.

Configuration bits are programmed as a single word at
a time using the PROGC command. The PROGC
command specifies the configuration data and
Configuration register address. When Configuration
bits are programmed, any unimplemented bits must be
programmed with a ‘0’, and any reserved bits must be
programmed with a ‘1’.

Four PROGC commands are required to program all the
Configuration bits. Figure 5-5 illustrates the flowchart of
Configuration bit programming.

Note: If the General Code Segment Code
Protect (GCP) bit is programmed to ‘0’,
code memory is code-protected and can-
not be read. Code memory must
be verified before enabling read protec-
tion. See Section 5.7.4 “Code-Protect
Configuration Bits” for more information
about code-protect Configuration bits.

5.7.3 PROGRAMMING VERIFICATION
Once the Configuration bits are programmed, the
contents of memory should be verified to ensure that
the programming was successful. Verification requires
the Configuration bits to be read back and compared
against the copy held in the programmer’s buffer. The
READD command reads back the programmed
Configuration bits and verifies whether the
programming was successful.

Any unimplemented Configuration bits are read-only
and read as ‘0’.

5.7.4 CODE-PROTECT CONFIGURATION
BITS

The FBS, FSS and FGS Configuration registers are
special Configuration registers that control the size and
level of code protection for the Boot Segment, Secure
Segment and General Segment, respectively. For each
segment, two main forms of code protection are
provided. One form prevents code memory from being
written (write protection), while the other prevents code
memory from being read (read protection).

The BWRP, SWRP and GWRP bits control write
protection; and BSS<2:0>, SSS<2:0> and GSS<1:0>
bits control read protection. The Chip Erase ERASEB
command sets all the code protection bits to ‘1’, which
allows the device to be programmed.

When write protection is enabled, any programming
operation to code memory will fail. When read
protection is enabled, any read from code memory will
cause a ‘0x0’ to be read, regardless of the actual
contents of code memory. Since the programming
executive always verifies what it programs, attempting
to program code memory with read protection enabled
will also result in failure.

It is imperative that all code protection bits are ‘1’ while
the device is being programmed and verified. Only after
the device is programmed and verified should any of
the above bits be programmed to ‘0’ (see Section 5.7
“Configuration Bits Programming”).

In addition to code memory protection, parts of data
EEPROM and/or data RAM can be configured to be
accessible only by code resident in the Boot Segment
and/or Secure Segment. The sizes of these “reserved”
sections are user-configurable, using the EBS,
RBS<1:0>, ESS<1:0> and RSS<1:0> bits.

Note 1: All bits in the FBS, FSS and FGS
Configuration registers can only be
programmed to a value of ‘0’. ERASEB is
the only way to reprogram code-protect
bits from ON (‘0’) to OFF (‘1’).

2: If any of the code-protect bits in FBS,
FSS, or FGS are clear, the entire device
must be erased before it can be
reprogrammed.
DS70102K-page 18 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
8.0 PROGRAMMING EXECUTIVE
COMMANDS

8.1 Command Set
The programming executive command set is shown in
Table 8-1. This table contains the opcode, mnemonic,
length, time out and description for each command.
Functional details on each command are provided in
the command descriptions (see Section 8.5
“Command Descriptions”).

8.2 Command Format
All programming executive commands have a general
format consisting of a 16-bit header and any required
data for the command (see Figure 8-1). The 16-bit
header consists of a 4-bit opcode field, which is used to
identify the command, followed by a 12-bit command
length field.

FIGURE 8-1: COMMAND FORMAT

The command opcode must match one of those in the
command set. Any command that is received which
does not match the list in Table 8-1 will return a “NACK”
response (see Section 9.2.1 “Opcode Field”).

The command length is represented in 16-bit words
since the SPI operates in 16-bit mode. The
programming executive uses the Command Length
field to determine the number of words to read from the
SPI port. If the value of this field is incorrect, the
command will not be properly received by the
programming executive.

8.3 Packed Data Format
When 24-bit instruction words are transferred across
the 16-bit SPI interface, they are packed to conserve
space using the format shown in Figure 8-2. This
format minimizes traffic over the SPI and provides the
programming executive with data that is properly
aligned for performing table write operations.

Note: When the number of instruction words
transferred is odd, MSB2 is zero and lsw2
cannot be transmitted.

