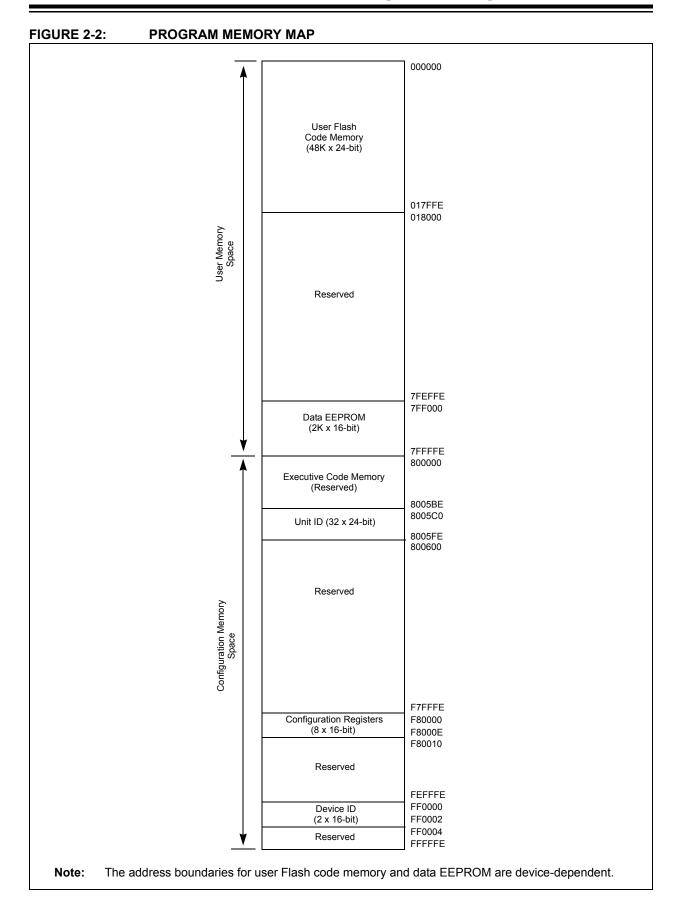


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	68
Program Memory Size	144KB (48K x 24)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f6010t-20i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.5.3 PROGRAMMING VERIFICATION

Once code memory is programmed, the contents of memory can be verified to ensure that programming was successful. Verification requires code memory to be read back and compared against the copy held in the programmer's buffer.

The READP command can be used to read back all the programmed code memory.

Alternatively, you can have the programmer perform the verification once the entire device is programmed using a checksum computation, as described in Section 6.8 "Checksum Computation".

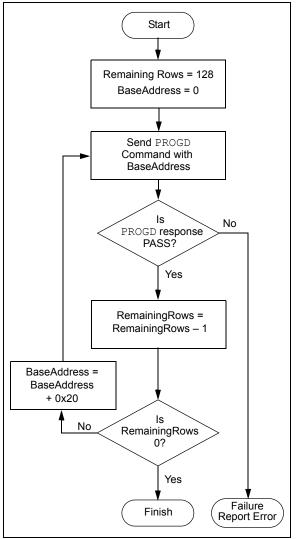
5.6 Data EEPROM Programming

5.6.1 OVERVIEW

The panel architecture for the data EEPROM memory array consists of 128 rows of sixteen 16-bit data words. Each panel stores 2K words. All devices have either one or no memory panels. Devices with data EEPROM provide either 512 words, 1024 words or 2048 words of memory on the one panel (see Table 5-3).

TABLE 5-3:DATA EEPROM SIZE

TABLE J-J. DATA LEFRON JIZE									
Device	Data EEPROM Size (Words)	Number of Rows							
dsPIC30F2010	512	32							
dsPIC30F2011	0	0							
dsPIC30F2012	0	0							
dsPIC30F3010	512	32							
dsPIC30F3011	512	32							
dsPIC30F3012	512	32							
dsPIC30F3013	512	32							
dsPIC30F3014	512	32							
dsPIC30F4011	512	32							
dsPIC30F4012	512	32							
dsPIC30F4013	512	32							
dsPIC30F5011	512	32							
dsPIC30F5013	512	32							
dsPIC30F5015	512	32							
dsPIC30F5016	512	32							
dsPIC30F6010	2048	128							
dsPIC30F6010A	2048	128							
dsPIC30F6011	1024	64							
dsPIC30F6011A	1024	64							
dsPIC30F6012	2048	128							
dsPIC30F6012A	2048	128							
dsPIC30F6013	1024	64							
dsPIC30F6013A	1024	64							
dsPIC30F6014	2048	128							
dsPIC30F6014A	2048	128							
dsPIC30F6015	2048	128							


5.6.2 PROGRAMMING METHODOLOGY

The programming executive uses the PROGD command to program the data EEPROM. Figure 5-4 illustrates the flowchart of the process. Firstly, the number of rows to program (RemainingRows) is based on the device size, and the destination address (DestAddress) is set to '0'. In this example, 128 rows (2048 words) of data EEPROM will be programmed.

