

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	30 MIPs
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	68
Program Memory Size	144KB (48K x 24)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f6010at-30i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.0 DEVICE PROGRAMMING

5.1 Overview of the Programming Process

Once the programming executive has been verified in memory (or loaded if not present), the dsPIC30F can be programmed using the command set shown in Table 5-1. A detailed description for each command is provided in Section 8.0 "Programming Executive Commands".

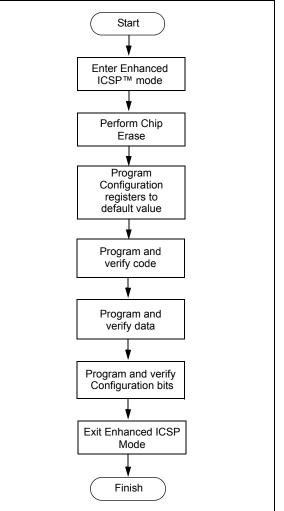

Command	Description		
SCHECK	Sanity check		
READD	Read data EEPROM, Configuration registers and device ID		
READP	Read code memory		
PROGD	Program one row of data EEPROM and verify		
PROGP	Program one row of code memory and verify		
PROGC	Program Configuration bits and verify		
ERASEB	Bulk Erase, or erase by segment		
ERASED	Erase data EEPROM		
ERASEP	Erase code memory		
QBLANK	Query if the code memory and data EEPROM are blank		
QVER	Query the software version		

TABLE 5-1: COMMAND SET SUMMARY

A high-level overview of the programming process is illustrated in Figure 5-1. The process begins by entering Enhanced ICSP mode. The chip is then bulk erased, which clears all memory to '1' and allows the device to be programmed. The Chip Erase is verified before programming begins. Next, the code memory, data Flash and Configuration bits are programmed. As these memories are programmed, they are each verified to ensure that programming was successful. If no errors are detected, the programming is complete and Enhanced ICSP mode is exited. If any of the verifications fail, the procedure should be repeated, starting from the Chip Erase. If Advanced Security features are enabled, then individual Segment Erase operations need to be performed, based on user selections (i.e., based on the specific needs of the user application). The specific operations that are used typically depend on the order in which various segments need to be programmed for a given application or system.

Section 5.2 "Entering Enhanced ICSP Mode" through Section 5.8 "Exiting Enhanced ICSP Mode" describe the programming process in detail.

FIGURE 5-1: PROGRAMMING FLOW

5.5.3 PROGRAMMING VERIFICATION

Once code memory is programmed, the contents of memory can be verified to ensure that programming was successful. Verification requires code memory to be read back and compared against the copy held in the programmer's buffer.

The READP command can be used to read back all the programmed code memory.

Alternatively, you can have the programmer perform the verification once the entire device is programmed using a checksum computation, as described in Section 6.8 "Checksum Computation".

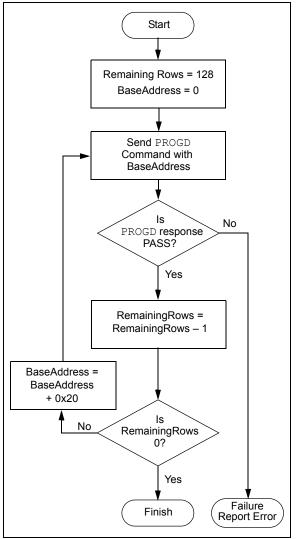
5.6 Data EEPROM Programming

5.6.1 OVERVIEW

The panel architecture for the data EEPROM memory array consists of 128 rows of sixteen 16-bit data words. Each panel stores 2K words. All devices have either one or no memory panels. Devices with data EEPROM provide either 512 words, 1024 words or 2048 words of memory on the one panel (see Table 5-3).

TABLE 5-3:DATA EEPROM SIZE

TADLE J-J. DATA LEFROW JIZE				
Device	Data EEPROM Size (Words)	Number of Rows		
dsPIC30F2010	512	32		
dsPIC30F2011	0	0		
dsPIC30F2012	0	0		
dsPIC30F3010	512	32		
dsPIC30F3011	512	32		
dsPIC30F3012	512	32		
dsPIC30F3013	512	32		
dsPIC30F3014	512	32		
dsPIC30F4011	512	32		
dsPIC30F4012	512	32		
dsPIC30F4013	512	32		
dsPIC30F5011	512	32		
dsPIC30F5013	512	32		
dsPIC30F5015	512	32		
dsPIC30F5016	512	32		
dsPIC30F6010	2048	128		
dsPIC30F6010A	2048	128		
dsPIC30F6011	1024	64		
dsPIC30F6011A	1024	64		
dsPIC30F6012	2048	128		
dsPIC30F6012A	2048	128		
dsPIC30F6013	1024	64		
dsPIC30F6013A	1024	64		
dsPIC30F6014	2048	128		
dsPIC30F6014A	2048	128		
dsPIC30F6015	2048	128		


5.6.2 PROGRAMMING METHODOLOGY

The programming executive uses the PROGD command to program the data EEPROM. Figure 5-4 illustrates the flowchart of the process. Firstly, the number of rows to program (RemainingRows) is based on the device size, and the destination address (DestAddress) is set to '0'. In this example, 128 rows (2048 words) of data EEPROM will be programmed.

The first PROGD command programs the first row of data EEPROM. Once the command completes successfully, 'RemainingRows' is decremented by 1 and compared with 0. Since there are 127 more rows to program, 'BaseAddress' is incremented by 0x20 to point to the next row of data EEPROM. This process is then repeated until all 128 rows of data EEPROM are programmed.