FIGURE 8-2: PACKED INSTRUCTION
WORD FORMAT

8.4 Programming Executive Error
Handling

The programming executive will “NACK” all
unsupported commands. Additionally, due to the
memory constraints of the programming executive, no
checking is performed on the data contained in the
Programmer command. It is the responsibility of the
programmer to command the programming executive
with valid command arguments, or the programming
operation may fail. Additional information on error
handling is provided in Section 9.2.3 “QE_Code
Field”.

15 12 11 0
Opcode Length

Command Data First Word (if required)
•
•

Command Data Last Word (if required)

15 8 7 0
lsw1

MSB2 MSB1
lsw2

lswx: Least significant 16 bits of instruction word
MSBx: Most Significant Byte of instruction word
© 2010 Microchip Technology Inc. DS70102K-page 23

dsPIC30F Flash Programming Specification
8.5 Command Descriptions
All commands that are supported by the programming
executive are described in Section 8.5.1 “SCHECK
Command” through Section 8.5.11 “QVER
Command”.

8.5.1 SCHECK COMMAND

15 12 11 0
Opcode Length

Field Description

Opcode 0x0
Length 0x1

The SCHECK command instructs the programming
executive to do nothing, but generate a response. This
command is used as a “sanity check” to verify that the
programming executive is operational.

Expected Response (2 words):
0x1000
0x0002

Note: This instruction is not required for
programming, but is provided for
development purposes only.

8.5.2 READD COMMAND

15 12 11 8 7 0
Opcode Length

Reserved0 N
Reserved1 Addr_MSB

Addr_LS

Field Description

Opcode 0x1
Length 0x4
Reserved0 0x0
N Number of 16-bit words to read

(max of 2048)
Reserved1 0x0
Addr_MSB MSB of 24-bit source address
Addr_LS LS 16 bits of 24-bit source address

The READD command instructs the programming
executive to read N 16-bit words of memory starting
from the 24-bit address specified by Addr_MSB and
Addr_LS. This command can only be used to read
16-bit data. It can be used to read data EEPROM,
Configuration registers and the device ID.

Expected Response (2+N words):
0x1100
N + 2
Data word 1
...
Data word N

Note: Reading unimplemented memory will
cause the programming executive to
reset.
© 2010 Microchip Technology Inc. DS70102K-page 25

dsPIC30F Flash Programming Specification
8.5.3 READP COMMAND

15 12 11 8 7 0
Opcode Length

N
Reserved Addr_MSB

Addr_LS

Field Description

Opcode 0x2
Length 0x4
N Number of 24-bit instructions to read

(max of 32768)
Reserved 0x0
Addr_MSB MSB of 24-bit source address
Addr_LS LS 16 bits of 24-bit source address

The READP command instructs the programming
executive to read N 24-bit words of code memory
starting from the 24-bit address specified by
Addr_MSB and Addr_LS. This command can only be
used to read 24-bit data. All data returned in response
to this command uses the packed data format
described in Section 8.3 “Packed Data Format”.

Expected Response (2 + 3 * N/2 words for N even):
0x1200
2 + 3 * N/2
Least significant program memory word 1
...
Least significant data word N

Expected Response (4 + 3 * (N – 1)/2 words for N
odd):
0x1200
4 + 3 * (N – 1)/2
Least significant program memory word 1
...
MSB of program memory word N (zero padded)

Note: Reading unimplemented memory will
cause the programming executive to
reset.

8.5.4 PROGD COMMAND

15 12 11 8 7 0
Opcode Length

Reserved Addr_MSB
Addr_LS

D_1
D_2
...

D_16

Field Description

Opcode 0x4
Length 0x13
Reserved 0x0
Addr_MSB MSB of 24-bit destination address
Addr_LS LS 16 bits of 24-bit destination

address
D_1 16-bit data word 1
D_2 16-bit data word 2
... 16-bit data words 3 through 15
D_16 16-bit data word 16

The PROGD command instructs the programming
executive to program one row of data EEPROM. The
data to be programmed is specified by the 16 data
words (D_1, D_2,..., D_16) and is programmed to the
destination address specified by Addr_MSB and
Addr_LSB. The destination address should be a
multiple of 0x20.

Once the row of data EEPROM has been programmed,
the programming executive verifies the programmed
data against the data in the command.