The first PROGD command programs the first row of data EEPROM. Once the command completes successfully, 'RemainingRows' is decremented by 1 and compared with 0. Since there are 127 more rows to program, 'BaseAddress' is incremented by 0x20 to point to the next row of data EEPROM. This process is then repeated until all 128 rows of data EEPROM are programmed.

FIGURE 5-4:

FLOWCHART FOR PROGRAMMING dsPIC30F6014A DATA EEPROM

TABLE 5-6: FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013/3014, dsPIC30F4013, dsPIC30F5015/5016, dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015

	Description
OSC	Clock Switching Mode 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
OSC	Oscillator Source Selection on POR 111 = Primary Oscillator 110 = Reserved 101 = Reserved 100 = Reserved 011 = Reserved 010 = Internal Low-Power RC Oscillator 001 = Internal Fast RC Oscillator (no PLL) 000 = Low-Power 32 kHz Oscillator (Timer1 Oscillator)
DSC	Primary Oscillator Mode (when FOS<2:0> = 111b) 11xxx = Reserved (do not use) 10111 = HS/3 w/PLL 16X – HS/3 crystal oscillator with 16X PLL (10 MHz-25 MHz crystal) 10101 = HS/3 w/PLL 8X – HS/3 crystal oscillator with 8X PLL (10 MHz-25 MHz crystal) 10101 = HS/3 w/PLL 4X – HS/3 crystal oscillator with 4X PLL (10 MHz-25 MHz crystal) 10100 = Reserved (do not use) 10011 = HS/2 w/PLL 16X – HS/2 crystal oscillator with 16X PLL (10 MHz-25 MHz crystal) 10010 = HS/2 w/PLL 8X – HS/2 crystal oscillator with 8X PLL (10 MHz-25 MHz crystal) 10001 = HS/2 w/PLL 8X – HS/2 crystal oscillator with 8X PLL (10 MHz-25 MHz crystal) 10001 = HS/2 w/PLL 4X – HS/2 crystal oscillator with 4X PLL (10 MHz-25 MHz crystal) 10000 = Reserved (do not use) 01111 = ECIO w/PLL 16x – External clock with 16x PLL. OSC2 pin is I/O 01101 = ECIO w/PLL 16x – External clock with 8x PLL. OSC2 pin is I/O 01101 = ECIO w/PLL 4x – External clock with 4x PLL. OSC2 pin is I/O 01101 = ECIO w/PLL 4x – External clock with 4x PLL. OSC2 pin is I/O 01101 = ECIO w/PLL 8x – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O 01010 = Reserved (do not use) 01011 = Reserved (do not use) 01011 = XT w/PLL 16X – XT crystal oscillator with 16X PLL 0110 = XT w/PLL 4X – XT crystal oscillator with 8X PLL 0110 = XT w/PLL 4X – XT crystal oscillator with 8X PLL 0110 = XT w/PLL 4X – XT crystal oscillator with 8X PLL 0110 = TRC w/PLL 4X – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O 0111 = FRC w/PLL 4X – XT crystal oscillator with 8X PLL 0100 = Reserved (do not use) 00011 = FRC w/PLL 4X – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O 00010 = Reserved (do not use) 00011 = FRC w/PLL 4X – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 00010 = Reserved (do not use)

TABLE 5-6: FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013/3014, dsPIC30F4013, dsPIC30F5015/5016, dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015 (CONTINUED)

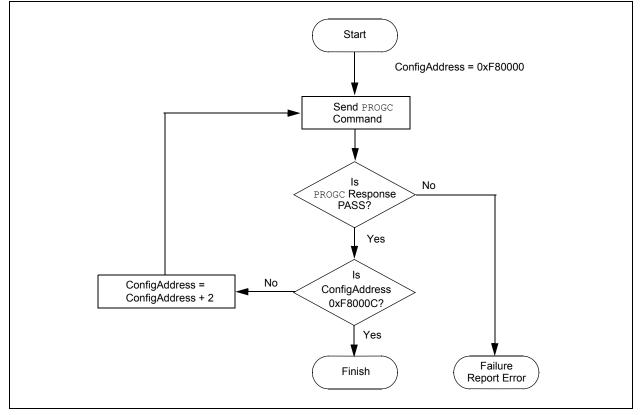
Bit Field	Register	Description
FPR<4:0>	FOSC	Alternate Oscillator Mode (when FOS<2:0> = 011b)
		1xxxx = Reserved (do not use)
		0111x = Reserved (do not use)
		01101 = Reserved (do not use)
		01100 = ECIO – External clock. OSC2 pin is I/O
		01011 = EC – External clock. OSC2 pin is system clock output (Fosc/4)
		01010 = Reserved (do not use)
		01001 = ERC – External RC oscillator. OSC2 pin is system clock output (Fosc/4)
		01000 = ERCIO – External RC oscillator. OSC2 pin is I/O
		00111 = Reserved (do not use)
		00110 = Reserved (do not use)
		00101 = Reserved (do not use)
		00100 = XT – XT crystal oscillator (4 MHz-10 MHz crystal)
		00010 = HS – HS crystal oscillator (10 MHz-25 MHz crystal)
		00001 = Reserved (do not use)
		00000 = XTL – XTL crystal oscillator (200 kHz-4 MHz crystal)