FIGURE 5-4:

FLOWCHART FOR PROGRAMMING dsPIC30F6014A DATA EEPROM

TABLE 5-5:FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F4011/4012 AND
dsPIC30F5011/5013

Bit Field	Register	Description
FCKSM<1:0>	FOSC	Clock Switching Mode 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
FOS<1:0>	FOSC	Oscillator Source Selection on POR 11 = Primary Oscillator 10 = Internal Low-Power RC Oscillator 01 = Internal Fast RC Oscillator 00 = Low-Power 32 kHz Oscillator (Timer1 Oscillator)
FPR<3:0>	FOSC	 Primary Oscillator Mode 1111 = ECIO w/PLL 16X – External Clock mode with 16X PLL. OSC2 pin is I/O 1101 = ECIO w/PLL 8X – External Clock mode with 8X PLL. OSC2 pin is I/O 1011 = ECIO w/PLL 4X – External Clock mode with 4X PLL. OSC2 pin is I/O 100 = ECIO – External Clock mode. OSC2 pin is I/O 1011 = EC – External Clock mode. OSC2 pin is system clock output (Fosc/4) 1010 = FRC w/PLL 8x – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O 1001 = ERC – External RC Oscillator mode. OSC2 pin is system clock output (Fosc/4) 1000 = ERCIO – External RC Oscillator mode. OSC2 pin is system clock output (Fosc/4) 1000 = ERCIO – External RC Oscillator mode. OSC2 pin is I/O 0111 = XT w/PLL 16X – XT Crystal Oscillator mode with 16X PLL 0101 = XT w/PLL 4X – XT Crystal Oscillator mode with 4X PLL 0101 = XT w/PLL 4X – T Crystal Oscillator mode with 4X PLL 0101 = T K w/PLL 16x – Internal fast RC oscillator with 16x PLL 0111 = ST w/PLL 4X – XT Crystal Oscillator mode with 4X PLL 0101 = KT w/PLL 16x – Internal fast RC oscillator with 16x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 16x – Internal fast RC oscillator with 16x PLL. OSC2 pin is I/O 0010 = HS – HS Crystal Oscillator mode (10 MHz-25 MHz crystal) 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O

TABLE 5-6: FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013/3014, dsPIC30F4013, dsPIC30F5015/5016, dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015

	Description		
OSC	Clock Switching Mode 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled		
OSC	Oscillator Source Selection on POR 111 = Primary Oscillator 110 = Reserved 101 = Reserved 100 = Reserved 011 = Reserved 010 = Internal Low-Power RC Oscillator 001 = Internal Fast RC Oscillator (no PLL) 000 = Low-Power 32 kHz Oscillator (Timer1 Oscillator)		
DSC	Primary Oscillator Mode (when FOS<2:0> = 111b) 11xxx = Reserved (do not use) 10111 = HS/3 w/PLL 16X – HS/3 crystal oscillator with 16X PLL (10 MHz-25 MHz crystal) 10101 = HS/3 w/PLL 8X – HS/3 crystal oscillator with 8X PLL (10 MHz-25 MHz crystal) 10101 = HS/3 w/PLL 4X – HS/3 crystal oscillator with 4X PLL (10 MHz-25 MHz crystal) 10100 = Reserved (do not use) 10011 = HS/2 w/PLL 16X – HS/2 crystal oscillator with 16X PLL (10 MHz-25 MHz crystal) 10010 = HS/2 w/PLL 8X – HS/2 crystal oscillator with 8X PLL (10 MHz-25 MHz crystal) 10001 = HS/2 w/PLL 8X – HS/2 crystal oscillator with 8X PLL (10 MHz-25 MHz crystal) 10001 = HS/2 w/PLL 4X – HS/2 crystal oscillator with 4X PLL (10 MHz-25 MHz crystal) 10000 = Reserved (do not use) 01111 = ECIO w/PLL 16x – External clock with 16x PLL. OSC2 pin is I/O 01101 = ECIO w/PLL 16x – External clock with 8x PLL. OSC2 pin is I/O 01101 = ECIO w/PLL 4x – External clock with 4x PLL. OSC2 pin is I/O 01101 = ECIO w/PLL 4x – External clock with 4x PLL. OSC2 pin is I/O 01101 = ECIO w/PLL 8x – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O 01010 = Reserved (do not use) 01011 = Reserved (do not use) 01011 = XT w/PLL 16X – XT crystal oscillator with 16X PLL 0110 = XT w/PLL 4X – XT crystal oscillator with 8X PLL 0110 = XT w/PLL 4X – XT crystal oscillator with 8X PLL 0110 = XT w/PLL 4X – XT crystal oscillator with 8X PLL 0110 = TRC w/PLL 4X – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O 0111 = FRC w/PLL 4X – XT crystal oscillator with 8X PLL 0100 = Reserved (do not use) 00011 = FRC w/PLL 4X – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O 00010 = Reserved (do not use) 00011 = FRC w/PLL 4X – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 00010 = Reserved (do not use)		