Expected Response (2 words):
0x1400
0x0002

Note: Refer to Table 5-3 for data EEPROM size
information.
DS70102K-page 26 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
8.5.5 PROGP COMMAND

15 12 11 8 7 0
Opcode Length

Reserved Addr_MSB
Addr_LS

D_1
D_2
...

D_N

Field Description

Opcode 0x5
Length 0x33
Reserved 0x0
Addr_MSB MSB of 24-bit destination address
Addr_LS LS 16 bits of 24-bit destination address
D_1 16-bit data word 1
D_2 16-bit data word 2
... 16-bit data word 3 through 47
D_48 16-bit data word 48

The PROGP command instructs the programming
executive to program one row of code memory
(32 instruction words) to the specified memory
address. Programming begins with the row address
specified in the command. The destination address
should be a multiple of 0x40.

The data to program to memory, located in command
words D_1 through D_48, must be arranged using the
packed instruction word format shown in Figure 8-2.

After all data has been programmed to code memory,
the programming executive verifies the programmed
data against the data in the command.

Expected Response (2 words):
0x1500
0x0002

Note: Refer to Table 5-2 for code memory size
information.

8.5.6 PROGC COMMAND

15 12 11 8 7 0
Opcode Length

Reserved Addr_MSB
Addr_LS

Data

Field Description

Opcode 0x6
Length 0x4
Reserved 0x0
Addr_MSB MSB of 24-bit destination address
Addr_LS LS 16 bits of 24-bit destination

address
Data Data to program

The PROGC command programs data to the specified
Configuration register and verifies the programming.
Configuration registers are 16 bits wide, and this
command allows one Configuration register to be
programmed.

Expected Response (2 words):
0x1600
0x0002

Note: This command can only be used for
programming Configuration registers.
© 2010 Microchip Technology Inc. DS70102K-page 27

dsPIC30F Flash Programming Specification
11.0 ICSP™ MODE

11.1 ICSP Mode
ICSP mode is a special programming protocol that
allows you to read and write to the dsPIC30F program-
ming executive. The ICSP mode is the second (and
slower) method used to program the device. This mode
also has the ability to read the contents of executive
memory to determine whether the programming exec-
utive is present. This capability is accomplished by
applying control codes and instructions serially to the
device using pins PGC and PGD.

In ICSP mode, the system clock is taken from the PGC
pin, regardless of the device’s oscillator Configuration
bits. All instructions are first shifted serially into an
internal buffer, then loaded into the Instruction register
and executed. No program fetching occurs from
internal memory. Instructions are fed in 24 bits at a
time. PGD is used to shift data in and PGC is used as
both the serial shift clock and the CPU execution clock.

Data is transmitted on the rising edge and latched on
the falling edge of PGC. For all data transmissions, the
Least Significant bit (LSb) is transmitted first.

11.2 ICSP Operation
Upon entry into ICSP mode, the CPU is idle. Execution
of the CPU is governed by an internal state machine. A
4-bit control code is clocked in using PGC and PGD,
and this control code is used to command the CPU
(see Table 11-1).

The SIX control code is used to send instructions to the
CPU for execution, while the REGOUT control code is
used to read data out of the device via the VISI register.
The operation details of ICSP mode are provided in
Section 11.2.1 “SIX Serial Instruction Execution”
and Section 11.2.2 “REGOUT Serial Instruction
Execution”.

TABLE 11-1: CPU CONTROL CODES IN
ICSP™ MODE

4-bit
Control
Code

Mnemonic Description

0000b SIX Shift in 24-bit instruction
and execute.

0001b REGOUT Shift out the VISI
register.

0010b-1111b N/A Reserved.

11.2.1 SIX SERIAL INSTRUCTION
EXECUTION

The SIX control code allows execution of dsPIC30F
assembly instructions. When the SIX code is received,
the CPU is suspended for 24 clock cycles as the
instruction is then clocked into the internal buffer. Once
the instruction is shifted in, the state machine allows it
to be executed over the next four clock cycles. While
the received instruction is executed, the state machine
simultaneously shifts in the next 4-bit command (see
Figure 11-2).

Note 1: During ICSP operation, the operating
frequency of PGC must not exceed
5 MHz.