TABLE 5-8: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F2010, dsPIC30F4011/4012 AND dsPIC30F6010/ 6011/6012/6013/ 6014)

Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSN	1<1:0>	—	_	-	_	FOS	<1:0>	—	_	—	—		FPR<3:0>		
0xF80002	FWDT	FWDTEN	_	_	_	_	_	_	_	_	_	FWPS	A<1:0>		FWPSE	8<3:0>	
0xF80004	FBORPOR	MCLREN	_	_	_	_	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	BOREN	_	BORV	/<1:0>	_	_	FPWR	T<1:0>
0xF80006	FBS	—	_	Reser	ved ⁽²⁾	_	_	_	Reserved ⁽²⁾	_	_	_	_		Reserv	/ed ⁽²⁾	
0xF80008	FSS	—	_	Reser	ved ⁽²⁾	-	_	Rese	rved ⁽²⁾	—	_	_	_		Reserv	/ed ⁽²⁾	
0xF8000A	FGS	—	_	_	_	-	_	—	—	_	_	_	_	_	Reserved ⁽²⁾	GCP	GWRP
0xF8000C	FICD	BKBUG	COE	_	_	—	—	—	—	_	—	_	_	_	_	ICS<	:1:0>

 On the 6011, 6012, 6013 and 6014, these bits are reserved (read as '1' and must be programmed as '1').
 Reserved bits read as '1' and must be programmed as '1'. Note

TABLE 5-9: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F5011/5013)


Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSM	1<1:0>	—	—	-	_	FOS	i<1:0>	—	_	—	—		FPR<	3:0>	
0xF80002	FWDT	FWDTEN	_	_	_	—	_	_	_	_	_	FWPS	A<1:0>		FWPSE	3<3:0>	
0xF80004	FBORPOR	MCLREN	_	_	_	—	F	Reserved ⁽¹⁾		BOREN	_	BOR\	/<1:0>	—	_	FPWR	T<1:0>
0xF80006	FBS	_	_	RBS	<1:0>	_	_	—	EBS	—	_	—	—		BSS<2:0>		BWRP
0xF80008	FSS	_	_	RSS	<1:0>	_	—	ESS	<1:0>	_	_	_	_		SSS<2:0>		SWRP
0xF8000A	FGS	_		—	_	—	_	_	_	_	_	—	—	_	GSS<	1:0>	GWRP
0xF8000C	FICD	BKBUG	COE	_	_	—	_	_	_	_	_	_	_	—	_	ICS<	<1:0>

Note 1: Reserved bits read as '1' and must be programmed as '1'.

5.8 Exiting Enhanced ICSP Mode

The Enhanced ICSP mode is exited by removing power from the device or bringing MCLR to VIL. When normal user mode is next entered, the program that was stored using Enhanced ICSP will execute.

FIGURE 5-5: CONFIGURATION BIT PROGRAMMING FLOW

6.0 OTHER PROGRAMMING **FEATURES**

6.1 Erasing Memory

Memory is erased by using an ERASEB, ERASED or ERASEP command, as detailed in Section 8.5 "Command Descriptions". Code memory can be erased by row using ERASEP. Data EEPROM can be erased by row using ERASED. When memory is erased, the affected memory locations are set to '1's.

ERASEB provides several Bulk Erase options. Performing a Chip Erase with the ERASEB command clears all code memory, data EEPROM and code protection registers. Alternatively, ERASEB can be used to selectively erase either all code memory or data EEPROM. Erase options are summarized in Table 6-1.

Command	Affected Region
ERASEB	Entire chip ⁽¹⁾ or all code memory or all data EEPROM, or erase by segment
ERASED	Specified rows of data EEPROM
ERASEP(2)	Specified rows of code memory

TABLE 6-1: ERASE OPTIONS

The system operation Configuration Note 1: registers and device ID registers are not erasable.

> 2: ERASEP cannot be used to erase codeprotect Configuration bits. These bits must be erased using ERASEB.

6.2 Modifying Memory

Instead of bulk-erasing the device before programming, it is possible that you may want to modify only a section of an already programmed device. In this situation, Chip Erase is not a realistic option.

Instead, you can erase selective rows of code memory and data EEPROM using ERASEP and ERASED, respectively. You can then reprogram the modified rows with the PROGP and PROGD command pairs. In these cases, when code memory is programmed, single-panel programming must be specified in the PROGP command.