Bit Field	Register	Description
EBS	FBS	Boot Segment Data EEPROM Code Protection (only present in dsPIC30F5011/ 5013/6010A/6011A/6012A/6013A/6014A/6015) 1 = No Data EEPROM is reserved for Boot Segment 0 = 128 bytes of Data EEPROM are reserved for Boot Segment in dsPIC30F5011/ 5013, and 256 bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015
BSS<2:0>	FBS	Boot Segment Program Memory Code Protection (only present in dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015) 111 = No Boot Segment 110 = Standard security; Small-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0003FF] 101 = Standard security; Medium-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0007FF] 100 = Standard security; Large-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0007FF] 100 = Standard security; Large-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x001FF] 011 = No Boot Segment 010 = High security; Small-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0003FF] 011 = High security; Medium-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0003FF] 001 = High security; Medium-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0007FF] 001 = High security; Large-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0007FF] 000 = High security; Large-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0007FF] 000 = High security; Large-sized Boot Program Flash [Boot Segment starts after BS and ends at 0x0007FF]
BWRP	FBS	Boot Segment Program Memory Write Protection (only present in dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015) 1 = Boot Segment program memory is not write-protected 0 = Boot Segment program memory is write-protected
RSS<1:0>	FSS	Secure Segment Data RAM Code Protection (only present in dsPIC30F5011/ 5013/6010A/6011A/6012A/6013A/6014A/6015) 11 = No Data RAM is reserved for Secure Segment 10 = Small-sized Secure RAM [(256 - N) bytes of RAM are reserved for Secure Segment] 01 = Medium-sized Secure RAM [(768 - N) bytes of RAM are reserved for Secure Segment in dsPIC30F5011/ 5013, and (2048 - N) bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/ 6015] 00 = Large-sized Secure RAM [(1024 - N) bytes of RAM are reserved for Secure Segment in dsPIC30F5011/ 5013, and (4096 - N) bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/ 6015] where N = Number of bytes of RAM reserved for Boot Sector.
ESS<1:0>	FSS	 Secure Segment Data EEPROM Code Protection (only present in dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015) 11 = No Data EEPROM is reserved for Secure Segment 10 = Small-sized Secure Data EEPROM [(128 – N) bytes of Data EEPROM are reserved for Secure Segment in dsPIC30F5011/5013, and (256 – N) bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015] 01 = Medium-sized Secure Data EEPROM [(256 – N) bytes of Data EEPROM are reserved for Secure Segment in dsPIC30F5011/5013, and (512 – N) bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015] 01 = Large-sized Secure Data EEPROM [(512 – N) bytes of Data EEPROM [(512 – N) bytes of Data EEPROM are reserved for Secure Segment in dsPIC30F5011/5013, (1024 – N) bytes in dsPIC30F6011A/6013A, and (2048 – N) bytes in dsPIC30F6010A/6012A/6014A/6015]

TABLE 5-7: CONFIGURATION BITS DESCRIPTION (CONTINUED)

5.7.2 PROGRAMMING METHODOLOGY

System operation Configuration bits are inherently different than all other memory cells. Unlike code memory, data EEPROM and code-protect Configuration bits, the system operation bits cannot be erased. If the chip is erased with the ERASEB command, the system-operation bits retain their previous value. Consequently, you should make no assumption about the value of the system operation bits. They should always be programmed to their desired setting.

Configuration bits are programmed as a single word at a time using the PROGC command. The PROGC command specifies the configuration data and Configuration register address. When Configuration bits are programmed, any unimplemented bits must be programmed with a '0', and any reserved bits must be programmed with a '1'.

Four PROGC commands are required to program all the Configuration bits. Figure 5-5 illustrates the flowchart of Configuration bit programming.

Note: If the General Code Segment Code Protect (GCP) bit is programmed to '0', code memory is code-protected and cannot be read. Code memory must be verified before enabling read protection. See Section 5.7.4 "Code-Protect Configuration Bits" for more information about code-protect Configuration bits.

5.7.3 PROGRAMMING VERIFICATION

Once the Configuration bits are programmed, the contents of memory should be verified to ensure that the programming was successful. Verification requires the Configuration bits to be read back and compared against the copy held in the programmer's buffer. The READD command reads back the programmed Configuration bits and verifies whether the programming was successful.

Any unimplemented Configuration bits are read-only and read as '0'.

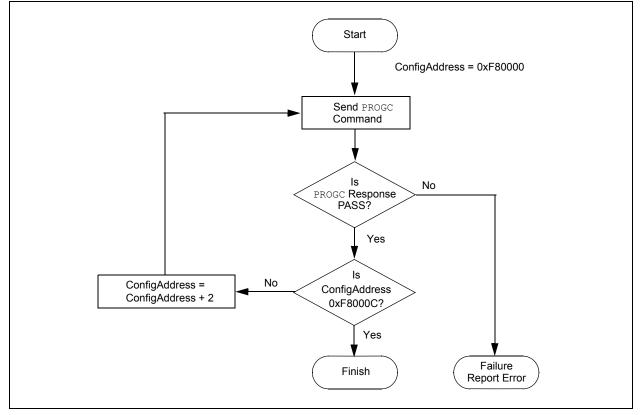
5.7.4 CODE-PROTECT CONFIGURATION BITS

The FBS, FSS and FGS Configuration registers are special Configuration registers that control the size and level of code protection for the Boot Segment, Secure Segment and General Segment, respectively. For each segment, two main forms of code protection are provided. One form prevents code memory from being written (write protection), while the other prevents code memory from being read (read protection).

The BWRP, SWRP and GWRP bits control write protection; and BSS<2:0>, SSS<2:0> and GSS<1:0> bits control read protection. The Chip Erase ERASEB command sets all the code protection bits to '1', which allows the device to be programmed.

When write protection is enabled, any programming operation to code memory will fail. When read protection is enabled, any read from code memory will cause a '0x0' to be read, regardless of the actual contents of code memory. Since the programming executive always verifies what it programs, attempting to program code memory with read protection enabled will also result in failure.

It is imperative that all code protection bits are '1' while the device is being programmed and verified. Only after the device is programmed and verified should any of the above bits be programmed to '0' (see Section 5.7 "Configuration Bits Programming").


In addition to code memory protection, parts of data EEPROM and/or data RAM can be configured to be accessible only by code resident in the Boot Segment and/or Secure Segment. The sizes of these "reserved" sections are user-configurable, using the EBS, RBS<1:0>, ESS<1:0> and RSS<1:0> bits.

- Note 1: All bits in the FBS, FSS and FGS Configuration registers can only be programmed to a value of '0'. ERASEB is the only way to reprogram code-protect bits from ON ('0') to OFF ('1').
 - 2: If any of the code-protect bits in FBS, FSS, or FGS are clear, the entire device must be erased before it can be reprogrammed.

5.8 Exiting Enhanced ICSP Mode

The Enhanced ICSP mode is exited by removing power from the device or bringing MCLR to VIL. When normal user mode is next entered, the program that was stored using Enhanced ICSP will execute.