2: Because ICSP is slower, it is recom-
mended that only Enhanced ICSP (E-
ICSP) mode be used for device program-
ming, as described in Section 5.1
“Overview of the Programming
Process”.

Note 1: Coming out of the ICSP entry sequence,
the first 4-bit control code is always
forced to SIX and a forced NOP instruc-
tion is executed by the CPU. Five addi-
tional PGC clocks are needed on start-
up, thereby resulting in a 9-bit SIX com-
mand instead of the normal 4-bit SIX
command. After the forced SIX is clocked
in, ICSP operation resumes as normal
(the next 24 clock cycles load the first
instruction word to the CPU). See
Figure 11-1 for details.

2: TBLRDH, TBLRDL, TBLWTH and TBLWTL
instructions must be followed by a NOP
instruction.
DS70102K-page 34 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
11.8 Writing Code Memory
The procedure for writing code memory is similar to the
procedure for clearing the Configuration registers,
except that 32 instruction words are programmed at a
time. To facilitate this operation, working registers
W0:W5 are used as temporary holding registers for the
data to be programmed.

Table 11-8 shows the ICSP programming details,
including the serial pattern with the ICSP command
code, which must be transmitted Least Significant bit
first using the PGC and PGD pins (see Figure 11-2). In
Step 1, the Reset vector is exited. In Step 2, the
NVMCON register is initialized for single-panel
programming of code memory. In Step 3, the 24-bit
starting destination address for programming is loaded
into the TBLPAG register and W7 register. The upper
byte of the starting destination address is stored to
TBLPAG, while the lower 16 bits of the destination
address are stored to W7.

To minimize the programming time, the same packed
instruction format that the programming executive uses
is utilized (Figure 8-2). In Step 4, four packed
instruction words are stored to working registers
W0:W5 using the MOV instruction and the read pointer
W6 is initialized. The contents of W0:W5 holding the
packed instruction word data is shown in Figure 11-4.

In Step 5, eight TBLWT instructions are used to copy the
data from W0:W5 to the write latches of code memory.
Since code memory is programmed 32 instruction
words at a time, Steps 4 and 5 are repeated eight times
to load all the write latches (Step 6).

After the write latches are loaded, programming is
initiated by writing to the NVMKEY and NVMCON
registers in Steps 7 and 8. In Step 9, the internal PC is
reset to 0x100. This is a precautionary measure to
prevent the PC from incrementing into unimplemented
memory when large devices are being programmed.
Lastly, in Step 10, Steps 2-9 are repeated until all of
code memory is programmed.

FIGURE 11-5: PACKED INSTRUCTION
WORDS IN W0:W5

15 8 7 0

W0 lsw0
W1 MSB1 MSB0
W2 lsw1
W3 lsw2
W4 MSB3 MSB2
W5 lsw3

TABLE 11-8: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY
Command
(Binary)

Data
(Hexadecimal) Description

Step 1: Exit the Reset vector.
0000
0000
0000

040100
040100
000000

GOTO 0x100
GOTO 0x100
NOP

Step 2: Set the NVMCON to program 32 instruction words.
0000
0000

24001A
883B0A

MOV #0x4001, W10
MOV W10, NVMCON

Step 3: Initialize the write pointer (W7) for TBLWT instruction.
0000
0000
0000

200xx0
880190
2xxxx7

MOV #<DestinationAddress23:16>, W0
MOV W0, TBLPAG
MOV #<DestinationAddress15:0>, W7

Step 4: Initialize the read pointer (W6) and load W0:W5 with the next 4 instruction words to program.
0000
0000
0000
0000
0000
0000

2xxxx0
2xxxx1
2xxxx2
2xxxx3
2xxxx4
2xxxx5

MOV #<LSW0>, W0
MOV #<MSB1:MSB0>, W1
MOV #<LSW1>, W2
MOV #<LSW2>, W3
MOV #<MSB3:MSB2>, W4
MOV #<LSW3>, W5
© 2010 Microchip Technology Inc. DS70102K-page 45

dsPIC30F Flash Programming Specification
11.9 Writing Data EEPROM
The procedure for writing data EEPROM is very similar
to the procedure for writing code memory, except that
fewer words are programmed in each operation. When
writing data EEPROM, one row of data EEPROM is
programmed at a time. Each row consists of sixteen
16-bit data words. Since fewer words are programmed

during each operation, only working registers W0:W3
are used as temporary holding registers for the data to
be programmed.