For modification of Advanced Code Protection bits for a particular segment, the entire chip must first be erased with the ERASEB command. Alternatively, on devices that support Advanced Security, individual segments (code and/or data EEPROM) may be erased, by suitably changing the MS (Memory Select) field in the ERASEB command. The code-protect Configuration bits can then be reprogrammed using the PROGC command.

Note: If read or write code protection is enabled for a segment, no modifications can be made to that segment until code protection is disabled. Code protection can only be disabled by performing a Chip Erase or by performing a Segment Erase operation for the required segment.

6.3 Reading Memory

The READD command reads the data EEPROM, Configuration bits and device ID of the device. This command only returns 16-bit data and operates on 16-bit registers. READD can be used to return the entire contents of data EEPROM.

The READP command reads the code memory of the device. This command only returns 24-bit data packed as described in Section 8.3 "Packed Data Format". READP can be used to read up to 32K instruction words of code memory.

Note:									
	location causes the programming								
	executive to reset. All READD and READP								
	commands must specify only valid								
	memory locations.								

6.4 Programming Executive Software Version

At times, it may be necessary to determine the version of programming executive stored in executive memory. The QVER command performs this function. See Section 8.5.11 "QVER Command" for more details about this command.

Data EEPROM Information in the 6.5 **Hexadecimal File**

To allow portability of code, the programmer must read the data EEPROM information from the hexadecimal file. If data EEPROM information is not present, a simple warning message should be issued by the programmer. Similarly, when saving a hexadecimal file, all data EEPROM information must be included. An option to not include the data EEPROM information can be provided.

Microchip Technology Inc. believes that this feature is important for the benefit of the end customer.

Opcode	Mnemonic	Length (16-bit words)	Time Out	Description
0x0	SCHECK	1	1 ms	Sanity check.
0x1	READD	4	1 ms/row	Read N 16-bit words of data EEPROM, Configuration registers or device ID starting from specified address.
0x2	READP	4	1 ms/row	Read N 24-bit instruction words of code memory starting from specified address.
0x3	Reserved	N/A	N/A	This command is reserved. It will return a NACK.
0x4	PROGD ⁽²⁾	19	5 ms	Program one row of data EEPROM at the specified address, then verify.
0x5	PROGP(1)	51	5 ms	Program one row of code memory at the specified address, then verify.
0x6	PROGC	4	5 ms	Write byte or 16-bit word to specified Configuration register.
0x7	ERASEB	2	5 ms	Bulk Erase (entire code memory or data EEPROM), or erase by segment.
0x8	ERASED ⁽²⁾	3	5 ms/row	Erase rows of data EEPROM from specified address.
0x9	ERASEP(1)	3	5 ms/row	Erase rows of code memory from specified address.
0xA	QBLANK	3	300 ms	Query if the code memory and data EEPROM are blank.
0xB	QVER	1	1 ms	Query the programming executive software version.

TABLE 8-1: PROGRAMMING EXECUTIVE COMMAND SET

Note 1: One row of code memory consists of (32) 24-bit words. Refer to Table 5-2 for device-specific information.
2: One row of data EEPROM consists of (16) 16-bit words. Refer to Table 5-3 for device-specific information.

8.5 Command Descriptions

All commands that are supported by the programming executive are described in Section 8.5.1 "SCHECK Command" through Section 8.5.11 "QVER Command".

8.5.1 SCHECK COMMAND

15	12	11 0)
	Opcode	Length	

Field	Description
Opcode	0x0
Length	0x1

The SCHECK command instructs the programming executive to do nothing, but generate a response. This command is used as a "sanity check" to verify that the programming executive is operational.

Expected Response (2 words):

0x1000 0x0002

Note: This instruction is not required for programming, but is provided for development purposes only.

8.5.2 READD COMMAND

15	12	11	8	7	0		
Орс	ode			Length			
Reser	ved0	Ν					
	Reserved1			Addr_MSB			
	Addr_LS						

Field	Description
Opcode	0x1
Length	0x4
Reserved0	0x0
N	Number of 16-bit words to read (max of 2048)
Reserved1	0x0
Addr_MSB	MSB of 24-bit source address
Addr_LS	LS 16 bits of 24-bit source address

The READD command instructs the programming executive to read N 16-bit words of memory starting from the 24-bit address specified by Addr_MSB and Addr_LS. This command can only be used to read 16-bit data. It can be used to read data EEPROM, Configuration registers and the device ID.

Expected Response (2+N words):

0x1100 N + 2 Data word 1

Data word N

Note: Reading unimplemented memory will cause the programming executive to reset.

9.2.3 QE_Code FIELD

The QE_Code is a byte in the first word of the response. This byte is used to return data for query commands, and error codes for all other commands.

