

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Betano	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	68
Program Memory Size	144KB (48K x 24)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f6010t-20e-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Pins Used During Programming

The pins identified in Table 2-1 are used for device programming. Refer to the appropriate device data sheet for complete pin descriptions.

TABLE 2-1:dsPIC30F PIN DESCRIPTIONSDURING PROGRAMMING

Pin Name	Pin Type	Pin Description
MCLR/VPP	Р	Programming Enable
Vdd	Р	Power Supply
Vss	Р	Ground
PGC	I	Serial Clock
PGD	I/O	Serial Data

Legend: I = Input, O = Output, P = Power

2.3 Program Memory Map

The program memory space extends from 0x0 to 0xFFFFFE. Code storage is located at the base of the memory map and supports up to 144 Kbytes (48K instruction words). Code is stored in three, 48 Kbyte memory panels that reside on-chip. Table 2-2 shows the location and program memory size of each device.

Locations 0x800000 through 0x8005BE are reserved for executive code memory. This region stores either the programming executive or debugging executive. The programming executive is used for device programming, while the debug executive is used for incircuit debugging. This region of memory cannot be used to store user code.

Locations 0xF80000 through 0xF8000E are reserved for the Configuration registers. The bits in these registers may be set to select various device options, and are described in **Section 5.7 "Configuration Bits Programming"**.

Locations 0xFF0000 and 0xFF0002 are reserved for the Device ID registers. These bits can be used by the programmer to identify what device type is being programmed and are described in **Section 10.0 "Device ID"**. The device ID reads out normally, even after code protection is applied.

Figure 2-2 illustrates the memory map for the dsPIC30F devices.

2.4 Data EEPROM Memory

The Data EEPROM array supports up to 4 Kbytes of data and is located in one memory panel. It is mapped in program memory space, residing at the end of User Memory Space (see Figure 2-2). Table 2-2 shows the location and size of data EEPROM in each device.

TABLE 2-2: CODE MEMORY AND DATA EEPROM MAP AND SIZE

Device	Code Memory map (Size in Instruction Words)	Data EEPROM Memory Map (Size in Bytes)
dsPIC30F2010	0x000000-0x001FFE (4K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F2011	0x000000-0x001FFE (4K)	None (0K)
dsPIC30F2012	0x000000-0x001FFE (4K)	None (0K)
dsPIC30F3010	0x000000-0x003FFE (8K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F3011	0x000000-0x003FFE (8K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F3012	0x000000-0x003FFE (8K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F3013	0x000000-0x003FFE (8K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F3014	0x000000-0x003FFE (8K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F4011	0x000000-0x007FFE (16K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F4012	0x000000-0x007FFE (16K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F4013	0x000000-0x007FFE (16K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F5011	0x000000-0x00AFFE (22K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F5013	0x000000-0x00AFFE (22K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F5015	0x000000-0x00AFFE (22K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F5016	0x000000-0x00AFFE (22K)	0x7FFC00-0x7FFFFE (1K)
dsPIC30F6010	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFE (4K)
dsPIC30F6010A	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFF (4K)
dsPIC30F6011	0x000000-0x015FFE (44K)	0x7FF800-0x7FFFFE (2K)
dsPIC30F6011A	0x000000-0x015FFE (44K)	0x7FF800-0x7FFFFE (2K)
dsPIC30F6012	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFE (4K)
dsPIC30F6012A	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFE (4K)
dsPIC30F6013	0x000000-0x015FFE (44K)	0x7FF800-0x7FFFFE (2K)
dsPIC30F6013A	0x000000-0x015FFE (44K)	0x7FF800-0x7FFFFE (2K)
dsPIC30F6014	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFE (4K)
dsPIC30F6014A	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFE (4K)
dsPIC30F6015	0x000000-0x017FFE (48K)	0x7FF000-0x7FFFFE (4K)

5.0 DEVICE PROGRAMMING

5.1 Overview of the Programming Process

Once the programming executive has been verified in memory (or loaded if not present), the dsPIC30F can be programmed using the command set shown in Table 5-1. A detailed description for each command is provided in Section 8.0 "Programming Executive Commands".

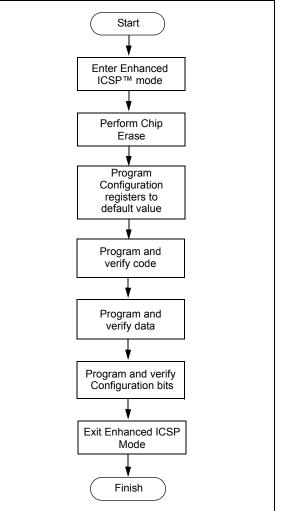

Command	Description
SCHECK	Sanity check
READD	Read data EEPROM, Configuration registers and device ID
READP	Read code memory
PROGD	Program one row of data EEPROM and verify
PROGP	Program one row of code memory and verify
PROGC	Program Configuration bits and verify
ERASEB	Bulk Erase, or erase by segment
ERASED	Erase data EEPROM
ERASEP	Erase code memory
QBLANK	Query if the code memory and data EEPROM are blank
QVER	Query the software version

TABLE 5-1: COMMAND SET SUMMARY

A high-level overview of the programming process is illustrated in Figure 5-1. The process begins by entering Enhanced ICSP mode. The chip is then bulk erased, which clears all memory to '1' and allows the device to be programmed. The Chip Erase is verified before programming begins. Next, the code memory, data Flash and Configuration bits are programmed. As these memories are programmed, they are each verified to ensure that programming was successful. If no errors are detected, the programming is complete and Enhanced ICSP mode is exited. If any of the verifications fail, the procedure should be repeated, starting from the Chip Erase. If Advanced Security features are enabled, then individual Segment Erase operations need to be performed, based on user selections (i.e., based on the specific needs of the user application). The specific operations that are used typically depend on the order in which various segments need to be programmed for a given application or system.