Table 11-9 shows the ICSP programming details for
writing data EEPROM. Note that a different NVMCON
value is required to write to data EEPROM, and that the
TBLPAG register is hard-coded to 0x7F (the upper byte
address of all locations of data EEPROM).

TABLE 11-9: SERIAL INSTRUCTION EXECUTION FOR WRITING DATA EEPROM
Command

(Binary)
Data

(Hexadecimal) Description

Step 1: Exit the Reset vector.
0000
0000
0000

040100
040100
000000

GOTO 0x100
GOTO 0x100
NOP

Step 2: Set the NVMCON to write 16 data words.
0000
0000

24005A
883B0A

MOV #0x4005, W10
MOV W10, NVMCON

Step 3: Initialize the write pointer (W7) for TBLWT instruction.
0000
0000
0000

2007F0
880190
2xxxx7

MOV #0x7F, W0
MOV W0, TBLPAG
MOV #<DestinationAddress15:0>, W7

Step 4: Load W0:W3 with the next 4 data words to program.
0000
0000
0000
0000

2xxxx0
2xxxx1
2xxxx2
2xxxx3

MOV #<WORD0>, W0
MOV #<WORD1>, W1
MOV #<WORD2>, W2
MOV #<WORD3>, W3

Step 5: Set the read pointer (W6) and load the (next set of) write latches.
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

EB0300
000000
BB1BB6
000000
000000
BB1BB6
000000
000000
BB1BB6
000000
000000
BB1BB6
000000
000000

CLR W6
NOP
TBLWTL [W6++], [W7++]
NOP
NOP
TBLWTL [W6++], [W7++]
NOP
NOP
TBLWTL [W6++], [W7++]
NOP
NOP
TBLWTL [W6++], [W7++]
NOP
NOP

Step 6: Repeat steps 4-5 four times to load the write latches for 16 data words.
© 2010 Microchip Technology Inc. DS70102K-page 47

dsPIC30F Flash Programming Specification
11.10 Reading Code Memory
Reading from code memory is performed by executing
a series of TBLRD instructions and clocking out the data
using the REGOUT command. To ensure efficient
execution and facilitate verification on the programmer,
four instruction words are read from the device at a
time.

Table 11-10 shows the ICSP programming details for
reading code memory. In Step 1, the Reset vector is
exited. In Step 2, the 24-bit starting source address for
reading is loaded into the TBLPAG and W6 registers.
The upper byte of the starting source address is stored
to TBLPAG, while the lower 16 bits of the source
address are stored to W6.

To minimize the reading time, the packed instruction
word format that was utilized for writing is also used for
reading (see Figure 11-5). In Step 3, the write pointer
W7 is initialized, and four instruction words are read
from code memory and stored to working registers
W0:W5. In Step 4, the four instruction words are
clocked out of the device from the VISI register using
the REGOUT command. In Step 5, the internal PC is
reset to 0x100, as a precautionary measure, to prevent
the PC from incrementing into unimplemented memory
when large devices are being read. Lastly, in Step 6,
Steps 3-5 are repeated until the desired amount of
code memory is read.

TABLE 11-10: SERIAL INSTRUCTION EXECUTION FOR READING CODE MEMORY
Command
(Binary)

Data
(Hexadecimal) Description

Step 1: Exit the Reset vector.
0000
0000
0000

040100
040100
000000

GOTO 0x100
GOTO 0x100
NOP

Step 2: Initialize TBLPAG and the read pointer (W6) for TBLRD instruction.
0000
0000
0000

200xx0
880190
2xxxx6

MOV #<SourceAddress23:16>, W0
MOV W0, TBLPAG
MOV #<SourceAddress15:0>, W6

Step 3: Initialize the write pointer (W7) and store the next four locations of code memory to W0:W5.
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

EB0380
000000
BA1B96
000000
000000
BADBB6
000000
000000
BADBD6
000000
000000
BA1BB6
000000
000000
BA1B96
000000
000000
BADBB6
000000
000000
BADBD6
000000
000000
BA0BB6
000000
000000