When the programming executive processes one of the two query commands (QBLANK or QVER), the returned opcode is always PASS and the QE_Code holds the query response data. The format of the QE_Code for both queries is shown in Table 9-3.

TABLE 9-3: QE_Code FOR QUERIES

Query	QE_Code
QBLANK	0x0F = Code memory and data EEPROM are NOT blank 0xF0 = Code memory and data EEPROM are blank
QVER	0xMN, where programming executive software version = M.N (i.e., 0x32 means software version 3.2)

When the programming executive processes any command other than a Query, the QE_Code represents an error code. Supported error codes are shown in Table 9-4. If a command is successfully processed, the returned QE_Code is set to 0x0, which indicates that there was no error in the command processing. If the verify of the programming for the PROGD, PROGP or PROGC command fails, the QE_Code is set to 0x1. For all other programming executive errors, the QE_Code is 0x2.

TABLE 9-4: QE_Code FOR NON-QUERY COMMANDS

QE_Code	Description
0x0	No error
0x1	Verify failed
0x2	Other error

9.2.4 RESPONSE LENGTH

The response length indicates the length of the programming executive's response in 16-bit words. This field includes the 2 words of the response header.

With the exception of the response for the READD and READP commands, the length of each response is only 2 words.

The response to the READD command is N + 2 words, where N is the number of words specified in the READD command.

The response to the READP command uses the packed instruction word format described in **Section 8.3 "Packed Data Format"**. When reading an odd number of program memory words (N odd), the response to the READP command is $(3 \cdot (N + 1)/2 + 2)$ words. When reading an even number of program memory words (N even), the response to the READP command is $(3 \cdot N/2 + 2)$ words.

11.0 ICSP™ MODE

11.1 ICSP Mode

ICSP mode is a special programming protocol that allows you to read and write to the dsPIC30F programming executive. The ICSP mode is the second (and slower) method used to program the device. This mode also has the ability to read the contents of executive memory to determine whether the programming executive is present. This capability is accomplished by applying control codes and instructions serially to the device using pins PGC and PGD.

In ICSP mode, the system clock is taken from the PGC pin, regardless of the device's oscillator Configuration bits. All instructions are first shifted serially into an internal buffer, then loaded into the Instruction register and executed. No program fetching occurs from internal memory. Instructions are fed in 24 bits at a time. PGD is used to shift data in and PGC is used as both the serial shift clock and the CPU execution clock.

Data is transmitted on the rising edge and latched on the falling edge of PGC. For all data transmissions, the Least Significant bit (LSb) is transmitted first.

Note 1: During ICSP operation, the operating frequency of PGC must not exceed 5 MHz.
2: Because ICSP is slower, it is recommended that only Enhanced ICSP (E-ICSP) mode be used for device programming, as described in Section 5.1 "Overview of the Programming Process".

11.2 ICSP Operation

Upon entry into ICSP mode, the CPU is idle. Execution of the CPU is governed by an internal state machine. A 4-bit control code is clocked in using PGC and PGD, and this control code is used to command the CPU (see Table 11-1).

The SIX control code is used to send instructions to the CPU for execution, while the REGOUT control code is used to read data out of the device via the VISI register. The operation details of ICSP mode are provided in Section 11.2.1 "SIX Serial Instruction Execution" and Section 11.2.2 "REGOUT Serial Instruction Execution".

TABLE 11-1:CPU CONTROL CODES IN
ICSP™ MODE

4-bit Control Code	Mnemonic	Description	
d0000b	SIX	Shift in 24-bit instruction and execute.	
0001b	REGOUT	Shift out the VISI register.	
0010b-1111b	N/A	Reserved.	

11.2.1 SIX SERIAL INSTRUCTION EXECUTION

The SIX control code allows execution of dsPIC30F assembly instructions. When the SIX code is received, the CPU is suspended for 24 clock cycles as the instruction is then clocked into the internal buffer. Once the instruction is shifted in, the state machine allows it to be executed over the next four clock cycles. While the received instruction is executed, the state machine simultaneously shifts in the next 4-bit command (see Figure 11-2).

- Note 1: Coming out of the ICSP entry sequence, the first 4-bit control code is always forced to SIX and a forced NOP instruction is executed by the CPU. Five additional PGC clocks are needed on startup, thereby resulting in a 9-bit SIX command instead of the normal 4-bit SIX command. After the forced SIX is clocked in, ICSP operation resumes as normal (the next 24 clock cycles load the first instruction word to the CPU). See Figure 11-1 for details.
 - 2: TBLRDH, TBLRDL, TBLWTH and TBLWTL instructions must be followed by a NOP instruction.

11.3 Entering ICSP Mode

The ICSP mode is entered by holding PGC and PGD low, raising $\overline{\text{MCLR}/\text{VPP}}$ to VIHH (high voltage), and then performing additional steps as illustrated in Figure 11-4.