FIGURE 5-5: CONFIGURATION BIT PROGRAMMING FLOW

6.6 Configuration Information in the Hexadecimal File

To allow portability of code, the programmer must read the Configuration register locations from the hexadecimal file. If configuration information is not present in the hexadecimal file, a simple warning message should be issued by the programmer. Similarly, while saving a hexadecimal file, all configuration information must be included. An option to not include the configuration information can be provided.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

6.7 Unit ID

The dsPIC30F devices contain 32 instructions of Unit ID. These are located at addresses 0x8005C0 through 0x8005FF. The Unit ID can be used for storing product information such as serial numbers, system manufacturing dates, manufacturing lot numbers and other such application-specific information.

A Bulk Erase does not erase the Unit ID locations. Instead, erase all executive memory using steps 1-4 as shown in Table 12-1, and program the Unit ID along with the programming executive. Alternately, use a Row Erase to erase the row containing the Unit ID locations.

6.8 Checksum Computation

Checksums for the dsPIC30F are 16 bits in size. The checksum is to total sum of the following:

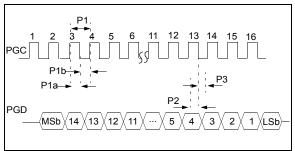
- · Contents of code memory locations
- · Contents of Configuration registers

Table A-1 describes how to calculate the checksum for each device. All memory locations are summed one byte at a time, using only their native data size. More specifically, Configuration and device ID registers are summed by adding the lower two bytes of these locations (the upper byte is ignored), while code memory is summed by adding all three bytes of code memory.

Note: The checksum calculation differs depending on the code-protect setting. Table A-1 describes how to compute the checksum for an unprotected device and a read-protected device. Regardless of the code-protect setting, the Configuration registers can always be read.

7.0 PROGRAMMER – PROGRAMMING EXECUTIVE COMMUNICATION

7.1 Communication Overview


The programmer and programming executive have a master-slave relationship, where the programmer is the master programming device and the programming executive is the slave.

All communication is initiated by the programmer in the form of a command. Only one command at a time can be sent to the programming executive. In turn, the programming executive only sends one response to the programmer after receiving and processing a command. The programming executive command set is described in Section 8.0 "Programming Executive Commands". The response set is described in Section 9.0 "Programming Executive Responses".

7.2 Communication Interface and Protocol

The Enhanced ICSP interface is a 2-wire SPI interface implemented using the PGC and PGD pins. The PGC pin is used as a clock input pin, and the clock source must be provided by the programmer. The PGD pin is used for sending command data to, and receiving response data from, the programming executive. All serial data is transmitted on the falling edge of PGC and latched on the rising edge of PGC. All data transmissions are sent Most Significant bit (MSb) first, using 16-bit mode (see Figure 7-1).

FIGURE 7-1: PROGRAMMING EXECUTIVE SERIAL TIMING

Since a 2-wire SPI interface is used, and data transmissions are bidirectional, a simple protocol is used to control the direction of PGD. When the programmer completes a command transmission, it releases the PGD line and allows the programming executive to drive this line high. The programming executive keeps the PGD line high to indicate that it is processing the command.

After the programming executive has processed the command, it brings PGD low for 15 μ sec to indicate to the programmer that the response is available to be

8.0 PROGRAMMING EXECUTIVE COMMANDS

8.1 Command Set

The programming executive command set is shown in Table 8-1. This table contains the opcode, mnemonic, length, time out and description for each command. Functional details on each command are provided in the command descriptions (see Section 8.5 "Command Descriptions").

8.2 Command Format

All programming executive commands have a general format consisting of a 16-bit header and any required data for the command (see Figure 8-1). The 16-bit header consists of a 4-bit opcode field, which is used to identify the command, followed by a 12-bit command length field.

FIGURE 8-1: COMMAND FORMAT

15 12	11	0
Opcode Length		
Comn	nand Data First Word (if required)	
•		
•		
Command Data Last Word (if required)		

The command opcode must match one of those in the command set. Any command that is received which does not match the list in Table 8-1 will return a "NACK" response (see Section 9.2.1 "Opcode Field").

The command length is represented in 16-bit words since the SPI operates in 16-bit mode. The programming executive uses the Command Length field to determine the number of words to read from the SPI port. If the value of this field is incorrect, the command will not be properly received by the programming executive.

8.3 Packed Data Format

When 24-bit instruction words are transferred across the 16-bit SPI interface, they are packed to conserve space using the format shown in Figure 8-2. This format minimizes traffic over the SPI and provides the programming executive with data that is properly aligned for performing table write operations.

FIGURE 8-2:	PACKED INSTRUCTION
	WORD FORMAT

15	8	7	0
	lsv	w1	
MS	B2	MSB1	
lsw2			

Iswx: Least significant 16 bits of instruction word MSBx: Most Significant Byte of instruction word

Note:	When the number of instruction words
	transferred is odd, MSB2 is zero and Isw2
	cannot be transmitted.

8.4 Programming Executive Error Handling

The programming executive will "NACK" all unsupported commands. Additionally, due to the memory constraints of the programming executive, no checking is performed on the data contained in the Programmer command. It is the responsibility of the programmer to command the programming executive with valid command arguments, or the programming operation may fail. Additional information on error handling is provided in Section 9.2.3 "QE_Code Field".

8.5.9 ERASEP COMMAND

15	12	11	8	7	0
Орс	ode			Length	
Num_Rows			Addr_MSB		
Addr_LS					

Field	Description
Opcode	0x9
Length	0x3
Num_Rows	Number of rows to erase
Addr_MSB	MSB of 24-bit base address
Addr_LS	LS 16 bits of 24-bit base address

The ERASEP command erases the specified number of rows of code memory from the specified base address. The specified base address must be a multiple of 0x40.

Once the erase is performed, all targeted words of code memory contain 0xFFFFF.

Expected Response (2 words):

0x1900 0x0002

> Note: The ERASEP command cannot be used to erase the Configuration registers or device ID. Code-protect Configuration registers can only be erased with the ERASEB command, while the device ID is read-only.