CLR W7
NOP
TBLRDL [W6], [W7++]
NOP
NOP
TBLRDH.B [W6++], [W7++]
NOP
NOP
TBLRDH.B [++W6], [W7++]
NOP
NOP
TBLRDL [W6++], [W7++]
NOP
NOP
TBLRDL [W6], [W7++]
NOP
NOP
TBLRDH.B [W6++], [W7++]
NOP
NOP
TBLRDH.B [++W6], [W7++]
NOP
NOP
TBLRDL [W6++], [W7]
NOP
NOP
© 2010 Microchip Technology Inc. DS70102K-page 49

dsPIC30F Flash Programming Specification
11.12 Reading Data Memory
The procedure for reading data memory is similar to
that of reading code memory, except that 16-bit data
words are read instead of 24-bit words. Since less data
is read in each operation, only working registers
W0:W3 are used as temporary holding registers for the
data to be read.

Table 11-12 shows the ICSP programming details for
reading data memory. Note that the TBLPAG register is
hard-coded to 0x7F (the upper byte address of all
locations of data memory).

TABLE 11-12: SERIAL INSTRUCTION EXECUTION FOR READING DATA MEMORY
Command
(Binary)

Data
(Hexadecimal) Description

Step 1: Exit the Reset vector.
0000
0000
0000

040100
040100
000000

GOTO 0x100
GOTO 0x100
NOP

Step 2: Initialize TBLPAG and the read pointer (W6) for TBLRD instruction.
0000
0000
0000

2007F0
880190
2xxxx6

MOV #0x7F, W0
MOV W0, TBLPAG
MOV #<SourceAddress15:0>, W6

Step 3: Initialize the write pointer (W7) and store the next four locations of code memory to W0:W5.
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

EB0380
000000
BA1BB6
000000
000000
BA1BB6
000000
000000
BA1BB6
000000
000000
BA1BB6
000000
000000

CLR W7
NOP
TBLRDL [W6++], [W7++]
NOP
NOP
TBLRDL [W6++], [W7++]
NOP
NOP
TBLRDL [W6++], [W7++]
NOP
NOP
TBLRDL [W6++], [W7++]
NOP
NOP

Step 4: Output W0:W5 using the VISI register and REGOUT command.
0000
0000
0001
0000
0000
0000
0001
0000
0000
0000
0001
0000
0000
0000
0001
0000

883C20
000000
<VISI>
000000
883C21
000000
<VISI>
000000
883C22
000000
<VISI>
000000
883C23
000000
<VISI>
000000

MOV W0, VISI
NOP
Clock out contents of VISI register
NOP
MOV W1, VISI
NOP
Clock out contents of VISI register
NOP
MOV W2, VISI
NOP
Clock out contents of VISI register
NOP
MOV W3, VISI
NOP
Clock out contents of VISI register
NOP

Step 5: Reset device internal PC.
0000
0000

040100
000000

GOTO 0x100
NOP

Step 6: Repeat steps 3-5 until all desired data memory is read.
DS70102K-page 52 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
APPENDIX A: DEVICE-SPECIFIC
INFORMATION

A.1 Checksum Computation
The checksum computation is described in Section 6.8
“Checksum Computation”. Table A-1 shows how this
16-bit computation can be made for each dsPIC30F
device. Computations for read code protection are
shown both enabled and disabled. The checksum
values assume that the Configuration registers are also
erased. However, when code protection is enabled, the
value of the FGS register is assumed to be 0x5.

A.2 dsPIC30F5011 and dsPIC30F5013

A.2.1 ICSP PROGRAMMING
The dsPIC30F5011 and dsPIC30F5013 processors
require that the FBS and FSS registers be programmed
with 0x0000 before the device is chip erased. The steps
to perform this action are shown in Table 11-4.

A.2.2 ENHANCED ICSP PROGRAMMING
The dsPIC30F5011 and dsPIC30F5013 processors
require that the FBS and FSS registers be programmed
with 0x0000 using the PROGC command before the
ERASEB command is used to erase the chip.