- Note 1: The sequence that places the device into ICSP mode places all unused I/O pins to the high-impedance state.
 - **2:** Once ICSP mode is entered, the PC is set to 0x0 (the Reset vector).
 - 3: Before leaving the Reset vector, execute two GOTO instructions, followed by a single NOP instruction must be executed.

FIGURE 11-4: ENTERING ICSP™ MODE

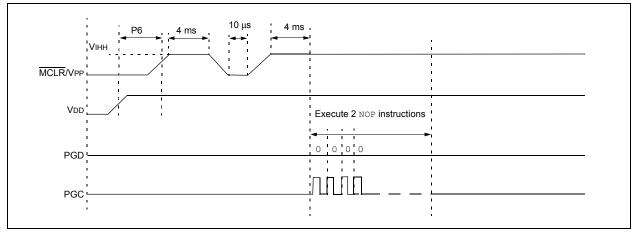


Table 11-4 shows the ICSP programming process for bulk-erasing program memory. This process includes the ICSP command code, which must be transmitted (for each instruction) to the Least Significant bit first using the PGC and PGD pins (see Figure 11-2).

If an individual Segment Erase operation is required, the NVMCON value must be replaced by the value for the corresponding Segment Erase operation.

Note:	Program memory must be erased before
	writing any data to program memory.

TABLE 11-4:SERIAL INSTRUCTION EXECUTION FOR BULK ERASING PROGRAM MEMORY
(ONLY IN NORMAL-VOLTAGE SYSTEMS)

08A 80A	GOTO 0x100 GOTO 0x100 NOP the FBS Configuration register. ⁽¹⁾ MOV #0x4008, W10 MOV W10, NVMCON
00 000 DN to program 08A 00A TBLPAG and	GOTO 0×100 NOP the FBS Configuration register. ⁽¹⁾ MOV #0×4008, W10
DN to program	NOP the FBS Configuration register. ⁽¹⁾ MOV #0x4008, W10
DN to program	the FBS Configuration register. ⁽¹⁾
BA BOA CHANCE TBLPAG and	MOV #0x4008, W10
BOA TBLPAG and	
e TBLPAG and	MOV W10, NVMCON
'80	write pointer (W7) for TBLWT instruction for Configuration register. ⁽¹⁾
	MOV #0xF8, W0
.90	MOV W0, TBLPAG
67	MOV #0x6, W7
onfiguration Re	egister data to W6. ⁽¹⁾
300	CLR W6
000	NOP
onfiguration Re	egister write latch. Advance W7 to point to next Configuration register. ⁽¹⁾
386	TBLWTL W6, [W7++]
NVMCON for p	programming the Configuration register. ⁽¹⁾
58	MOV #0x55, W8
A9	MOV #0xAA, W9
338	MOV W8, NVMKEY
339	MOV W9, NVMKEY
orogramming c	ycle. ⁽¹⁾
61	BSET NVMCON, #WR
000	NOP
000	NOP
	Externally time 2 ms
000	NOP
000	NOP
61	BCLR NVMCON, #WR
000	NOP
000	NOP
os 5-7 one time	e to program 0x0000 to RESERVED2 Configuration register. ⁽¹⁾
VICON to erase	e all Program Memory.
'FA	MOV #0x407F, W10
30A	MOV W10, NVMCON
O OS M	5-7 one time CON to erase

Note 1: Steps 2-8 are only required for the dsPIC30F5011/5013 devices. These steps may be skipped for all other devices in the dsPIC30F family.

TABLE 11-5:SERIAL INSTRUCTION EXECUTION FOR ERASING PROGRAM MEMORY
(EITHER IN LOW-VOLTAGE OR NORMAL-VOLTAGE SYSTEMS) (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description
Step 18: Un	lock the NVMCON to	erase 1 row of data memory.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 19: Init	iate the erase cycle.	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_	-	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and
		Timing Requirements")
0000	000000	NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
Step 20: Up	date the row address	stored in NVMADR.
0000	430307	ADD W6, W7, W6
0000	883B16	MOV W6, NVMADR
Step 21: Re	set device internal P	С.
0000	040100	GOTO 0x100
0000	000000	NOP
Step 22: Re	peat Steps 17-21 unt	il all rows of data memory are erased.

11.8 Writing Code Memory

The procedure for writing code memory is similar to the procedure for clearing the Configuration registers, except that 32 instruction words are programmed at a time. To facilitate this operation, working registers W0:W5 are used as temporary holding registers for the data to be programmed.

Table 11-8 shows the ICSP programming details, including the serial pattern with the ICSP command code, which must be transmitted Least Significant bit first using the PGC and PGD pins (see Figure 11-2). In Step 1, the Reset vector is exited. In Step 2, the NVMCON register is initialized for single-panel programming of code memory. In Step 3, the 24-bit starting destination address for programming is loaded into the TBLPAG register and W7 register. The upper byte of the starting destination address is stored to TBLPAG, while the lower 16 bits of the destination address are stored to W7.