8.5.10 QBLANK COMMAND

15 12	11 0		
Opcode	Length		
	PSize		
Reserved	DSize		

Field	Description
Opcode	0xA
Length	0x3
PSize	Length of program memory to check (in 24-bit words), max of 49152
Reserved	0x0
DSize	Length of data memory to check (in 16-bit words), max of 2048

The QBLANK command queries the programming executive to determine if the contents of code memory and data EEPROM are blank (contains all '1's). The size of code memory and data EEPROM to check must be specified in the command.

The Blank Check for code memory begins at 0x0 and advances toward larger addresses for the specified number of instruction words. The Blank Check for data EEPROM begins at 0x7FFFFE and advances toward smaller addresses for the specified number of data words.

QBLANK returns a QE_Code of 0xF0 if the specified code memory and data EEPROM are blank. Otherwise, QBLANK returns a QE_Code of 0x0F.

Expected Response (2 words for blank device): 0x1AF0

0x0002

Expected Response (2 words for non-blank device): 0x1A0F 0x0002

Note: The QBLANK command does not check the system Configuration registers. The READD command must be used to determine the state of the Configuration registers. Table 11-4 shows the ICSP programming process for bulk-erasing program memory. This process includes the ICSP command code, which must be transmitted (for each instruction) to the Least Significant bit first using the PGC and PGD pins (see Figure 11-2).

If an individual Segment Erase operation is required, the NVMCON value must be replaced by the value for the corresponding Segment Erase operation.

Note:	Program memory must be erased before
	writing any data to program memory.

TABLE 11-4:SERIAL INSTRUCTION EXECUTION FOR BULK ERASING PROGRAM MEMORY
(ONLY IN NORMAL-VOLTAGE SYSTEMS)

08A 80A	GOTO 0x100 GOTO 0x100 NOP the FBS Configuration register. ⁽¹⁾ MOV #0x4008, W10 MOV W10, NVMCON
00 000 DN to program 08A 00A TBLPAG and	GOTO 0×100 NOP the FBS Configuration register. ⁽¹⁾ MOV #0×4008, W10
DN to program	NOP the FBS Configuration register. ⁽¹⁾ MOV #0x4008, W10
DN to program	the FBS Configuration register. ⁽¹⁾
BA BOA CHANNE TBLPAG and	MOV #0x4008, W10
BOA TBLPAG and	
e TBLPAG and	MOV W10, NVMCON
'80	write pointer (W7) for TBLWT instruction for Configuration register. ⁽¹⁾
	MOV #0xF8, W0
.90	MOV W0, TBLPAG
67	MOV #0x6, W7
onfiguration Re	egister data to W6. ⁽¹⁾
300	CLR W6
000	NOP
onfiguration Re	egister write latch. Advance W7 to point to next Configuration register. ⁽¹⁾
386	TBLWTL W6, [W7++]
NVMCON for p	programming the Configuration register. ⁽¹⁾
58	MOV #0x55, W8
A9	MOV #0xAA, W9
338	MOV W8, NVMKEY
339	MOV W9, NVMKEY
programming c	ycle. ⁽¹⁾
61	BSET NVMCON, #WR
000	NOP
000	NOP
	Externally time 2 ms
000	NOP
000	NOP
61	BCLR NVMCON, #WR
000	NOP
000	NOP
os 5-7 one time	e to program 0x0000 to RESERVED2 Configuration register. ⁽¹⁾
VICON to erase	e all Program Memory.
'FA	MOV #0x407F, W10
30A	MOV W10, NVMCON
O OS M	5-7 one time CON to erase

Note 1: Steps 2-8 are only required for the dsPIC30F5011/5013 devices. These steps may be skipped for all other devices in the dsPIC30F family.

TABLE 11-4:SERIAL INSTRUCTION EXECUTION FOR BULK ERASING PROGRAM MEMORY
(ONLY IN NORMAL-VOLTAGE SYSTEMS) (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description	
0000	200558	MOV #0x55, W8	
0000	883B38	MOV W8, NVMKEY	
0000	200AA9	MOV #0xAA, W9	
0000	883B39	MOV W9, NVMKEY	
Step 11: Initia	te the erase cycle.		
0000	A8E761	BSET NVMCON, #WR	
0000	000000	NOP	
0000	000000	NOP	
-	-	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and Timing Requirements")	
0000	000000	NOP	
0000	000000	NOP	
0000	A9E761	BCLR NVMCON, #WR	
0000	000000	NOP	
0000	000000	NOP	

Note 1: Steps 2-8 are only required for the dsPIC30F5011/5013 devices. These steps may be skipped for all other devices in the dsPIC30F family.

TABLE 11-5:SERIAL INSTRUCTION EXECUTION FOR ERASING PROGRAM MEMORY
(EITHER IN LOW-VOLTAGE OR NORMAL-VOLTAGE SYSTEMS) (CONTINUED)

Command (Binary)	I Data (Hexadecimal)	Description
		stored in NVMADRU:NVMADR. When W6 rolls over to 0x0, NVMADRU must be
incr	emented.	
0000	430307	ADD W6, W7, W6
0000	AF0042	BTSC SR, #C
0000	EC2764	INC NVMADRU
0000	883B16	MOV W6, NVMADR
Step 7: Res	et device internal PO	J
0000	040100	GOTO 0x100
0000	000000	NOP
Step 8: Rep	eat Steps 3-7 until a	Il rows of code memory are erased.
Step 9: Initia	alize NVMADR and	NVMADRU to erase executive memory and initialize W7 for row address updates.
	EB0300	CLR W6
0000	883B16	MOV W6, NVMADR
0000	200807	MOV #0x80, W7
0000	883B27	MOV W7, NVMADRU
0000	200407	MOV #0x40, W7
Step 10: Se	et NVMCON to erase	1 row of executive memory.
0000	24071A	MOV #0x4071, W10
0000	883B0A	MOV W10, NVMCON
Step 11: Un	lock the NVMCON t	o erase 1 row of executive memory.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 12: Ini	tiate the erase cycle	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_		Eutompolity time VD12o/ me (coo Section 13.0 "AC/DC Characteristics and
	_	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and
0000	_	Timing Requirements")
	000000	Timing Requirements")
0000	000000	Timing Requirements") NOP NOP
0000 0000		Timing Requirements")
0000 0000 0000	000000 A9E761	Timing Requirements") NOP NOP BCLR NVMCON, #WR
0000 0000 0000 0000 Step 13: U p	000000 A9E761 000000 000000	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP
0000 0000 0000 0000 Step 13: Up	000000 A9E761 000000 000000 odate the row addres	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP Se stored in NVMADR.
0000 0000 0000 0000 Step 13: Up	000000 A9E761 000000 000000	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP
0000 0000 0000 0000 Step 13: Up 0000 0000	000000 A9E761 000000 odate the row addres 430307 883B16	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP Stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR
0000 0000 0000 Step 13: Up 0000 0000 Step 14: Re	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP SS stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR PC.
0000 0000 0000 0000 Step 13: Up 0000 0000 Step 14: Re	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP Ses stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100
2000 2000 2000 2000 2000 2000 2000 200	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100 00000	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP SS stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP
2000 2000 Step 13: Up 2000 Step 14: Re 2000 Step 15: Re	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100 000000 epeat Steps 10-14 ur	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP NOP SS stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP ntil all 24 rows of executive memory are erased.
2000 2000 Step 13: Up 2000 Step 14: Re 2000 Step 15: Re Step 16: Ini	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100 00000 epeat Steps 10-14 ur tialize NVMADR and	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP SS stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP ntil all 24 rows of executive memory are erased. NVMADRU to erase data memory and initialize W7 for row address updates.
2000 2000 2000 2000 2000 2000 2000 200	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100 000000 epeat Steps 10-14 ur tialize NVMADR and 2xxxx6	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP NOP St stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP ntil all 24 rows of executive memory are erased. INVMADRU to erase data memory and initialize W7 for row address updates. MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6</lower>
0000 0000 Step 13: Up 0000 Step 14: Re 0000 Step 15: Re Step 16: Ini 0000 0000	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100 000000 epeat Steps 10-14 ur tialize NVMADR and 2xxxx6 883B16	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP NOP NOP State ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP NOP NOP ADL WVMADRU OC. GOTO 0x100 NOP NOP MOV # NVMADRU to erase data memory and initialize W7 for row address updates. MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6 MOV W6, NVMADR</lower>
0000 0000 Step 13: Up 0000 Step 14: Re 0000 Step 15: Re Step 16: Ini 0000 0000 0000	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100 000000 epeat Steps 10-14 ur tialize NVMADR and 2XXXX6 883B16 2007F6	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP State ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP NOP thil all 24 rows of executive memory are erased. INVMADRU to erase data memory and initialize W7 for row address updates. MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6 MOV #0x7F, W6</lower>
0000 0000 Step 13: Up 0000 0000 Step 14: Re 0000 0000 Step 15: Re	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100 000000 epeat Steps 10-14 ur tialize NVMADR and 2xxxx6 883B16	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP NOP NOP State ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP NOP NOP ADL WVMADRU OC. GOTO 0x100 NOP NOP MOV # NVMADRU to erase data memory and initialize W7 for row address updates. MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6 MOV W6, NVMADR</lower>
0000 0000 Step 13: Up 0000 Step 14: Re 0000 Step 15: Re Step 16: Ini 0000 0000 0000 0000 0000 0000 0000	000000 A9E761 000000 odate the row address 430307 883B16 eset device internal F 040100 00000 epeat Steps 10-14 ur tialize NVMADR and 2XXXX6 83B16 2007F6 883B16 200207	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP NOP NOP NOP NOP NOP NOP NOP State ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP NOP NOP NUMADRU to erase data memory are erased. INVMADRU to erase data memory and initialize W7 for row address updates. MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6 MOV #0x7F, W6 MOV #0x7F, W6 MOV #0x20, W7</lower>
0000 0000 Step 13: Up 0000 Step 14: Re 0000 Step 15: Re Step 16: Ini 0000 0000 0000 0000 0000 0000 0000	000000 A9E761 000000 odate the row address 430307 883B16 eset device internal F 040100 00000 epeat Steps 10-14 ur tialize NVMADR and 2XXXX6 83B16 2007F6 883B16 200207	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP State ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP NOP thil all 24 rows of executive memory are erased. INVMADRU to erase data memory and initialize W7 for row address updates. MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6 MOV #0x7F, W6 MOV #0x7F, W6 MOV W6, NVMADR</lower>

Command (Binary)	Data (Hexadecimal)	Description
	he read pointer (W6)	and load the (next set of) write latches.
0000	EB0300	CLR W6
0000	000000	NOP
0000	BB0BB6	TBLWTL [W6++], [W7]
0000	000000	NOP
0000	000000	NOP
0000	BBDBB6	TBLWTH.B [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BBEBB6	TBLWTH.B [W6++], [++W7]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BB0BB6	TBLWTL [W6++], [W7]
0000	000000	NOP
0000	000000	NOP
0000	BBDBB6	TBLWTH.B [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BBEBB6	TBLWTH.B [W6++], [++W7]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
Step 6: Repe	at steps 4-5 eight tir	nes to load the write latches for 32 instructions.
Step 7: Unloc	ck the NVMCON for	writing.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 8: Initiat	te the write cycle.	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_	_	Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and
		Timing Requirements")
0000	000000	NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #WR
0000	000000	NOP
	000000	NOP
0000	t dovice internal DC	
	i device internal PC.	
Step 9: Rese		
0000 Step 9: Rese	040100 000000	GOTO 0x100 NOP

TABLE 11-8: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY (CONTINUED)

11.9 Writing Data EEPROM

The procedure for writing data EEPROM is very similar to the procedure for writing code memory, except that fewer words are programmed in each operation. When writing data EEPROM, one row of data EEPROM is programmed at a time. Each row consists of sixteen 16-bit data words. Since fewer words are programmed during each operation, only working registers W0:W3 are used as temporary holding registers for the data to be programmed.

Table 11-9 shows the ICSP programming details for writing data EEPROM. Note that a different NVMCON value is required to write to data EEPROM, and that the TBLPAG register is hard-coded to 0x7F (the upper byte address of all locations of data EEPROM).

	OFRIAL INOTRUCTION EVECUTION FOR WRITING RATA FERROM
TABLE 11-9:	SERIAL INSTRUCTION EXECUTION FOR WRITING DATA EEPROM

Command (Binary)	Data (Hexadecimal)	Description	
Step 1: Exit the Reset vector.			
0000	040100	GOTO 0x100	
0000	040100	GOTO 0x100	
0000	000000	NOP	
Step 2: Set the	Step 2: Set the NVMCON to write 16 data words.		
0000	24005A	MOV #0x4005, W10	
0000	883B0A	MOV W10, NVMCON	
Step 3: Initializ	ze the write pointer	W7) for TBLWT instruction.	
0000	2007F0	MOV #0x7F, WO	
0000	880190	MOV W0, TBLPAG	
0000	2xxxx7	MOV # <destinationaddress15:0>, W7</destinationaddress15:0>	
Step 4: Load \	W0:W3 with the nex	4 data words to program.	
0000	2xxxx0	MOV # <wordo>, WO</wordo>	
0000	2xxxx1	MOV # <word1>, W1</word1>	
0000	2xxxx2	MOV # <word2>, W2</word2>	
0000	2xxxx3	MOV # <word3>, W3</word3>	
Step 5: Set the	e read pointer (W6)	and load the (next set of) write latches.	
0000	EB0300	CLR W6	
0000	000000	NOP	
0000	BB1BB6	TBLWTL [W6++], [W7++]	
0000	000000	NOP	
0000	000000	NOP	
0000	BB1BB6	TBLWTL [W6++], [W7++]	
0000	000000	NOP	
0000	000000	NOP	
0000	BB1BB6	TBLWTL [W6++], [W7++]	
0000	000000	NOP	
0000	000000	NOP	
0000	BB1BB6	TBLWTL [W6++], [W7++]	
0000	000000	NOP	
0000	000000	NOP	
Step 6: Repea	at steps 4-5 four time	es to load the write latches for 16 data words.	

11.10 Reading Code Memory

Reading from code memory is performed by executing a series of TBLRD instructions and clocking out the data using the REGOUT command. To ensure efficient execution and facilitate verification on the programmer, four instruction words are read from the device at a time.

Table 11-10 shows the ICSP programming details for reading code memory. In Step 1, the Reset vector is exited. In Step 2, the 24-bit starting source address for reading is loaded into the TBLPAG and W6 registers. The upper byte of the starting source address is stored to TBLPAG, while the lower 16 bits of the source address are stored to W6.

To minimize the reading time, the packed instruction word format that was utilized for writing is also used for reading (see Figure 11-5). In Step 3, the write pointer W7 is initialized, and four instruction words are read from code memory and stored to working registers W0:W5. In Step 4, the four instruction words are clocked out of the device from the VISI register using the REGOUT command. In Step 5, the internal PC is reset to 0x100, as a precautionary measure, to prevent the PC from incrementing into unimplemented memory when large devices are being read. Lastly, in Step 6, Steps 3-5 are repeated until the desired amount of code memory is read.

Command (Binary)	Data (Hexadecimal)		Description	
Step 1: Exit th	Step 1: Exit the Reset vector.			
0000	040100	GOTO 0x100		
0000	040100	GOTO 0x100		
0000	000000	NOP		
Step 2: Initiali	Step 2: Initialize TBLPAG and the read pointer (W6) for TBLRD instruction.			
0000	200xx0	MOV	# <sourceaddress23:16>, W0</sourceaddress23:16>	
0000	880190	MOV	WO, TBLPAG	
0000	2xxxx6	MOV	<pre>#<sourceaddress15:0>, W6</sourceaddress15:0></pre>	
Step 3: Initiali	ze the write point	er (W7) and s	tore the next four locations of code memory to W0:W5.	
0000	EB0380	CLR	W7	
0000	000000	NOP		
0000	BA1B96	TBLRDL	[W6], [W7++]	
0000	000000	NOP		
0000	000000	NOP		
0000	BADBB6	TBLRDH.B	[W6++], [W7++]	
0000	000000	NOP		
0000	000000	NOP		
0000	BADBD6	TBLRDH.B	[++W6], [W7++]	
0000	000000	NOP		
0000	000000	NOP		
0000	BA1BB6	TBLRDL	[W6++], [W7++]	
0000	000000	NOP		
0000	000000	NOP		
0000	BA1B96	TBLRDL	[W6], [W7++]	
0000	000000	NOP		
0000	000000	NOP		
0000	BADBB6	TBLRDH.B	[W6++], [W7++]	
0000	000000	NOP		
0000	000000	NOP		
0000	BADBD6	TBLRDH.B	[++W6], [W7++]	
0000	000000	NOP		
0000	000000	NOP		
0000	BA0BB6	TBLRDL	[W6++], [W7]	
0000	000000	NOP		
0000	000000	NOP		

11.13 Reading the Application ID Word

The application ID word is stored at address 0x8005BE in executive code memory. To read this memory location, you must use the SIX control code to move this program memory location to the VISI register. The REGOUT control code must then be used to clock the contents of the VISI register out of the device. The corresponding control and instruction codes that must be serially transmitted to the device to perform this operation are shown in Table 11-13.