TABLE A-1: CHECKSUM COMPUTATION

Device Read Code
Protection Checksum Computation Erased

Value

Value with
0xAAAAAA at 0x0

and Last
Code Address

dsPIC30F2010 Disabled CFGB+SUM(0:001FFF) 0xD406 0xD208
Enabled CFGB 0x0404 0x0404

dsPIC30F2011 Disabled CFGB+SUM(0:001FFF) 0xD406 0xD208
Enabled CFGB 0x0404 0x0404

dsPIC30F2012 Disabled CFGB+SUM(0:001FFF) 0xD406 0xD208
Enabled CFGB 0x0404 0x0404

dsPIC30F3010 Disabled CFGB+SUM(0:003FFF) 0xA406 0xA208
Enabled CFGB 0x0404 0x0404

dsPIC30F3011 Disabled CFGB+SUM(0:003FFF) 0xA406 0xA208
Enabled CFGB 0x0404 0x0404

dsPIC30F3012 Disabled CFGB+SUM(0:003FFF) 0xA406 0xA208
Enabled CFGB 0x0404 0x0404

dsPIC30F3013 Disabled CFGB+SUM(0:003FFF) 0xA406 0xA208
Enabled CFGB 0x0404 0x0404

dsPIC30F3014 Disabled CFGB+SUM(0:003FFF) 0xA406 0xA208
Enabled CFGB 0x0404 0x0404

dsPIC30F4011 Disabled CFGB+SUM(0:007FFF) 0x4406 0x4208
Enabled CFGB 0x0404 0x0404

dsPIC30F4012 Disabled CFGB+SUM(0:007FFF) 0x4406 0x4208
Enabled CFGB 0x0404 0x0404

dsPIC30F4013 Disabled CFGB+SUM(0:007FFF) 0x4406 0x4208
Enabled CFGB 0x0404 0x0404

dsPIC30F5011 Disabled CFGB+SUM(0:00AFFF) 0xFC06 0xFA08
Enabled CFGB 0x0404 0x0404

dsPIC30F5013 Disabled CFGB+SUM(0:00AFFF) 0xFC06 0xFA08
Enabled CFGB 0x0404 0x0404

dsPIC30F5015 Disabled CFGB+SUM(0:00AFFF) 0xFC06 0xFA08
Enabled CFGB 0x0404 0x0404

Item Description:
SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory)
CFGB = Configuration Block (masked) = Byte sum of ((FOSC&0xC10F) + (FWDT&0x803F) +

 (FBORPOR&0x87B3) + (FBS&0x310F) + (FSS&0x330F) + (FGS&0x0007) + (FICD&0xC003))
DS70102K-page 60 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
dsPIC30F5016 Disabled CFGB+SUM(0:00AFFF) 0xFC06 0xFA08
Enabled CFGB 0x0404 0x0404

dsPIC30F6010 Disabled CFGB+SUM(0:017FFF) 0xC406 0xC208
Enabled CFGB 0x0404 0x0404

dsPIC30F6010A Disabled CFGB+SUM(0:017FFF) 0xC406 0xC208
Enabled CFGB 0x0404 0x0404

dsPIC30F6011 Disabled CFGB+SUM(0:015FFF) 0xF406 0xF208
Enabled CFGB 0x0404 0x0404

dsPIC30F6011A Disabled CFGB+SUM(0:015FFF) 0xF406 0xF208
Enabled CFGB 0x0404 0x0404

dsPIC30F6012 Disabled CFGB+SUM(0:017FFF) 0xC406 0xC208
Enabled CFGB 0x0404 0x0404

dsPIC30F6012A Disabled CFGB+SUM(0:017FFF) 0xC406 0xC208
Enabled CFGB 0x0404 0x0404

dsPIC30F6013 Disabled CFGB+SUM(0:015FFF) 0xF406 0xF208
Enabled CFGB 0x0404 0x0404

dsPIC30F6013A Disabled CFGB+SUM(0:015FFF) 0xF406 0xF208
Enabled CFGB 0x0404 0x0404

dsPIC30F6014 Disabled CFGB+SUM(0:017FFF) 0xC406 0xC208
Enabled CFGB 0x0404 0x0404

dsPIC30F6014A Disabled CFGB+SUM(0:017FFF) 0xC406 0xC208
Enabled CFGB 0x0404 0x0404

dsPIC30F6015 Disabled CFGB+SUM(0:017FFF) 0xC406 0xC208
Enabled CFGB 0x0404 0x0404

TABLE A-1: CHECKSUM COMPUTATION (CONTINUED)

Device Read Code
Protection Checksum Computation Erased

Value

Value with
0xAAAAAA at 0x0

and Last
Code Address

Item Description:
SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory)
CFGB = Configuration Block (masked) = Byte sum of ((FOSC&0xC10F) + (FWDT&0x803F) +

 (FBORPOR&0x87B3) + (FBS&0x310F) + (FSS&0x330F) + (FGS&0x0007) + (FICD&0xC003))
© 2010 Microchip Technology Inc. DS70102K-page 61

dsPIC30F Flash Programming Specification
APPENDIX B: HEX FILE FORMAT
Flash programmers process the standard HEX format
used by the Microchip development tools. The format
supported is the Intel® HEX 32 Format (INHX32).
Please refer to Appendix A in the “MPASM User’s
Guide” (DS33014) for more information about hex file
formats.

The basic format of the hex file is:

:BBAAAATTHHHH...HHHHCC

Each data record begins with a 9-character prefix and
always ends with a 2-character checksum. All records
begin with ‘:’ regardless of the format. The individual
elements are described below.

• BB - is a two-digit hexadecimal byte count
representing the number of data bytes that appear
on the line. Divide this number by two to get the
number of words per line.

• AAAA - is a four-digit hexadecimal address
representing the starting address of the data
record. Format is high byte first followed by low
byte. The address is doubled because this format
only supports 8-bits. Divide the value by two to
find the real device address.

• TT - is a two-digit record type that will be ‘00’ for
data records, ‘01’ for end-of-file records and ‘04’
for extended-address record.

• HHHH - is a four-digit hexadecimal data word. For-
mat is low byte followed by high byte. There will
be BB/2 data words following TT.

• CC - is a two-digit hexadecimal checksum that is
the two’s complement of the sum of all the
preceding bytes in the line record.

Because the Intel hex file format is byte-oriented, and
the 16-bit program counter is not, program memory
sections require special treatment. Each 24-bit
program word is extended to 32 bits by inserting a so-
called “phantom byte”. Each program memory address
is multiplied by 2 to yield a byte address.

As an example, a section that is located at 0x100 in
program memory will be represented in the hex file as
0x200.

The hex file will be produced with the following con-
tents:

:020000040000fa

:040200003322110096

:00000001FF

Notice that the data record (line 2) has a load address
of 0200, while the source code specified address
0x100. Note also that the data is represented in “little-
endian” format, meaning the Least Significant Byte
(LSB) appears first. The phantom byte appears last,
just before the checksum.
DS70102K-page 62 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
APPENDIX C: REVISION HISTORY
Note: Revision histories were not recorded for

revisions A through H. The previous
revision (J), was published in August
2007.

Revision K (November 2010)
This version of the document includes the following
updates:

• Added Note three to Section 5.2 “Entering
Enhanced ICSP Mode”

• Updated the first paragraph of Section 10.0
“Device ID”

• Updated Table 10-1: Device IDs
• Removed the VARIANT bit and updated the bit

definition for the DEVID register in Table 10-2:
dsPIC30F Device ID Registers

• Removed the VARIANT bit and updated the bit
field definition and description for the DEVID
register in Table 10-3: Device ID Bits Description

• Updated Note 3 in Section 11.3 “Entering ICSP
Mode”

• Updated Step 11 in Table 11-4: Serial Instruction
Execution for BUlk Erasing Program Memory
(Only in Normal-voltage Systems)

• Updated Steps 5, 12 and 19 in Table 11-5: Serial
Instruction Execution for Erasing Program
Memory (Either in Low-voltage or Normal-voltage
Systems)

• Updated Steps 5, 6 and 8 in Table 11-7: Serial
Instruction Execution for Writing Configuration
Registers

• Updated Steps 6 and 8 in Table 11-8: Serial
Instruction Execution for Writing Code Memory

• Updated Steps 6 and 8 in Table 11-9: Serial
Instruction Execution for Writing Data EEPROM

• Updated Entering ICSP™ Mode (see Figure 11-4)
• Updated Steps 4 and 11 in Table 12-1:

Programming the Programming Executive
• Renamed parameters: P12 to P12a and P13 to

P13a, and added parameters P12b and P13b in
Table 13-1: AC/DC Characteristics
© 2010 Microchip Technology Inc. DS70102K-page 63

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2010 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,
TSHARC, UniWinDriver, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2010, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-60932-636-4
DS70102K-page 65

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