To minimize the programming time, the same packed instruction format that the programming executive uses is utilized (Figure 8-2). In Step 4, four packed instruction words are stored to working registers W0:W5 using the MOV instruction and the read pointer W6 is initialized. The contents of W0:W5 holding the packed instruction word data is shown in Figure 11-4.

In Step 5, eight TBLWT instructions are used to copy the data from W0:W5 to the write latches of code memory. Since code memory is programmed 32 instruction words at a time, Steps 4 and 5 are repeated eight times to load all the write latches (Step 6).

After the write latches are loaded, programming is initiated by writing to the NVMKEY and NVMCON registers in Steps 7 and 8. In Step 9, the internal PC is reset to 0x100. This is a precautionary measure to prevent the PC from incrementing into unimplemented memory when large devices are being programmed. Lastly, in Step 10, Steps 2-9 are repeated until all of code memory is programmed.

FIGURE 11-5: PACKED INSTRUCTION WORDS IN W0:W5

	15		8	7		0
W0			lsv	v0		
W1		MSB1			MSB0	
W2			lsv	v1		
W3			lsv	v2		
W4		MSB3			MSB2	
W5			lsv	v3		

Command (Binary)	Data (Hexadecimal)	Description		
Step 1: Exit th	e Reset vector.			
0000	040100	GOTO 0x100		
0000	040100	GOTO 0x100		
0000	000000	NOP		
Step 2: Set th	e NVMCON to progr	am 32 instruction words.		
0000	24001A	MOV #0x4001, W10		
0000	883B0A	MOV W10, NVMCON		
Step 3: Initiali	ze the write pointer (W7) for TBLWT instruction.		
0000	200xx0	MOV # <destinationaddress23:16>, W0</destinationaddress23:16>		
0000	880190	MOV W0, TBLPAG		
0000	2xxxx7	MOV # <destinationaddress15:0>, W7</destinationaddress15:0>		
Step 4: Initializ	ze the read pointer (W6) and load W0:W5 with the next 4 instruction words to program.		
0000	2xxxx0	MOV # <lsw0>, W0</lsw0>		
0000	2xxxx1	MOV # <msb1:msb0>, W1</msb1:msb0>		
0000	2xxxx2	MOV # <lsw1>, W2</lsw1>		
0000	2xxxx3	MOV # <lsw2>, W3</lsw2>		
0000	2xxxx4	MOV # <msb3:msb2>, W4</msb3:msb2>		
0000	2xxxx5	MOV # <lsw3>, W5</lsw3>		

TABLE 11-8: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY

11.12 Reading Data Memory

The procedure for reading data memory is similar to that of reading code memory, except that 16-bit data words are read instead of 24-bit words. Since less data is read in each operation, only working registers W0:W3 are used as temporary holding registers for the data to be read.

Table 11-12 shows the ICSP programming details for reading data memory. Note that the TBLPAG register is hard-coded to 0x7F (the upper byte address of all locations of data memory).

TABLE 11-12: SERIAL INSTRUCTION EXECUTION FOR READING DATA MEMORY

Command (Binary)	Data (Hexadecimal)	Description
Step 1: Exit t	ne Reset vector.	
0000	040100	GOTO 0x100
0000	040100	GOTO 0x100
0000	000000	NOP
Step 2: Initial	ize TBLPAG and t	the read pointer (W6) for TBLRD instruction.
0000	2007F0	MOV #0x7F, WO
0000	880190	MOV W0, TBLPAG
0000	2xxxx6	MOV # <sourceaddress15:0>, W6</sourceaddress15:0>
Step 3: Initial		er (W7) and store the next four locations of code memory to W0:W5.
0000	EB0380	CLR W7
0000	000000	NOP
0000	BA1BB6	TBLRDL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BA1BB6	TBLRDL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BA1BB6	TBLRDL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BA1BB6	TBLRDL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
		ne VISI register and REGOUT command.
0000	883C20	MOV W0, VISI
0000	000000	NOP
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
0000	883C21	MOV W1, VISI
0000	000000	NOP
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
0000	883C22	MOV W2, VISI
0000	000000	NOP
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
0000	883C23	MOV W3, VISI
0000	000000	NOP
0000	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
	t device internal F	
0000	040100	GOTO 0x100
0000	000000	NOP
		all desired data memory is read.

11.13 Reading the Application ID Word

The application ID word is stored at address 0x8005BE in executive code memory. To read this memory location, you must use the SIX control code to move this program memory location to the VISI register. The REGOUT control code must then be used to clock the contents of the VISI register out of the device. The corresponding control and instruction codes that must be serially transmitted to the device to perform this operation are shown in Table 11-13.