Once the programmer has clocked-out the application ID word, it must be inspected. If the application ID has the value 0xBB, the programming executive is resident in memory and the device can be programmed using the mechanism described in Section 5.0 "Device Programming". However, if the application ID has any other value, the programming executive is not resident in memory. It must be loaded to memory before the device can be programming executive to the memory is described in Section 12.0 "Programming the Programming the Programming Executive to Memory".

11.14 Exiting ICSP Mode

After confirming that the programming executive is resident in memory, or loading the programming executive, ICSP mode is exited by removing power to the device or bringing MCLR to VIL. Programming can then take place by following the procedure outlined in **Section 5.0 "Device Programming"**.

Command (Binary)	Data (Hexadecimal)	Description		
Step 1: Exit th	Step 1: Exit the Reset vector.			
0000 0000 0000	040100 040100 000000	GOTO 0x100 GOTO 0x100 NOP		
Step 2: Initiali	ze TBLPAG and th	e read pointer (W0) for TBLRD instruction.		
0000 0000 0000 0000 0000 0000 0000 0000	200800 880190 205BE0 207841 000000 BA0890 000000 000000	MOV #0x80, W0 MOV W0, TBLPAG MOV #0x5BE, W0 MOV VISI, W1 NOP TBLRDL [W0], [W1] NOP NOP		
Step 3: Output	Step 3: Output the VISI register using the REGOUT command.			
0001 0000	<visi> 000000</visi>	Clock out contents of the VISI register NOP		

TABLE 11-13: SERIAL INSTRUCTION EXECUTION FOR READING THE APPLICATION ID WORD

12.2 Programming Verification

After the programming executive has been programmed to executive memory using ICSP, it must be verified. Verification is performed by reading out the contents of executive memory and comparing it with the image of the programming executive stored in the programmer.

Reading the contents of executive memory can be performed using the same technique described in **Section 11.10 "Reading Code Memory"**. A procedure for reading executive memory is shown in Table 12-2. Note that in Step 2, the TBLPAG register is set to 0x80 such that executive memory may be read.

TABLE 12-2: REA	DING EXECUTIVE MEMORY
-----------------	-----------------------

Command (Binary)	Data (Hexadecimal)		Description
Step 1: Exit th	e Reset vector.		
0000	040100	GOTO 0x100	
0000	040100	GOTO 0x100	
0000	000000	NOP	
Step 2: Initiali	ze TBLPAG and t	he read pointe	er (W6) for TBLRD instruction.
0000	200800	MOV	#0x80, W0
0000	880190	MOV	W0, TBLPAG
0000	EB0300	CLR	W6
Step 3: Initiali	ze the write point	er (W7), and s	store the next four locations of executive memory to W0:W5.
0000	EB0380	CLR	W7
0000	000000	NOP	
0000	BA1B96	TBLRDL	[W6], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BADBB6	TBLRDH.B	[W6++], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BADBD6	TBLRDH.B	[++W6], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BA1BB6	TBLRDL	[W6++], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BA1B96	TBLRDL	[W6], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BADBB6	TBLRDH.B	[W6++], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BADBD6	TBLRDH.B	[++W6], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BA1BB6	TBLRDL	[W6++], [W7]
0000	000000	NOP	
0000	000000	NOP	

APPENDIX A: DEVICE-SPECIFIC INFORMATION

A.1 Checksum Computation

The checksum computation is described in **Section 6.8 "Checksum Computation"**. Table A-1 shows how this 16-bit computation can be made for each dsPIC30F device. Computations for read code protection are shown both enabled and disabled. The checksum values assume that the Configuration registers are also erased. However, when code protection is enabled, the value of the FGS register is assumed to be 0x5.

A.2 dsPIC30F5011 and dsPIC30F5013

A.2.1 ICSP PROGRAMMING

The dsPIC30F5011 and dsPIC30F5013 processors require that the FBS and FSS registers be programmed with 0x0000 before the device is chip erased. The steps to perform this action are shown in Table 11-4.

A.2.2 ENHANCED ICSP PROGRAMMING

The dsPIC30F5011 and dsPIC30F5013 processors require that the FBS and FSS registers be programmed with 0x0000 using the PROGC command before the ERASEB command is used to erase the chip.

Device	Read Code Protection	Checksum Computation	Erased Value	Value with 0xAAAAAA at 0x0 and Last Code Address
dsPIC30F2010	Disabled	CFGB+SUM(0:001FFF)	0xD406	0xD208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F2011	Disabled	CFGB+SUM(0:001FFF)	0xD406	0xD208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F2012	Disabled	CFGB+SUM(0:001FFF)	0xD406	0xD208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3010	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3011	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3012	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3013	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3014	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F4011	Disabled	CFGB+SUM(0:007FFF)	0x4406	0x4208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F4012	Disabled	CFGB+SUM(0:007FFF)	0x4406	0x4208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F4013	Disabled	CFGB+SUM(0:007FFF)	0x4406	0x4208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F5011	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404
dsPIC30F5013	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404
dsPIC30F5015	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404

TABLE A-1: CHECKSUM COMPUTATION

Item Description:

SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory)

CFGB = Configuration Block (masked) = Byte sum of ((FOSC&0xC10F) + (FWDT&0x803F) + (FBORPOR&0x87B3) + (FBS&0x310F) + (FSS&0x330F) + (FGS&0x0007) + (FICD&0xC003))

Device	Read Code Protection	Checksum Computation	Erased Value	Value with 0xAAAAAA at 0x0 and Last Code Address
dsPIC30F5016	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6010	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6010A	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6011	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6011A	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6012	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6012A	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6013	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6013A	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6014	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6014A	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6015	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404

TABLE A-1: CHECKSUM COMPUTATION (CONTINUED)

Item Description:

SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory)

CFGB = Configuration Block (masked) = Byte sum of ((FOSC&0xC10F) + (FWDT&0x803F) + (FBORPOR&0x87B3) + (FBS&0x310F) + (FSS&0x330F) + (FGS&0x0007) + (FICD&0xC003))