Section 5.2 "Entering Enhanced ICSP Mode" through Section 5.8 "Exiting Enhanced ICSP Mode" describe the programming process in detail.

FIGURE 5-1: PROGRAMMING FLOW

TABLE 5-5:FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F4011/4012 AND
dsPIC30F5011/5013

Bit Field	Register	Description
FCKSM<1:0>	FOSC	Clock Switching Mode 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
FOS<1:0>	FOSC	Oscillator Source Selection on POR 11 = Primary Oscillator 10 = Internal Low-Power RC Oscillator 01 = Internal Fast RC Oscillator 00 = Low-Power 32 kHz Oscillator (Timer1 Oscillator)
FPR<3:0>	FOSC	 Primary Oscillator Mode 1111 = ECIO w/PLL 16X – External Clock mode with 16X PLL. OSC2 pin is I/O 1101 = ECIO w/PLL 8X – External Clock mode with 8X PLL. OSC2 pin is I/O 1011 = ECIO w/PLL 4X – External Clock mode with 4X PLL. OSC2 pin is I/O 100 = ECIO – External Clock mode. OSC2 pin is I/O 1011 = EC – External Clock mode. OSC2 pin is system clock output (Fosc/4) 1010 = FRC w/PLL 8x – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O 1001 = ERC – External RC Oscillator mode. OSC2 pin is system clock output (Fosc/4) 1000 = ERCIO – External RC Oscillator mode. OSC2 pin is system clock output (Fosc/4) 1000 = ERCIO – External RC Oscillator mode. OSC2 pin is I/O 0111 = XT w/PLL 16X – XT Crystal Oscillator mode with 16X PLL 0101 = XT w/PLL 4X – XT Crystal Oscillator mode with 4X PLL 0101 = XT w/PLL 4X – T Crystal Oscillator mode with 4X PLL 0101 = T K w/PLL 16x – Internal fast RC oscillator with 16x PLL 0111 = ST w/PLL 4X – XT Crystal Oscillator mode with 4X PLL 0101 = KT w/PLL 16x – Internal fast RC oscillator with 16x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 16x – Internal fast RC oscillator with 16x PLL. OSC2 pin is I/O 0010 = HS – HS Crystal Oscillator mode (10 MHz-25 MHz crystal) 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O

TABLE 5-6: FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013/3014, dsPIC30F4013, dsPIC30F5015/5016, dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015 (CONTINUED)

Bit Field	Register	Description
FPR<4:0>	FOSC	Alternate Oscillator Mode (when FOS<2:0> = 011b)
		1xxxx = Reserved (do not use)
		0111x = Reserved (do not use)
		01101 = Reserved (do not use)
		01100 = ECIO – External clock. OSC2 pin is I/O
		01011 = EC – External clock. OSC2 pin is system clock output (Fosc/4)
		01010 = Reserved (do not use)
		01001 = ERC – External RC oscillator. OSC2 pin is system clock output (Fosc/4)
		01000 = ERCIO – External RC oscillator. OSC2 pin is I/O
		00111 = Reserved (do not use)
		00110 = Reserved (do not use)
		00101 = Reserved (do not use)
		00100 = XT – XT crystal oscillator (4 MHz-10 MHz crystal)
		00010 = HS – HS crystal oscillator (10 MHz-25 MHz crystal)
		00001 = Reserved (do not use)
		00000 = XTL – XTL crystal oscillator (200 kHz-4 MHz crystal)

TABLE 5-10: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013/3014, dsPIC30F4013 AND dsPIC30F5015/5016)

Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSN	1<1:0>	—	—			FOS<2:0>		—	_	_	FPR<4:0>				
0xF80002	FWDT	FWDTEN	_	_	_	_	_	_	_	_	_	FWPS	A<1:0>	FWPSB<3:0>			
0xF80004	FBORPOR	MCLREN	_	_	_	_	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	BOREN	_	BORV	/<1:0>	_	_	FPWR	T<1:0>
0xF80006	FBS	_	_	Reser	ved ⁽²⁾	_	_	_	Reserved ⁽²⁾	_	_	_	_		Reserv	/ed ⁽²⁾	
0xF80008	FSS	_	_	Reser	ved ⁽²⁾	_	_	Rese	erved ⁽²⁾	_	_	_	_		Reserved ⁽²⁾		
0xF8000A	FGS	—	_	_	_	-	_	_	_	—	—	_	—	_	Reserved ⁽³⁾	GCP	GWRP
0xF8000C	FICD	BKBUG	COE	—	—	_	—	_	—	—	_	_	_	— — ICS<1:0>		<1:0>	

1: On the 2011, 2012, 3012, 3013, 3014 and 4013, these bits are reserved (read as '1' and must be programmed as '1'). 2: Reserved bits read as '1' and must be programmed as '1'. Note

3: The FGS<2> bit is a read-only copy of the GCP bit (FGS<1>).

TABLE 5-11: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015)

Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSN	l<1:0>	—	-			FOS<2:0>		_	_	_		FPR<4:0>			
0xF80002	FWDT	FWDTEN	—	_	_	_	_	_	_	_	_	FWPS	A<1:0>		FWPSE	3<3:0>	
0xF80004	FBORPOR	MCLREN	_	_	_	_	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	BOREN	_	BORV	/<1:0>	_	_	FPWR	T<1:0>
0xF80006	FBS	_	_	RBS	<1:0>	_	—	_	EBS	—	_	_	—		BSS<2:0>		BWRP
0xF80008	FSS	_	_	RSS	<1:0>	-	_	ESS	s<1:0>	—	_	—	_	SSS<2:0>		SWRP	
0xF8000A	FGS	_	_	_	_	_	_	_	_	—	_	_	—	_	GSS<	:1:0>	GWRP
0xF8000C	FICD	BKBUG	COE	—	_		—			_	_	—	_	_	_	ICS<	<1:0>

Note 1: On the 6011A, 6012A, 6013A and 6014A, these bits are reserved (read as '1' and must be programmed as '1').

8.0 PROGRAMMING EXECUTIVE COMMANDS

8.1 Command Set

The programming executive command set is shown in Table 8-1. This table contains the opcode, mnemonic, length, time out and description for each command. Functional details on each command are provided in the command descriptions (see Section 8.5 "Command Descriptions").

8.2 Command Format

All programming executive commands have a general format consisting of a 16-bit header and any required data for the command (see Figure 8-1). The 16-bit header consists of a 4-bit opcode field, which is used to identify the command, followed by a 12-bit command length field.

FIGURE 8-1: COMMAND FORMAT

15 12	11	0			
Opcode	Length				
Command Data First Word (if required)					
•					
•					
Command Data Last Word (if required)					

The command opcode must match one of those in the command set. Any command that is received which does not match the list in Table 8-1 will return a "NACK" response (see Section 9.2.1 "Opcode Field").

The command length is represented in 16-bit words since the SPI operates in 16-bit mode. The programming executive uses the Command Length field to determine the number of words to read from the SPI port. If the value of this field is incorrect, the command will not be properly received by the programming executive.

8.3 Packed Data Format

When 24-bit instruction words are transferred across the 16-bit SPI interface, they are packed to conserve space using the format shown in Figure 8-2. This format minimizes traffic over the SPI and provides the programming executive with data that is properly aligned for performing table write operations.

FIGURE 8-2:	PACKED INSTRUCTION
	WORD FORMAT

15	8	7	0				
	lsw1						
MS	B2	MSB1					
lsw2							

Iswx: Least significant 16 bits of instruction word MSBx: Most Significant Byte of instruction word

Note:	When the number of instruction words
	transferred is odd, MSB2 is zero and Isw2
	cannot be transmitted.

8.4 Programming Executive Error Handling

The programming executive will "NACK" all unsupported commands. Additionally, due to the memory constraints of the programming executive, no checking is performed on the data contained in the Programmer command. It is the responsibility of the programmer to command the programming executive with valid command arguments, or the programming operation may fail. Additional information on error handling is provided in Section 9.2.3 "QE_Code Field".

8.5.5 PROGP COMMAND

15	5 12 11 8 7 0				0	
Opcode				L	ength	
Reserved					Addr_MSB	
				LS		
	D_1					
D_2						
D_N						

Field	Description
Opcode	0x5
Length	0x33
Reserved	0x0
Addr_MSB	MSB of 24-bit destination address
Addr_LS	LS 16 bits of 24-bit destination address
D_1	16-bit data word 1
D_2	16-bit data word 2
	16-bit data word 3 through 47
D_48	16-bit data word 48

The PROGP command instructs the programming executive to program one row of code memory (32 instruction words) to the specified memory address. Programming begins with the row address specified in the command. The destination address should be a multiple of 0x40.

The data to program to memory, located in command words D_1 through D_48, must be arranged using the packed instruction word format shown in Figure 8-2.

After all data has been programmed to code memory, the programming executive verifies the programmed data against the data in the command.

Expected Response (2 words): 0x1500 0x0002

Note: Refer to Table 5-2 for code memory size information.

8.5.6 PROGC COMMAND

15	12	11	8	7		0
Opcode				L	ength	
	Reserved				Addr_MSB	
	Addr_LS					
	Data					

Field	Description
Opcode	0x6
Length	0x4
Reserved	0x0
Addr_MSB	MSB of 24-bit destination address
Addr_LS	LS 16 bits of 24-bit destination address
Data	Data to program

The PROGC command programs data to the specified Configuration register and verifies the programming. Configuration registers are 16 bits wide, and this command allows one Configuration register to be programmed.

Expected Response (2 words): 0x1600 0x0002

Note: This command can only be used for programming Configuration registers.

Bit Field	Register	Description
DEVID<15:0>	DEVID	Encodes the device ID.
PROC<3:0>	DEVREV	Encodes the process of the device (always read as 0x001).
REV<5:0>	DEVREV	Encodes the major revision number of the device. 000000 = A 000001 = B 000010 = C
DOT<5:0>	DEVREV	Encodes the minor revision number of the device. 000000 = 0 000001 = 1 000010 = 2 000011 = 3
Examples:		
Rev A.1 = 0000 000	0 0000 0001	
Rev A.2 = 0000 000	0 0000 0010	
Rev B.0 = 0000 000	0 0100 0000	
This formula applies to	o all dsPIC30F device	es, with the exception of the following:
 dsPIC30F6010 dsPIC30F6011 dsPIC30F6012 dsPIC30F6013 dsPIC30F6014 		-
Refer to Table 10-1 fo	r the actual revision II	٦

TABLE 10-3: DEVICE ID BITS DESCRIPTION

11.0 ICSP™ MODE

11.1 ICSP Mode

ICSP mode is a special programming protocol that allows you to read and write to the dsPIC30F programming executive. The ICSP mode is the second (and slower) method used to program the device. This mode also has the ability to read the contents of executive memory to determine whether the programming executive is present. This capability is accomplished by applying control codes and instructions serially to the device using pins PGC and PGD.

In ICSP mode, the system clock is taken from the PGC pin, regardless of the device's oscillator Configuration bits. All instructions are first shifted serially into an internal buffer, then loaded into the Instruction register and executed. No program fetching occurs from internal memory. Instructions are fed in 24 bits at a time. PGD is used to shift data in and PGC is used as both the serial shift clock and the CPU execution clock.

Data is transmitted on the rising edge and latched on the falling edge of PGC. For all data transmissions, the Least Significant bit (LSb) is transmitted first.

Note 1: During ICSP operation, the operating frequency of PGC must not exceed 5 MHz.
2: Because ICSP is slower, it is recommended that only Enhanced ICSP (E-ICSP) mode be used for device programming, as described in Section 5.1 "Overview of the Programming Process".

11.2 ICSP Operation

Upon entry into ICSP mode, the CPU is idle. Execution of the CPU is governed by an internal state machine. A 4-bit control code is clocked in using PGC and PGD, and this control code is used to command the CPU (see Table 11-1).

The SIX control code is used to send instructions to the CPU for execution, while the REGOUT control code is used to read data out of the device via the VISI register. The operation details of ICSP mode are provided in Section 11.2.1 "SIX Serial Instruction Execution" and Section 11.2.2 "REGOUT Serial Instruction Execution".

TABLE 11-1:CPU CONTROL CODES IN
ICSP™ MODE

4-bit Control Code	Mnemonic	Description
d0000b	SIX	Shift in 24-bit instruction and execute.
0001b	REGOUT	Shift out the VISI register.
0010b-1111b	N/A	Reserved.

11.2.1 SIX SERIAL INSTRUCTION EXECUTION

The SIX control code allows execution of dsPIC30F assembly instructions. When the SIX code is received, the CPU is suspended for 24 clock cycles as the instruction is then clocked into the internal buffer. Once the instruction is shifted in, the state machine allows it to be executed over the next four clock cycles. While the received instruction is executed, the state machine simultaneously shifts in the next 4-bit command (see Figure 11-2).

- Note 1: Coming out of the ICSP entry sequence, the first 4-bit control code is always forced to SIX and a forced NOP instruction is executed by the CPU. Five additional PGC clocks are needed on startup, thereby resulting in a 9-bit SIX command instead of the normal 4-bit SIX command. After the forced SIX is clocked in, ICSP operation resumes as normal (the next 24 clock cycles load the first instruction word to the CPU). See Figure 11-1 for details.
 - 2: TBLRDH, TBLRDL, TBLWTH and TBLWTL instructions must be followed by a NOP instruction.

Table 11-4 shows the ICSP programming process for bulk-erasing program memory. This process includes the ICSP command code, which must be transmitted (for each instruction) to the Least Significant bit first using the PGC and PGD pins (see Figure 11-2).

If an individual Segment Erase operation is required, the NVMCON value must be replaced by the value for the corresponding Segment Erase operation.

Note:	Program memory must be erased before
	writing any data to program memory.

TABLE 11-4:SERIAL INSTRUCTION EXECUTION FOR BULK ERASING PROGRAM MEMORY
(ONLY IN NORMAL-VOLTAGE SYSTEMS)

08A 80A	GOTO 0x100 GOTO 0x100 NOP the FBS Configuration register. ⁽¹⁾ MOV #0x4008, W10 MOV W10, NVMCON
00 000 DN to program 08A 00A TBLPAG and	GOTO 0×100 NOP the FBS Configuration register. ⁽¹⁾ MOV #0×4008, W10
DN to program	NOP the FBS Configuration register. ⁽¹⁾ MOV #0x4008, W10
DN to program	the FBS Configuration register. ⁽¹⁾
BA BOA CHANNE TBLPAG and	MOV #0x4008, W10
BOA TBLPAG and	
e TBLPAG and	MOV W10, NVMCON
'80	write pointer (W7) for TBLWT instruction for Configuration register. ⁽¹⁾
	MOV #0xF8, W0
.90	MOV W0, TBLPAG
67	MOV #0x6, W7
onfiguration Re	egister data to W6. ⁽¹⁾
300	CLR W6
000	NOP
onfiguration Re	egister write latch. Advance W7 to point to next Configuration register. ⁽¹⁾
386	TBLWTL W6, [W7++]
NVMCON for p	programming the Configuration register. ⁽¹⁾
58	MOV #0x55, W8
A9	MOV #0xAA, W9
338	MOV W8, NVMKEY
339	MOV W9, NVMKEY
orogramming c	ycle. ⁽¹⁾
61	BSET NVMCON, #WR
000	NOP
000	NOP
	Externally time 2 ms
000	NOP
000	NOP
61	BCLR NVMCON, #WR
000	NOP
000	NOP
os 5-7 one time	e to program 0x0000 to RESERVED2 Configuration register. ⁽¹⁾
VICON to erase	e all Program Memory.
'FA	MOV #0x407F, W10
30A	MOV W10, NVMCON
O OS M	5-7 one time CON to erase

Note 1: Steps 2-8 are only required for the dsPIC30F5011/5013 devices. These steps may be skipped for all other devices in the dsPIC30F family.

TABLE 11-4:SERIAL INSTRUCTION EXECUTION FOR BULK ERASING PROGRAM MEMORY
(ONLY IN NORMAL-VOLTAGE SYSTEMS) (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 11: Initia	te the erase cycle.	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
-	-	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and Timing Requirements")
0000	000000	NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #WR
0000	000000	NOP
0000	000000	NOP

Note 1: Steps 2-8 are only required for the dsPIC30F5011/5013 devices. These steps may be skipped for all other devices in the dsPIC30F family.

11.6 Erasing Program Memory in Low-Voltage Systems

The procedure for erasing program memory (all code memory and data memory) in low-voltage systems (with VDD between 2.5 volts and 4.5 volts) is quite different than the procedure for erasing program memory in normal-voltage systems. Instead of using a Bulk Erase operation, each region of memory must be individually erased by row. Namely, all of the code memory, executive memory and data memory must be erased one row at a time. This procedure is detailed in Table 11-5.

Due to security restrictions, the FBS, FSS and FGS register cannot be erased in low-voltage systems. Once any bits in the FGS register are programmed to '0', they can only be set back to '1' by performing a Bulk Erase in a normal-voltage system. Alternatively, a Segment Erase operation can be performed instead of a Bulk Erase.

Normal-voltage systems can also be used to erase program memory as shown in Table 11-5. However, since this method is more time-consuming and does not clear the code-protect bits, it is not recommended.

Note: Program memory must be erased before writing any data to program memory.

TABLE 11-5:SERIAL INSTRUCTION EXECUTION FOR ERASING PROGRAM MEMORY
(EITHER IN LOW-VOLTAGE OR NORMAL-VOLTAGE SYSTEMS)

Command (Binary)	Data (Hexadecimal)	Description
Step 1: Exit th	e Reset vector.	
0000	040100	GOTO 0x100
0000	040100 000000	GOTO 0x100 NOP
		/MADRU to erase code memory and initialize W7 for row address updates.
0000	EB0300 883B16	CLR W6 MOV W6, NVMADR
0000 0000	883B26 200407	MOV W6, NVMADRU MOV #0x40, W7
Step 3: Set N	VMCON to erase 1 r	ow of code memory.
0000 0000	24071A 883B0A	MOV #0x4071, W10 MOV W10, NVMCON
Step 4: Unloc	k the NVMCON to e	rase 1 row of code memory.
0000 0000 0000 0000	200558 883B38 200AA9 883B39	MOV #0x55, W8 MOV W8, NVMKEY MOV #0xAA, W9 MOV W9, NVMKEY
Step 5: Initiate	e the erase cycle.	
0000 0000 0000 	A8E761 000000 000000 -	BSET NVMCON, #WR NOP NOP Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and Timing Requirements")
0000 0000 0000 0000 0000	000000 000000 A9E761 000000 000000	NOP NOP BCLR NVMCON, #WR NOP NOP

TABLE 11-5:SERIAL INSTRUCTION EXECUTION FOR ERASING PROGRAM MEMORY
(EITHER IN LOW-VOLTAGE OR NORMAL-VOLTAGE SYSTEMS) (CONTINUED)

Command (Binary)	I Data (Hexadecimal)	Description
		stored in NVMADRU:NVMADR. When W6 rolls over to 0x0, NVMADRU must be
incr	emented.	
0000	430307	ADD W6, W7, W6
0000	AF0042	BTSC SR, #C
0000	EC2764	INC NVMADRU
0000	883B16	MOV W6, NVMADR
Step 7: Res	et device internal PO	J
0000	040100	GOTO 0x100
0000	000000	NOP
Step 8: Rep	eat Steps 3-7 until a	Il rows of code memory are erased.
Step 9: Initia	alize NVMADR and	NVMADRU to erase executive memory and initialize W7 for row address updates.
	EB0300	CLR W6
0000	883B16	MOV W6, NVMADR
0000	200807	MOV #0x80, W7
0000	883B27	MOV W7, NVMADRU
0000	200407	MOV #0x40, W7
Step 10: Se	et NVMCON to erase	1 row of executive memory.
0000	24071A	MOV #0x4071, W10
0000	883B0A	MOV W10, NVMCON
Step 11: Un	lock the NVMCON t	o erase 1 row of executive memory.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 12: Ini	tiate the erase cycle	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_		Eutompolity time VD12o/ me (coo Section 13.0 "AC/DC Characteristics and
	_	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and
0000	_	Timing Requirements")
	000000	Timing Requirements")
0000	000000	Timing Requirements") NOP NOP
0000 0000		Timing Requirements")
0000 0000 0000	000000 A9E761	Timing Requirements") NOP NOP BCLR NVMCON, #WR
0000 0000 0000 0000 Step 13: U p	000000 A9E761 000000 000000	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP
0000 0000 0000 0000 Step 13: Up	000000 A9E761 000000 000000 odate the row addres	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP Se stored in NVMADR.
0000 0000 0000 0000 Step 13: Up	000000 A9E761 000000 000000	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP
0000 0000 0000 0000 Step 13: Up 0000 0000	000000 A9E761 000000 odate the row addres 430307 883B16	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP Stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR
0000 0000 0000 Step 13: Up 0000 0000 Step 14: Re	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP SS stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR PC.
0000 0000 0000 0000 Step 13: Up 0000 0000 Step 14: Re	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP Ses stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100
2000 2000 2000 2000 2000 2000 2000 200	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100 00000	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP SS stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP
2000 2000 Step 13: Up 2000 Step 14: Re 2000 Step 15: Re	000000 A9E761 000000 odate the row address 430307 883B16 eset device internal F 040100 000000 epeat Steps 10-14 ur	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP NOP SS stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP ntil all 24 rows of executive memory are erased.
2000 2000 Step 13: Up 2000 Step 14: Re 2000 Step 15: Re Step 16: Ini	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100 00000 epeat Steps 10-14 ur tialize NVMADR and	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP SS stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP ntil all 24 rows of executive memory are erased. NVMADRU to erase data memory and initialize W7 for row address updates.
2000 2000 2000 2000 2000 2000 2000 200	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100 000000 epeat Steps 10-14 ur tialize NVMADR and 2xxxx6	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP NOP St stored in NVMADR. ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP ntil all 24 rows of executive memory are erased. INVMADRU to erase data memory and initialize W7 for row address updates. MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6</lower>
0000 0000 Step 13: Up 0000 Step 14: Re 0000 Step 15: Re Step 16: Ini 0000 0000	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100 000000 epeat Steps 10-14 ur tialize NVMADR and 2xxxx6 883B16	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP NOP NOP State ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP NOP NOP ADL WVMADRU OC. GOTO 0x100 NOP NOP MOV # NVMADRU to erase data memory and initialize W7 for row address updates. MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6 MOV W6, NVMADR</lower>
0000 0000 Step 13: Up 0000 Step 14: Re 0000 Step 15: Re Step 16: Ini 0000 0000 0000	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100 000000 epeat Steps 10-14 ur tialize NVMADR and 2XXXX6 883B16 2007F6	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP State ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP NOP thil all 24 rows of executive memory are erased. INVMADRU to erase data memory and initialize W7 for row address updates. MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6 MOV #0x7F, W6</lower>
0000 0000 Step 13: Up 0000 0000 Step 14: Re 0000 0000 Step 15: Re	000000 A9E761 000000 odate the row addres 430307 883B16 eset device internal F 040100 000000 epeat Steps 10-14 ur tialize NVMADR and 2xxxx6 883B16	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP NOP NOP State ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP NOP NOP ADL WVMADRU OC. GOTO 0x100 NOP NOP MOV # NVMADRU to erase data memory and initialize W7 for row address updates. MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6 MOV W6, NVMADR</lower>
0000 0000 Step 13: Up 0000 Step 14: Re 0000 Step 15: Re Step 16: Ini 0000 0000 0000 0000 0000 0000 0000	000000 A9E761 000000 odate the row address 430307 883B16 eset device internal F 040100 00000 epeat Steps 10-14 ur tialize NVMADR and 2XXXX6 83B16 2007F6 883B16 200207	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP NOP NOP NOP NOP NOP NOP NOP NOP State ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP NOP NOP ADL MOV WS MOV MOV WOV MOV WOV MOV WOV MOV MOV <
0000 0000 Step 13: Up 0000 Step 14: Re 0000 Step 15: Re Step 16: Ini 0000 0000 0000 0000 0000 0000 0000	000000 A9E761 000000 odate the row address 430307 883B16 eset device internal F 040100 00000 epeat Steps 10-14 ur tialize NVMADR and 2XXXX6 83B16 2007F6 883B16 200207	Timing Requirements") NOP NOP BCLR NVMCON, #WR NOP State ADD W6, W7, W6 MOV W6, NVMADR PC. GOTO 0x100 NOP NOP thil all 24 rows of executive memory are erased. INVMADRU to erase data memory and initialize W7 for row address updates. MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6 MOV #0x7F, W6 MOV #0x7F, W6 MOV W6, NVMADR</lower>

TABLE 11-5:SERIAL INSTRUCTION EXECUTION FOR ERASING PROGRAM MEMORY
(EITHER IN LOW-VOLTAGE OR NORMAL-VOLTAGE SYSTEMS) (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description
Step 18: Un	lock the NVMCON to	erase 1 row of data memory.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 19: Init	iate the erase cycle.	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_	-	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and
		Timing Requirements")
0000	000000	NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
Step 20: Up	date the row address	stored in NVMADR.
0000	430307	ADD W6, W7, W6
0000	883B16	MOV W6, NVMADR
Step 21: Re	set device internal P	С.
0000	040100	GOTO 0x100
0000	000000	NOP
Step 22: Re	peat Steps 17-21 unt	il all rows of data memory are erased.

TABLE 11-7:SERIAL INSTRUCTION EXECUTION FOR WRITING CONFIGURATION
REGISTERS (CONTINUED)

(Binary) (Hexad	lecimal) Description
Step 6: Write the Config	guration register data to the write latch and increment the write pointer.
0000 BB1B96	TBLWTL W6, [W7++]
00000 000000	NOP
00000 000000	NOP
Step 7: Unlock the NVN	ICON for programming.
0000 200558	MOV #0x55, W8
0000 883B38	MOV W8, NVMKEY
0000 200AA9	MOV #0xaa, W9
0000 883B39	MOV W9, NVMKEY
Step 8: Initiate the write	cycle.
0000 A8E761	BSET NVMCON, #WR
00000 000000	NOP
00000 000000	NOP
	Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and
	Timing Requirements")
00000 000000	NOP
0000 000000	NOP
0000 A9E761	BCLR NVMCON, #WR
0000 000000	NOP
00000 000000	NOP
Step 9: Reset device in	ternal PC.
0000 040100	GOTO 0x100
00000 000000	NOP
Step 10: Repeat steps	3-9 until all 7 Configuration registers are cleared.

Command (Binary)	Data (Hexadecimal)	Description		
Step 4: Output	t W0:W5 using th	e VISI register and REGOUT command.		
0000	883C20	MOV W0, VISI		
0000	000000	NOP		
0001	<visi></visi>	Clock out contents of VISI register		
0000	000000	NOP		
0000	883C21	MOV W1, VISI		
0000	000000	NOP		
0001	<visi></visi>	Clock out contents of VISI register		
0000	000000	NOP		
0000	883C22	MOV W2, VISI		
0000	000000	NOP		
0001	<visi></visi>	Clock out contents of VISI register		
0000	000000	NOP		
0000	883C23	MOV W3, VISI		
0000	000000	NOP		
0001	<visi></visi>	Clock out contents of VISI register		
0000	000000	NOP		
0000	883C24	MOV W4, VISI		
0000	000000	NOP		
0001	<visi></visi>	Clock out contents of VISI register		
0000	000000	NOP		
0000	883C25	MOV W5, VISI		
0000	000000	NOP		
0001	<visi></visi>	Clock out contents of VISI register		
0000	000000	NOP		
Step 5: Reset	Step 5: Reset the device internal PC.			
0000	040100	GOTO 0x100		
0000	000000	NOP		
Step 6: Repeat steps 3-5 until all desired code memory is read.				

TABLE 11-10: SERIAL INSTRUCTION EXECUTION FOR READING CODE MEMORY (CONTINUED)

11.12 Reading Data Memory

The procedure for reading data memory is similar to that of reading code memory, except that 16-bit data words are read instead of 24-bit words. Since less data is read in each operation, only working registers W0:W3 are used as temporary holding registers for the data to be read. Table 11-12 shows the ICSP programming details for reading data memory. Note that the TBLPAG register is hard-coded to 0x7F (the upper byte address of all locations of data memory).

TABLE 11-12: SERIAL INSTRUCTION EXECUTION FOR READING DATA MEMORY

Command (Binary)	Data (Hexadecimal)	Description
Step 1: Exit t	he Reset vector.	
0000	040100	GOTO 0x100
0000	040100	GOTO 0x100
0000	000000	NOP
Step 2: Initial	ize TBLPAG and	the read pointer (W6) for TBLRD instruction.
0000	2007F0	MOV #0x7F, WO
0000	880190	MOV W0, TBLPAG
0000	2xxxx6	MOV # <sourceaddress15:0>, W6</sourceaddress15:0>
Step 3: Initial		er (W7) and store the next four locations of code memory to W0:W5.
0000	EB0380	CLR W7
0000	000000	NOP
0000	BA1BB6	TBLRDL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BA1BB6	TBLRDL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BA1BB6	TBLRDL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BA1BB6	TBLRDL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
Step 4: Outp	ut W0:W5 using th	ne VISI register and REGOUT command.
0000	883C20	MOV W0, VISI
0000	000000	NOP
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
0000	883C21	MOV W1, VISI
0000	000000	NOP
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
0000	883C22	MOV W2, VISI
0000	000000	NOP
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
0000	883C23	MOV W3, VISI
0000	000000	NOP
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
Step 5: Rese	t device internal F	PC.
0000	040100	GOTO 0x100
0000	000000	NOP

12.0 PROGRAMMING THE PROGRAMMING EXECUTIVE TO MEMORY

12.1 Overview

If it is determined that the programming executive does not reside in executive memory (as described in Section 4.0 "Confirming the Contents of Executive Memory"), it must be programmed into executive memory using ICSP and the techniques described in Section 11.0 "ICSP™ Mode". Storing the programming executive to executive memory is similar to normal programming of code memory. The executive memory must first be erased, and then the programming executive must be programmed 32 words at a time. This control flow is summarized in Table 12-1.

Command (Binary)	Data (Hexadecimal)	Description
Step 1: Exit th	e Reset vector and	erase executive memory.
0000	040100	GOTO 0x100
0000	040100	GOTO 0x100
0000	000000	NOP
Step 2: Initiali	ze the NVMCON to	erase executive memory.
0000	24072A	MOV #0x4072, W10
0000	883B0A	MOV W10, NVMCON
Step 3: Unloc	k the NVMCON for p	programming.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 4: Initiate	e the erase cycle.	
0000	A8E761	BSET NVMCON, #15
0000	000000	NOP
0000	000000	NOP
-	-	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and
		Timing Requirements")
0000	000000	NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #15
0000	000000	NOP
0000	000000	NOP
Step 5: Initiali	ze the TBLPAG and	the write pointer (W7).
0000	200800	MOV #0x80, W0
0000	880190	MOV W0, TBLPAG
0000	EB0380	CLR W7
0000	000000	NOP
0000	000000	NOP
Step 6: Initiali	ze the NVMCON to	program 32 instruction words.
0000	24001A	MOV #0x4001, W10
0000	883B0A	MOV W10, NVMCON
progra		t 4 words of packed programming executive code and initialize W6 for ng starts from the base of executive memory (0x800000) using W6 as a read pointer.
0000	2 <lsw0>0</lsw0>	MOV # <lswo>, WO</lswo>
0000	2 <msb1:msb0>1</msb1:msb0>	MOV # <msb1:msb0>, W1</msb1:msb0>
0000	2 <lsw1>2</lsw1>	MOV # <lsw1>, W2</lsw1>
0000	2 <lsw2>3</lsw2>	MOV # <lsw2>, W3</lsw2>
0000	2 <msb3:msb2>4</msb3:msb2>	MOV # <msb3:msb2>, W4</msb3:msb2>
0000	2 <lsw3>5</lsw3>	MOV # <lsw3>, W5</lsw3>

TABLE 12-1: PROGRAMMING THE PROGRAMMING EXECUTIVE

APPENDIX A: DEVICE-SPECIFIC INFORMATION

A.1 Checksum Computation

The checksum computation is described in **Section 6.8 "Checksum Computation"**. Table A-1 shows how this 16-bit computation can be made for each dsPIC30F device. Computations for read code protection are shown both enabled and disabled. The checksum values assume that the Configuration registers are also erased. However, when code protection is enabled, the value of the FGS register is assumed to be 0x5.

A.2 dsPIC30F5011 and dsPIC30F5013

A.2.1 ICSP PROGRAMMING

The dsPIC30F5011 and dsPIC30F5013 processors require that the FBS and FSS registers be programmed with 0x0000 before the device is chip erased. The steps to perform this action are shown in Table 11-4.

A.2.2 ENHANCED ICSP PROGRAMMING

The dsPIC30F5011 and dsPIC30F5013 processors require that the FBS and FSS registers be programmed with 0x0000 using the PROGC command before the ERASEB command is used to erase the chip.

Device	Read Code Protection	Checksum Computation	Erased Value	Value with 0xAAAAAA at 0x0 and Last Code Address
dsPIC30F2010	Disabled	CFGB+SUM(0:001FFF)	0xD406	0xD208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F2011	Disabled	CFGB+SUM(0:001FFF)	0xD406	0xD208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F2012	Disabled	CFGB+SUM(0:001FFF)	0xD406	0xD208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3010	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3011	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3012	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3013	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3014	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F4011	Disabled	CFGB+SUM(0:007FFF)	0x4406	0x4208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F4012	Disabled	CFGB+SUM(0:007FFF)	0x4406	0x4208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F4013	Disabled	CFGB+SUM(0:007FFF)	0x4406	0x4208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F5011	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404
dsPIC30F5013	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404
dsPIC30F5015	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404

TABLE A-1: CHECKSUM COMPUTATION

Item Description:

SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory)

CFGB = Configuration Block (masked) = Byte sum of ((FOSC&0xC10F) + (FWDT&0x803F) + (FBORPOR&0x87B3) + (FBS&0x310F) + (FSS&0x330F) + (FGS&0x0007) + (FICD&0xC003))

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address:

www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

08/04/10