Once the programmer has clocked-out the application ID word, it must be inspected. If the application ID has the value 0xBB, the programming executive is resident in memory and the device can be programmed using the mechanism described in Section 5.0 "Device Programming". However, if the application ID has any other value, the programming executive is not resident in memory. It must be loaded to memory before the device can be programming executive to the memory is described in Section 12.0 "Programming the Programming the Programming Executive to Memory".

11.14 Exiting ICSP Mode

After confirming that the programming executive is resident in memory, or loading the programming executive, ICSP mode is exited by removing power to the device or bringing MCLR to VIL. Programming can then take place by following the procedure outlined in **Section 5.0 "Device Programming"**.

Command (Binary)	Data (Hexadecimal)	Description		
Step 1: Exit th	e Reset vector.			
0000 0000 0000	040100 040100 000000	GOTO 0x100 GOTO 0x100 NOP		
Step 2: Initiali	ze TBLPAG and th	e read pointer (W0) for TBLRD instruction.		
0000 0000 0000 0000 0000 0000 0000 0000	200800 880190 205BE0 207841 000000 BA0890 000000 000000	MOV #0x80, W0 MOV W0, TBLPAG MOV #0x5BE, W0 MOV VISI, W1 NOP TBLRDL [W0], [W1] NOP NOP		
Step 3: Output	Step 3: Output the VISI register using the REGOUT command.			
0001 0000	<visi> 000000</visi>	Clock out contents of the VISI register NOP		

TABLE 11-13: SERIAL INSTRUCTION EXECUTION FOR READING THE APPLICATION ID WORD

13.0 AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS

TABLE 13-1: AC/DC CHARACTERISTICS

AC/DC CHARACTERISTICS				Standard Operating Conditions (unless otherwise stated) Operating Temperature: 25° C is recommended			
Param. No.	Sym	Characteristic	Min	Мах	Units	Conditions	
D110	Vінн	High Programming Voltage on MCLR/VPP	9.00	13.25	V	_	
D112	IPP	Programming Current on MCLR/VPP	_	300	μA	_	
D113	IDDP	Supply Current during programming	_	30	mA	Row Erase Program memory	
				30	mA	Row Erase Data EEPROM	
			—	30	mA	Bulk Erase	
D001	Vdd	Supply voltage	2.5	5.5	V	—	
D002	VDDBULK	Supply voltage for Bulk Erase programming	4.5	5.5	V	—	
D031	VIL	Input Low Voltage	Vss	0.2 Vss	V	—	
D041	Vih	Input High Voltage	0.8 Vdd	Vdd	V	—	
D080	Vol	Output Low Voltage	—	0.6	V	IOL = 8.5 mA	
D090	Voн	Output High Voltage	Vdd - 0.7	—	V	Іон = -3.0 mA	
D012	Сю	Capacitive Loading on I/O Pin (PGD)	_	50	pF	To meet AC specifications	
P1	TSCLK	Serial Clock (PGC) period	50	—	ns	ICSP™ mode	
			1	—	μs	Enhanced ICSP mode	
P1a	TSCLKL	Serial Clock (PGC) low time	20	—	ns	ICSP mode	
			400	—	ns	Enhanced ICSP mode	
P1b	TSCLKH	Serial Clock (PGC) high time	20	—	ns	ICSP mode	
			400	—	ns	Enhanced ICSP mode	
P2	TSET1	Input Data Setup Timer to PGC \downarrow	15	—	ns	—	
P3	THLD1	Input Data Hold Time from PGC \downarrow	15	—	ns	—	
P4	TDLY1	Delay between 4-bit command and command operand	20	—	ns	—	
P4a	TDLY1a	Delay between 4-bit command operand and next 4-bit command	20	—	ns	—	
P5	TDLY2	Delay between last PGC ↓of command to first PGC ↑ of VISI output	20	—	ns	—	
P6	TSET2	VDD ↑ setup time to MCLR/VPP	100	—	ns	_	
P7	THLD2	Input data hold time from MCLR/VPP ↑	2	_	μs	ICSP mode	
			5	_	ms	Enhanced ICSP mode	
P8	TDLY3	Delay between last PGC ↓of command word to PGD driven ↑ by programming executive	20	—	μs	-	
P9a	TDLY4	Programming Executive Command processing time	10	—	μs	—	

Device	Read Code Protection	Checksum Computation	Erased Value	Value with 0xAAAAAA at 0x0 and Last Code Address
dsPIC30F5016	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6010	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6010A	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6011	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6011A	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6012	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6012A	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6013	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6013A	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6014	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6014A	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6015	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404

TABLE A-1: CHECKSUM COMPUTATION (CONTINUED)

Item Description:

SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory)

CFGB = Configuration Block (masked) = Byte sum of ((FOSC&0xC10F) + (FWDT&0x803F) + (FBORPOR&0x87B3) + (FBS&0x310F) + (FSS&0x330F) + (FGS&0x0007) + (FICD&0xC003))

NOTES: