

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	30 MIPs
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	68
Program Memory Size	144KB (48K x 24)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f6010t-30i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.0 DEVICE PROGRAMMING

5.1 Overview of the Programming Process

Once the programming executive has been verified in memory (or loaded if not present), the dsPIC30F can be programmed using the command set shown in Table 5-1. A detailed description for each command is provided in Section 8.0 "Programming Executive Commands".

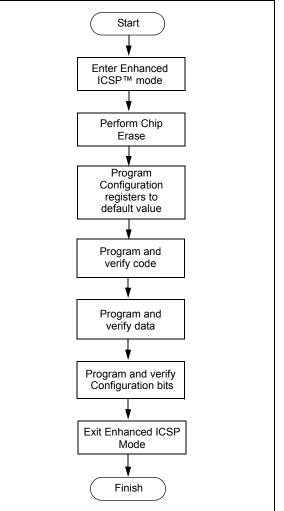

Command	Description
SCHECK	Sanity check
READD	Read data EEPROM, Configuration registers and device ID
READP	Read code memory
PROGD	Program one row of data EEPROM and verify
PROGP	Program one row of code memory and verify
PROGC	Program Configuration bits and verify
ERASEB	Bulk Erase, or erase by segment
ERASED	Erase data EEPROM
ERASEP	Erase code memory
QBLANK	Query if the code memory and data EEPROM are blank
QVER	Query the software version

TABLE 5-1: COMMAND SET SUMMARY

A high-level overview of the programming process is illustrated in Figure 5-1. The process begins by entering Enhanced ICSP mode. The chip is then bulk erased, which clears all memory to '1' and allows the device to be programmed. The Chip Erase is verified before programming begins. Next, the code memory, data Flash and Configuration bits are programmed. As these memories are programmed, they are each verified to ensure that programming was successful. If no errors are detected, the programming is complete and Enhanced ICSP mode is exited. If any of the verifications fail, the procedure should be repeated, starting from the Chip Erase. If Advanced Security features are enabled, then individual Segment Erase operations need to be performed, based on user selections (i.e., based on the specific needs of the user application). The specific operations that are used typically depend on the order in which various segments need to be programmed for a given application or system.

Section 5.2 "Entering Enhanced ICSP Mode" through Section 5.8 "Exiting Enhanced ICSP Mode" describe the programming process in detail.

FIGURE 5-1: PROGRAMMING FLOW

5.5 Code Memory Programming

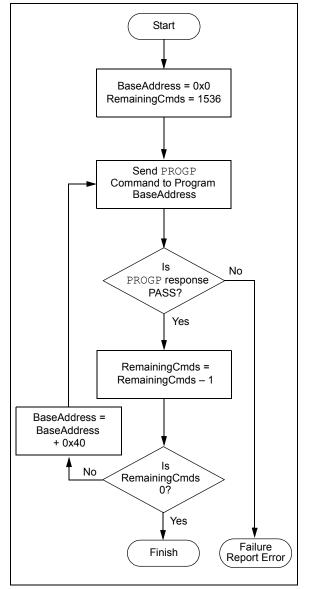
5.5.1 OVERVIEW

The Flash code memory array consists of 512 rows of thirty-two, 24-bit instructions. Each panel stores 16K instruction words, and each dsPIC30F device has either 1, 2 or 3 memory panels (see Table 5-2).

Device	Code Size (24-bit Words)	Number of Rows	Number of Panels
dsPIC30F2010	4K	128	1
dsPIC30F2011	4K	128	1
dsPIC30F2012	4K	128	1
dsPIC30F3010	8K	256	1
dsPIC30F3011	8K	256	1
dsPIC30F3012	8K	256	1
dsPIC30F3013	8K	256	1
dsPIC30F3014	8K	256	1
dsPIC30F4011	16K	512	1
dsPIC30F4012	16K	512	1
dsPIC30F4013	16K	512	1
dsPIC30F5011	22K	704	2
dsPIC30F5013	22K	704	2
dsPIC30F5015	22K	704	2
dsPIC30F5016	22K	704	2
dsPIC30F6010	48K	1536	3
dsPIC30F6010A	48K	1536	3
dsPIC30F6011	44K	1408	3
dsPIC30F6011A	44K	1408	3
dsPIC30F6012	48K	1536	3
dsPIC30F6012A	48K	1536	3
dsPIC30F6013	44K	1408	3
dsPIC30F6013A	44K	1408	3
dsPIC30F6014	48K	1536	3
dsPIC30F6014A	48K	1536	3
dsPIC30F6015	48K	1536	3

TABLE 5-2: DEVICE CODE MEMORY SIZE

5.5.2 PROGRAMMING METHODOLOGY


Code memory is programmed with the PROGP command. PROGP programs one row of code memory to the memory address specified in the command. The number of PROGP commands required to program a device depends on the number of rows that must be programmed in the device.

A flowchart for programming of code memory is illustrated in Figure 5-3. In this example, all 48K instruction words of a dsPIC30F6014A device are programmed. First, the number of commands to send (called 'RemainingCmds' in the flowchart) is set to 1536 and the destination address (called 'BaseAddress') is set to '0'. Next, one row in the device is programmed with a PROGP command. Each PROGP command contains data for one row of code memory of the dsPIC30F6014A. After the first command is processed successfully, 'RemainingCmds' is decremented by 1 and compared to 0. Since there are more PROGP commands to send, 'BaseAddress' is incremented by 0x40 to point to the next row of memory.

On the second PROGP command, the second row of each memory panel is programmed. This process is repeated until the entire device is programmed. No special handling must be performed when a panel boundary is crossed.

FLOWCHART FOR PROGRAMMING dsPIC30F6014A CODE MEMORY

TABLE 5-5:FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F4011/4012 AND
dsPIC30F5011/5013

Bit Field	Register	Description					
FCKSM<1:0>	FOSC	Clock Switching Mode 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled					
FOS<1:0>	FOSC	Oscillator Source Selection on POR 11 = Primary Oscillator 10 = Internal Low-Power RC Oscillator 01 = Internal Fast RC Oscillator 00 = Low-Power 32 kHz Oscillator (Timer1 Oscillator)					
FPR<3:0>	FOSC	 Primary Oscillator Mode 1111 = ECIO w/PLL 16X – External Clock mode with 16X PLL. OSC2 pin is I/O 1101 = ECIO w/PLL 8X – External Clock mode with 8X PLL. OSC2 pin is I/O 1011 = ECIO w/PLL 4X – External Clock mode with 4X PLL. OSC2 pin is I/O 100 = ECIO – External Clock mode. OSC2 pin is I/O 1011 = EC – External Clock mode. OSC2 pin is system clock output (Fosc/4) 1010 = FRC w/PLL 8x – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O 1001 = ERC – External RC Oscillator mode. OSC2 pin is system clock output (Fosc/4) 1000 = ERCIO – External RC Oscillator mode. OSC2 pin is system clock output (Fosc/4) 1000 = ERCIO – External RC Oscillator mode. OSC2 pin is I/O 0111 = XT w/PLL 16X – XT Crystal Oscillator mode with 16X PLL 0101 = XT w/PLL 4X – XT Crystal Oscillator mode with 4X PLL 0101 = XT w/PLL 4X – T Crystal Oscillator mode with 4X PLL 0101 = T K w/PLL 16x – Internal fast RC oscillator with 16x PLL 0111 = ST w/PLL 4X – XT Crystal Oscillator mode with 4X PLL 0101 = KT w/PLL 16x – Internal fast RC oscillator with 16x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 16x – Internal fast RC oscillator with 16x PLL. OSC2 pin is I/O 0010 = HS – HS Crystal Oscillator mode (10 MHz-25 MHz crystal) 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 0011 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 					

TABLE 5-6: FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013/3014, dsPIC30F4013, dsPIC30F5015/5016, dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015

	Description				
OSC	Clock Switching Mode 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled				
OSC	Oscillator Source Selection on POR 111 = Primary Oscillator 110 = Reserved 101 = Reserved 100 = Reserved 011 = Reserved 011 = Reserved 010 = Internal Low-Power RC Oscillator 001 = Internal Fast RC Oscillator (no PLL) 000 = Low-Power 32 kHz Oscillator (Timer1 Oscillator)				
DSC	Primary Oscillator Mode (when FOS<2:0> = 111b) 11xxx = Reserved (do not use) 10111 = HS/3 w/PLL 16X – HS/3 crystal oscillator with 16X PLL (10 MHz-25 MHz crystal) 10101 = HS/3 w/PLL 8X – HS/3 crystal oscillator with 8X PLL (10 MHz-25 MHz crystal) 10101 = HS/3 w/PLL 4X – HS/3 crystal oscillator with 4X PLL (10 MHz-25 MHz crystal) 10100 = Reserved (do not use) 10011 = HS/2 w/PLL 16X – HS/2 crystal oscillator with 16X PLL (10 MHz-25 MHz crystal) 10010 = HS/2 w/PLL 8X – HS/2 crystal oscillator with 8X PLL (10 MHz-25 MHz crystal) 10001 = HS/2 w/PLL 8X – HS/2 crystal oscillator with 8X PLL (10 MHz-25 MHz crystal) 10001 = HS/2 w/PLL 8X – HS/2 crystal oscillator with 4X PLL (10 MHz-25 MHz crystal) 10000 = Reserved (do not use) 01111 = ECIO w/PLL 16X – External clock with 16x PLL. OSC2 pin is I/O 01101 = ECIO w/PLL 16x – External clock with 8x PLL. OSC2 pin is I/O 01101 = ECIO w/PLL 4x – External clock with 4x PLL. OSC2 pin is I/O 01101 = ECIO w/PLL 8x – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O 01010 = Reserved (do not use) 01011 = Reserved (do not use) 01011 = XT w/PLL 16X – XT crystal oscillator with 16X PLL 0110 = XT w/PLL 4X – XT crystal oscillator with 16X PLL 0110 = XT w/PLL 4X – XT crystal oscillator with 8X PLL 0110 = XT w/PLL 4X – XT crystal oscillator with 8X PLL 0110 = TRC w/PLL 4X – T crystal oscillator with 8X PLL 0110 = FRC w/PLL 4X – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O 0111 = FRC w/PLL 4X – XT crystal oscillator with 8X PLL 0100 = Reserved (do not use) 00011 = FRC w/PLL 4X – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O 00010 = Reserved (do not use) 00011 = FRC w/PLL 4X – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O 00010 = Reserved (do not use)				

TABLE 5-7:	ABLE 5-7: CONFIGURATION BITS DESCRIPTION					
Bit Field	Register	Description				
FWPSA<1:0>		Watchdog Timer Prescaler A 11 = 1:512 10 = 1:64 01 = 1:8 00 = 1:1				
FWPSB<3:0>	FWDT	Watchdog Timer Prescaler B 1111 = 1:16 1110 = 1:15 0001 = 1:2 0000 = 1:1				
FWDTEN	FWDT	 Watchdog Enable 1 = Watchdog enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect) 0 = Watchdog disabled (LPRC oscillator can be disabled by clearing the SWDTEN bit in the RCON register) 				
MCLREN	FBORPOR	Master Clear Enable1 = Master Clear pin (MCLR) is enabled0 = MCLR pin is disabled				
PWMPIN	FBORPOR	 Motor Control PWM Module Pin Mode 1 = PWM module pins controlled by PORT register at device Reset (tri-stated) 0 = PWM module pins controlled by PWM module at device Reset (configured as output pins) 				
HPOL	FBORPOR	Motor Control PWM Module High-Side Polarity 1 = PWM module high-side output pins have active-high output polarity 0 = PWM module high-side output pins have active-low output polarity				
LPOL	FBORPOR	Motor Control PWM Module Low-Side Polarity 1 = PWM module low-side output pins have active-high output polarity 0 = PWM module low-side output pins have active-low output polarity				
BOREN	FBORPOR	PBOR Enable 1 = PBOR enabled 0 = PBOR disabled				
BORV<1:0>	FBORPOR	Brown-out Voltage Select 11 = 2.0V (not a valid operating selection) 10 = 2.7V 01 = 4.2V 00 = 4.5V				
FPWRT<1:0>	FBORPOR	Power-on Reset Timer Value Select 11 = PWRT = 64 ms 10 = PWRT = 16 ms 01 = PWRT = 4 ms 00 = Power-up Timer disabled				
RBS<1:0>	FBS	Boot Segment Data RAM Code Protection (only present in dsPIC30F5011/5013/ 6010A/6011A/6012A/6013A/6014A/6015) 11 = No Data RAM is reserved for Boot Segment 10 = Small-sized Boot RAM [128 bytes of RAM are reserved for Boot Segment] 01 = Medium-sized Boot RAM [256 bytes of RAM are reserved for Boot Segment] 00 = Large-sized Boot RAM [512 bytes of RAM are reserved for Boot Segment in dsPIC30F5011/5013, and 1024 bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015]				

TABLE 5-7: CONFIGURATION BITS DESCRIPTION

6.6 Configuration Information in the Hexadecimal File

To allow portability of code, the programmer must read the Configuration register locations from the hexadecimal file. If configuration information is not present in the hexadecimal file, a simple warning message should be issued by the programmer. Similarly, while saving a hexadecimal file, all configuration information must be included. An option to not include the configuration information can be provided.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

6.7 Unit ID

The dsPIC30F devices contain 32 instructions of Unit ID. These are located at addresses 0x8005C0 through 0x8005FF. The Unit ID can be used for storing product information such as serial numbers, system manufacturing dates, manufacturing lot numbers and other such application-specific information.

A Bulk Erase does not erase the Unit ID locations. Instead, erase all executive memory using steps 1-4 as shown in Table 12-1, and program the Unit ID along with the programming executive. Alternately, use a Row Erase to erase the row containing the Unit ID locations.

6.8 Checksum Computation

Checksums for the dsPIC30F are 16 bits in size. The checksum is to total sum of the following:

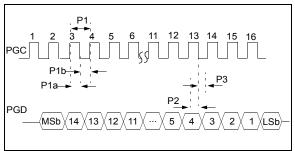
- · Contents of code memory locations
- · Contents of Configuration registers

Table A-1 describes how to calculate the checksum for each device. All memory locations are summed one byte at a time, using only their native data size. More specifically, Configuration and device ID registers are summed by adding the lower two bytes of these locations (the upper byte is ignored), while code memory is summed by adding all three bytes of code memory.

Note: The checksum calculation differs depending on the code-protect setting. Table A-1 describes how to compute the checksum for an unprotected device and a read-protected device. Regardless of the code-protect setting, the Configuration registers can always be read.

7.0 PROGRAMMER – PROGRAMMING EXECUTIVE COMMUNICATION

7.1 Communication Overview


The programmer and programming executive have a master-slave relationship, where the programmer is the master programming device and the programming executive is the slave.

All communication is initiated by the programmer in the form of a command. Only one command at a time can be sent to the programming executive. In turn, the programming executive only sends one response to the programmer after receiving and processing a command. The programming executive command set is described in Section 8.0 "Programming Executive Commands". The response set is described in Section 9.0 "Programming Executive Responses".

7.2 Communication Interface and Protocol

The Enhanced ICSP interface is a 2-wire SPI interface implemented using the PGC and PGD pins. The PGC pin is used as a clock input pin, and the clock source must be provided by the programmer. The PGD pin is used for sending command data to, and receiving response data from, the programming executive. All serial data is transmitted on the falling edge of PGC and latched on the rising edge of PGC. All data transmissions are sent Most Significant bit (MSb) first, using 16-bit mode (see Figure 7-1).

FIGURE 7-1: PROGRAMMING EXECUTIVE SERIAL TIMING

Since a 2-wire SPI interface is used, and data transmissions are bidirectional, a simple protocol is used to control the direction of PGD. When the programmer completes a command transmission, it releases the PGD line and allows the programming executive to drive this line high. The programming executive keeps the PGD line high to indicate that it is processing the command.

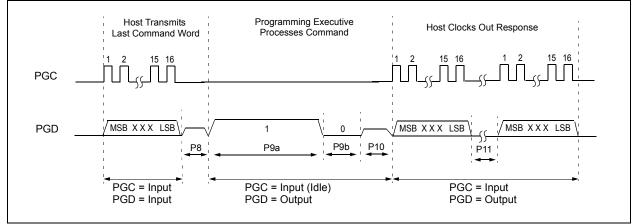
After the programming executive has processed the command, it brings PGD low for 15 μ sec to indicate to the programmer that the response is available to be

clocked out. The programmer can begin to clock out the response 20 μ sec after PGD is brought low, and it must provide the necessary amount of clock pulses to receive the entire response from the programming executive.

Once the entire response is clocked out, the programmer should terminate the clock on PGC until it is time to send another command to the programming executive. This protocol is illustrated in Figure 7-2.

7.3 SPI Rate

In Enhanced ICSP mode, the dsPIC30F operates from the fast internal RC oscillator, which has a nominal frequency of 7.37 MHz. This oscillator frequency yields an effective system clock frequency of 1.84 MHz. Since the SPI module operates in Slave mode, the programmer must limit the SPI clock rate to a frequency no greater than 1 MHz.


Note:	If the programmer provides the SPI with a clock faster than 1 MHz, the behavior of					
	the programming executive will be unpredictable.					

7.4 Time Outs

The programming executive uses no Watchdog Timer or time out for transmitting responses to the programmer. If the programmer does not follow the flow control mechanism using PGC, as described in Section 7.2 "Communication Interface and Protocol", it is possible that the programming executive will behave unexpectedly while trying to send a response to the programmer. Since the programming executive has no time out, it is imperative that the programmer correctly follow the described communication protocol.

As a safety measure, the programmer should use the command time outs identified in Table 8-1. If the command time out expires, the programmer should reset the programming executive and start programming the device again.

FIGURE 7-2: PROGRAMMING EXECUTIVE – PROGRAMMER COMMUNICATION PROTOCOL

dsPIC30F Flash Programming Specification

8.5.3 READP COMMAND

15	12	11	8	7	0
Opc	ode			Length	
			Ν		
Reserved Addr_MSB					
Addr_LS					

Field	Description
Opcode	0x2
Length	0x4
Ν	Number of 24-bit instructions to read (max of 32768)
Reserved	0x0
Addr_MSB	MSB of 24-bit source address
Addr_LS	LS 16 bits of 24-bit source address

The READP command instructs the programming executive to read N 24-bit words of code memory starting from the 24-bit address specified by Addr_MSB and Addr_LS. This command can only be used to read 24-bit data. All data returned in response to this command uses the packed data format described in Section 8.3 "Packed Data Format".

Expected Response (2 + 3 * N/2 words for N even): 0x1200

2 + 3 * N/2 Least significant program memory word 1

Least significant data word N

Expected Response (4 + 3 * (N - 1)/2 words for N odd):

0x12004 + 3 * (N - 1)/2 Least significant program memory word 1

MSB of program memory word N (zero padded)

Note: Reading unimplemented memory will cause the programming executive to reset.

8.5.4 PROGD COMMAND

15	12	11	8	7		0
Орс	ode			L	ength	
	Rese	rved			Addr_MSB	
	Addr_LS					
D_1						
D_2						
			D_1	6		

Field	Description
Opcode	0x4
Length	0x13
Reserved	0x0
Addr_MSB	MSB of 24-bit destination address
Addr_LS	LS 16 bits of 24-bit destination address
D_1	16-bit data word 1
D_2	16-bit data word 2
	16-bit data words 3 through 15
D_16	16-bit data word 16

The PROGD command instructs the programming executive to program one row of data EEPROM. The data to be programmed is specified by the 16 data words (D_1, D_2,..., D_16) and is programmed to the destination address specified by Addr_MSB and Addr_LSB. The destination address should be a multiple of 0x20.

Once the row of data EEPROM has been programmed, the programming executive verifies the programmed data against the data in the command.

Expected Response (2 words):

0x1400 0x0002

Note: Refer to Table 5-3 for data EEPROM size information.

dsPIC30F Flash Programming Specification

8.5.7 ERASEB COMMAND

15 12	11	2	0
Opcode	Length		
	Reserved	M	S

Field	Description
Opcode	0x7
Length	0x2
Reserved	0x0
MS	Select memory to erase: 0x0 = All Code in General Segment 0x1 = All Data EEPROM in General Segment $0x2 = All Code and Data EEPROM inGeneral Segment, interrupt vectors andFGS Configuration register0x3 = Full Chip Erase0x4 = All Code and Data EEPROM inBoot, Secure and General Segments,and FBS, FSS and FGS Configurationregisters0x5 = All Code and Data EEPROM inSecure and General Segments, andFSS and FGS Configuration registers0x6 = All Data EEPROM in$ Boot Segment 0x7 = All Data EEPROM in Secure Segment

The ERASEB command performs a Bulk Erase. The MS field selects the memory to be bulk erased, with options for erasing Code and/or Data EEPROM in individual memory segments.

When Full Chip Erase is selected, the following memory regions are erased:

- All code memory (even if code-protected)
- All data EEPROM
- All code-protect Configuration registers

Only the executive code memory, Unit ID, device ID and Configuration registers that are not code-protected remain intact after a Chip Erase.

Expected Response (2 words):

0x1700 0x0002

> Note: A Full Chip Erase cannot be performed in low-voltage programming systems (VDD less than 4.5 volts). ERASED and ERASEP must be used to erase code memory, executive memory and data memory. Alternatively, individual Segment Erase operations may be performed.

8.5.8 ERASED COMMAND

15	12	11	8	7	0
Opcode				Length	
Num_Rows				Addr_MSB	
Addr_L			LS		

Field	Description
Opcode	0x8
Length	0x3
Num_Rows	Number of rows to erase (max of 128)
Addr_MSB	MSB of 24-bit base address
Addr_LS	LS 16 bits of 24-bit base address

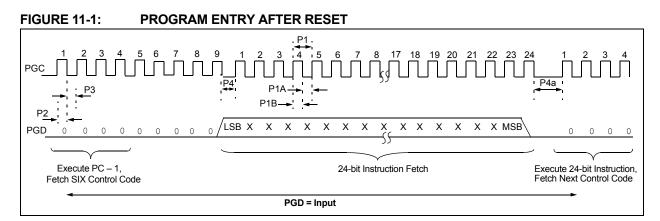
The ERASED command erases the specified number of rows of data EEPROM from the specified base address. The specified base address must be a multiple of 0x20. Since the data EEPROM is mapped to program space, a 24-bit base address must be specified.

After the erase is performed, all targeted bytes of data EEPROM will contain 0xFF.

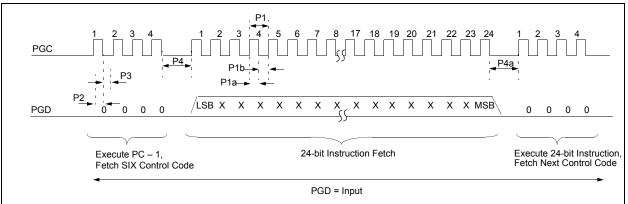
Expected Response (2 words): 0x1800 0x0002

Note: The ERASED command cannot be used to erase the Configuration registers or device ID. Code-protect Configuration registers can only be erased with the ERASEB command, while the device ID is read-only.

Bit Field	Register	Description
DEVID<15:0>	DEVID	Encodes the device ID.
PROC<3:0>	DEVREV	Encodes the process of the device (always read as 0x001).
REV<5:0>	DEVREV	Encodes the major revision number of the device. 000000 = A 000001 = B 000010 = C
DOT<5:0>	DEVREV	Encodes the minor revision number of the device. 000000 = 0 000001 = 1 000010 = 2 000011 = 3
Examples:		
Rev A.1 = 0000 000	0 0000 0001	
Rev A.2 = 0000 000	0 0000 0010	
Rev B.0 = 0000 000	0 0100 0000	
This formula applies to	o all dsPIC30F device	es, with the exception of the following:
 dsPIC30F6010 dsPIC30F6011 dsPIC30F6012 dsPIC30F6013 dsPIC30F6014 		-
Refer to Table 10-1 fo	r the actual revision II	٦


TABLE 10-3: DEVICE ID BITS DESCRIPTION

11.2.2 REGOUT SERIAL INSTRUCTION EXECUTION


The REGOUT control code allows for data to be extracted from the device in ICSP mode. It is used to clock the contents of the VISI register out of the device over the PGD pin. Once the REGOUT control code is received, eight clock cycles are required to process the command. During this time, the CPU is held idle. After these eight cycles, an additional 16 cycles are required to clock the data out (see Figure 11-3).

The REGOUT instruction is unique because the PGD pin is an input when the control code is transmitted to the device. However, once the control code is processed, the PGD pin becomes an output as the VISI register is shifted out. After the contents of the VISI are shifted out, PGD becomes an input again as the state machine holds the CPU idle until the next 4-bit control code is shifted in.

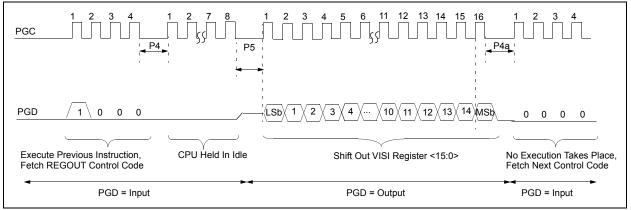

Note: Once the contents of VISI are shifted out, the dsPIC[®] DSC device maintains PGD as an output until the first rising edge of the next clock is received.

TABLE 11-7:SERIAL INSTRUCTION EXECUTION FOR WRITING CONFIGURATION
REGISTERS (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description
Step 6: Write	the Configuration re	gister data to the write latch and increment the write pointer.
0000	BB1B96	TBLWTL W6, [W7++]
0000	000000	NOP
0000	000000	NOP
Step 7: Unloc	ck the NVMCON for	programming.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 8: Initiat	te the write cycle.	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_	-	Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and
		Timing Requirements")
0000	000000	NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
Step 9: Rese	t device internal PC.	
0000	040100	GOTO 0x100
0000	000000	NOP
Step 10: Rep	eat steps 3-9 until al	I 7 Configuration registers are cleared.

11.8 Writing Code Memory

The procedure for writing code memory is similar to the procedure for clearing the Configuration registers, except that 32 instruction words are programmed at a time. To facilitate this operation, working registers W0:W5 are used as temporary holding registers for the data to be programmed.

Table 11-8 shows the ICSP programming details, including the serial pattern with the ICSP command code, which must be transmitted Least Significant bit first using the PGC and PGD pins (see Figure 11-2). In Step 1, the Reset vector is exited. In Step 2, the NVMCON register is initialized for single-panel programming of code memory. In Step 3, the 24-bit starting destination address for programming is loaded into the TBLPAG register and W7 register. The upper byte of the starting destination address is stored to TBLPAG, while the lower 16 bits of the destination address are stored to W7.

To minimize the programming time, the same packed instruction format that the programming executive uses is utilized (Figure 8-2). In Step 4, four packed instruction words are stored to working registers W0:W5 using the MOV instruction and the read pointer W6 is initialized. The contents of W0:W5 holding the packed instruction word data is shown in Figure 11-4.

In Step 5, eight TBLWT instructions are used to copy the data from W0:W5 to the write latches of code memory. Since code memory is programmed 32 instruction words at a time, Steps 4 and 5 are repeated eight times to load all the write latches (Step 6).

After the write latches are loaded, programming is initiated by writing to the NVMKEY and NVMCON registers in Steps 7 and 8. In Step 9, the internal PC is reset to 0x100. This is a precautionary measure to prevent the PC from incrementing into unimplemented memory when large devices are being programmed. Lastly, in Step 10, Steps 2-9 are repeated until all of code memory is programmed.

FIGURE 11-5: PACKED INSTRUCTION WORDS IN W0:W5

	15		8	7		0
W0			lsv	v0		
W1		MSB1			MSB0	
W2			lsv	v1		
W3			lsv	v2		
W4		MSB3			MSB2	
W5			lsv	v3		

Command (Binary)	Data (Hexadecimal)	Description
Step 1: Exit th	e Reset vector.	
0000	040100	GOTO 0x100
0000	040100	GOTO 0x100
0000	000000	NOP
Step 2: Set th	e NVMCON to progr	am 32 instruction words.
0000	24001A	MOV #0x4001, W10
0000	883B0A	MOV W10, NVMCON
Step 3: Initiali	ze the write pointer (W7) for TBLWT instruction.
0000	200xx0	MOV # <destinationaddress23:16>, W0</destinationaddress23:16>
0000	880190	MOV W0, TBLPAG
0000	2xxxx7	MOV # <destinationaddress15:0>, W7</destinationaddress15:0>
Step 4: Initializ	ze the read pointer (W6) and load W0:W5 with the next 4 instruction words to program.
0000	2xxxx0	MOV # <lsw0>, W0</lsw0>
0000	2xxxx1	MOV # <msb1:msb0>, W1</msb1:msb0>
0000	2xxxx2	MOV # <lsw1>, W2</lsw1>
0000	2xxxx3	MOV # <lsw2>, W3</lsw2>
0000	2xxxx4	MOV # <msb3:msb2>, W4</msb3:msb2>
0000	2xxxx5	MOV # <lsw3>, W5</lsw3>

TABLE 11-8: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY

Command (Binary)	Data (Hexadecimal)	Description
	he read pointer (W6)	and load the (next set of) write latches.
0000	EB0300	CLR W6
0000	000000	NOP
0000	BB0BB6	TBLWTL [W6++], [W7]
0000	000000	NOP
0000	000000	NOP
0000	BBDBB6	TBLWTH.B [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BBEBB6	TBLWTH.B [W6++], [++W7]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BB0BB6	TBLWTL [W6++], [W7]
0000	000000	NOP
0000	000000	NOP
0000	BBDBB6	TBLWTH.B [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BBEBB6	TBLWTH.B [W6++], [++W7]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
Step 6: Repe	at steps 4-5 eight tir	nes to load the write latches for 32 instructions.
Step 7: Unloc	ck the NVMCON for	writing.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 8: Initiat	te the write cycle.	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_	_	Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and
		Timing Requirements")
0000	000000	NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #WR
0000	000000	NOP
	000000	NOP
0000	t dovice internal DC	
	i device internal PC.	
Step 9: Rese		
0000 Step 9: Rese	040100 000000	GOTO 0x100 NOP

TABLE 11-8: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY (CONTINUED)

11.9 Writing Data EEPROM

The procedure for writing data EEPROM is very similar to the procedure for writing code memory, except that fewer words are programmed in each operation. When writing data EEPROM, one row of data EEPROM is programmed at a time. Each row consists of sixteen 16-bit data words. Since fewer words are programmed during each operation, only working registers W0:W3 are used as temporary holding registers for the data to be programmed.

Table 11-9 shows the ICSP programming details for writing data EEPROM. Note that a different NVMCON value is required to write to data EEPROM, and that the TBLPAG register is hard-coded to 0x7F (the upper byte address of all locations of data EEPROM).

	OFRIAL INOTRUCTION EVECUTION FOR WRITING RATA FERROM
TABLE 11-9:	SERIAL INSTRUCTION EXECUTION FOR WRITING DATA EEPROM

Command (Binary)	Data (Hexadecimal)	Description
Step 1: Exit th	e Reset vector.	
0000	040100	GOTO 0x100
0000	040100	GOTO 0x100
0000	000000	NOP
Step 2: Set the	e NVMCON to write	16 data words.
0000	24005A	MOV #0x4005, W10
0000	883B0A	MOV W10, NVMCON
Step 3: Initializ	ze the write pointer	W7) for TBLWT instruction.
0000	2007F0	MOV #0x7F, WO
0000	880190	MOV W0, TBLPAG
0000	2xxxx7	MOV # <destinationaddress15:0>, W7</destinationaddress15:0>
Step 4: Load \	W0:W3 with the nex	4 data words to program.
0000	2xxxx0	MOV # <wordo>, WO</wordo>
0000	2xxxx1	MOV # <word1>, W1</word1>
0000	2xxxx2	MOV # <word2>, W2</word2>
0000	2xxxx3	MOV # <word3>, W3</word3>
Step 5: Set the	e read pointer (W6)	and load the (next set of) write latches.
0000	EB0300	CLR W6
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
Step 6: Repea	at steps 4-5 four time	es to load the write latches for 16 data words.

Comman (Binary)		Description
Step 7: Un	lock the NVMCON for	writing.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 8: Init	iate the write cycle.	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_	-	Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and
		Timing Requirements")
0000	000000	NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
Step 9: Re	set device internal PC	
0000	040100	GOTO 0x100
0000	000000	NOP

TABLE 11-9: SERIAL INSTRUCTION EXECUTION FOR WRITING DATA EEPROM (CONTINUED)

11.11 Reading Configuration Memory

The procedure for reading configuration memory is similar to the procedure for reading code memory, except that 16-bit data words are read instead of 24-bit words. Since there are seven Configuration registers, they are read one register at a time. Table 11-11 shows the ICSP programming details for reading all of the configuration memory. Note that the TBLPAG register is hard-coded to 0xF8 (the upper byte address of configuration memory), and the read pointer W6 is initialized to 0x0000.

TABLE 11-11: SERIAL INSTRUCTION EXECUTION FOR READING ALL CONFIGURATION MEMORY

Step 1: Exit the Reset vector. 0000 040100 GOTO 0x100 0000 040100 GOTO 0x100 0000 000000 NOP Step 2: Initialize TBLPAG, and the read pointer (W6) and the write pointer (W7) for TBLRD instruction. 0000 200F80 MOV #0xF8, W0 0000 880190 MOV W0, TBLPAG 0000 EB0380 CLR W6 0000 EB0380 CLR W7 0000 000000 NOP Step 3: Read the Configuration register and write it to the VISI register (located at 0x784). 0000 000000 NOP NOP Step 3: Read the Volfi register using the REGOUT command. NOP 0000 000000 NOP </th <th>Command (Binary)</th> <th>Data (Hexadecimal)</th> <th>Description</th>	Command (Binary)	Data (Hexadecimal)	Description			
0000 040100 GOTO 0x100 0000 NOP Step 2: Initialize TBLPAG, and the read pointer (W6) and the write pointer (W7) for TBLRD instruction. 0000 200F80 MOV #0xF8, W0 0000 880190 MOV w0, TBLPAG 0000 EB0300 CLR W6 0000 EB0380 CLR W7 0000 000000 NOP Step 3: Read the Configuration register and write it to the VISI register (located at 0x784). 0000 00000 NOP Step 3: Read the Configuration register and write it to the VISI register (located at 0x784). 0000 00000 NOP Step 4: Output the VISI register using the REGOUT command. Olick out contents of VISI register 0001 Clock out contents of VISI register Olick out contents of VISI register 00000	Step 1: Exit th	e Reset vector.				
0000 00000 NOP Step 2: Initialize TBLPAG, and the read pointer (W6) and the write pointer (W7) for TBLRD instruction. 0000 200F80 MOV #0xF8, W0 0000 880190 MOV W0, TBLPAG 0000 EB0300 CLR W6 0000 EB0380 CLR W7 0000 00000 NOP NOP Step 3: Read the Configuration register and write it to the VISI register (located at 0x784). 0000 00000 NOP 0000 000000 NOP 00000 NOP Clock out contents of VIS	0000	040100	GOTO 0x100			
Step 2: Initialize TBLPAG, and the read pointer (W6) and the write pointer (W7) for TBLRD instruction. 0000 200F80 MOV #0xF8, W0 0000 880190 MOV W0, TBLPAG 0000 EB0300 CLR W6 0000 EB0380 CLR W7 0000 00000 NOP Step 3: Read the Configuration register and write it to the VISI register (located at 0x784). 0000 00000 NOP NOP 0000 00000 NOP Step 4: Output the VISI register using the REGOUT command. 0001						
0000 200F80 MOV #0xF8, W0 0000 880190 MOV W0, TBLPAG 0000 EB0300 CLR W6 0000 EB0380 CLR W7 0000 000000 NOP NOP Step 3: Read the Configuration register and write it to the VISI register (located at 0x784). 0000 BA0B86 TBLRDL [W6++], [W7] 0000 000000 NOP Step 4: Output the VISI register using the REGOUT command. Olock out contents of VISI register 0000 000000 NOP Step 5: Reset device internal PC. O0000 0000 040100 GOTO 0x100						
0000 880190 MOV W0, TBLPAG 0000 EB0300 CLR W6 0000 EB0380 CLR W7 0000 000000 NOP NOP Step 3: Read the Configuration register and write it to the VISI register (located at 0x784). 0000 BA0BB6 TBLRDL [W6++], [W7] 0000 000000 NOP 0001 CVISI Clock out contents of VISI register 0001 VISI> Clock out contents of VISI register 0000 00000 NOP Step 5: Reset device internal PC. 00000 0000 040100 GOTO 0x100	Step 2: Initializ	ze TBLPAG, and	the read pointer (W6) and the write pointer (W7) for TBLRD instruction.			
0000 EB0300 CLR W6 0000 EB0380 CLR W7 0000 00000 NOP Step 3: Read the Configuration register and write it to the VISI register (located at 0x784). 0000 BA0BB6 TBLRDL [W6++], [W7] 0000 000000 NOP 0001 000000 NOP 0001 <visi> OO0000 Clock out contents of VISI register 0000 000000 NOP Step 5: Reset device internal PC. 0000 0000 040100 GOTO 0x100</visi>	0000	200F80	MOV #0xF8, WO			
0000 0000 EB0380 00000 CLR NOP W7 NOP Step 3: Read Configuration register and write it to the VISI register (located at 0x784). 0000 BA0BB6 TBLRDL [W6++], [W7] 0000 000000 NOP 0000 00000 NOP Step 4: Output te VISI register using the REGOUT command. Clock out contents of VISI register NOP Step 5: Reset Evice internal EV 0000 040100 GOTO 0x100	0000	880190	MOV W0, TBLPAG			
0000 00000 NOP Step 3: Read UCCONFIGURATION register and write it to the VISI register (located at 0x784). 0000 BA0BB6 TBLRDL [W6++], [W7] 0000 000000 NOP 0001 00000 NOP 0001 Clock out contents of VISI register 0000 00000 NOP Step 5: Reset Uniterimaterimaterimaterimation Clock out contents of VISI register 0000 040100 GOTO 0x100	0000	EB0300	CLR W6			
Step 3: Read UP Configuration register and write it to the VISI register (located at 0x784). 0000 BA0BB6 TBLRDL [W6++], [W7] 0000 000000 NOP 0000 000000 NOP 0000 883C20 MOV W0, VISI 0000 000000 NOP 0001 Clock out contents of VISI register 0000 00000 NOP Step 5: Reset device internal PC. 00000 0000 040100 GOTO 0x100	0000	EB0380	CLR W7			
0000 BA0BB6 TBLRDL [W6++], [W7] 0000 000000 NOP 0000 000000 NOP 0000 883C20 MOV W0, VISI 0000 000000 NOP Step 4: Output the VISI register using the REGOUT command. 0001 0001 <visi> Clock out contents of VISI register 0000 000000 NOP Step 5: Reset device internal PC. 0000 040100 GOTO 0x100</visi>	0000	000000	NOP			
0000 00000 NOP 0000 00000 NOP 0000 883C20 MOV W0, VISI 0000 000000 NOP Step 4: Output the VISI register using the REGOUT command. 0001 <visi> Clock out contents of VISI register 0000 000000 NOP</visi>	Step 3: Read	the Configuration	register and write it to the VISI register (located at 0x784).			
0000 00000 NOP 0000 883C20 MOV W0, VISI 0000 000000 NOP Step 4: Output the VISI register using the REGOUT command. 0001 <visi> Clock out contents of VISI register 0000 000000 NOP Step 5: Reset device internal PC. 0000 040100 GOTO 0x100</visi>	0000	BA0BB6	TBLRDL [W6++], [W7]			
0000 883C20 MOV W0, VISI 0000 000000 NOP Step 4: Output the VISI register using the REGOUT command. 0001 <visi> Clock out contents of VISI register 0000 000000 NOP Step 5: Reset device internal PC. 0000 040100 GOTO 0x100</visi>	0000	000000	NOP			
0000 NOP Step 4: Output the VISI register using the REGOUT command. 0001 <visi> Clock out contents of VISI register 0000 000000 NOP Step 5: Reset device internal PC. GOTO 0x100</visi>	0000		NOP			
Step 4: Output the VISI register using the REGOUT command. 0001 <visi> Clock out contents of VISI register 0000 000000 NOP Step 5: Reset device internal PC. 0000 040100 GOTO 0x100</visi>			MOV W0, VISI			
0001 <visi> Clock out contents of VISI register 0000 000000 NOP Step 5: Reset device internal PC. 0000 0000 040100 GOTO 0x100</visi>	0000	000000	NOP			
0000 NOP Step 5: Reset device internal PC. O000 0000 040100 GOTO 0x100	Step 4: Output	t the VISI registe	r using the REGOUT command.			
Step 5: Reset device internal PC. 0000 040100 GOTO 0x100	0001	<visi></visi>	Clock out contents of VISI register			
0000 040100 GOTO 0x100	0000	000000	NOP			
	Step 5: Reset	Step 5: Reset device internal PC.				
	0000	040100	GOTO 0x100			
0000 000000 NOP	0000	000000	NOP			
Step 6: Repeat steps 3-5 six times to read all of configuration memory.	Step 6: Repea					

AC/DC C	HARACTE	ERISTICS	Standard Operating Conditions (unless otherwise stated) Operating Temperature: 25° C is recommended				
Param. No.	Sym	Characteristic	Min	Мах	Units	Conditions	
P9b	TDLY5	Delay between PGD ↓by programming executive to PGD released by programming executive	15	_	μs	—	
P10	TDLY6	Delay between PGD released by programming executive to first PGC ↑ of response	5	_	μs	_	
P11	TDLY7	Delay between clocking out response words	10	—	μs	-	
P12a	TPROG	Row Programming cycle time	1	4	ms	ICSP mode	
P12b	TPROG	Row Programming cycle time	0.8	2.6	ms	Enhanced ICSP mode	
P13a	Tera	Bulk/Row Erase cycle time	1	4	ms	ICSP mode	
P13b	Tera	Bulk/Row Erase cycle time	0.8	2.6	ms	Enhanced ICSP mode	

TABLE 13-1: AC/DC CHARACTERISTICS (CONTINUED)

APPENDIX A: DEVICE-SPECIFIC INFORMATION

A.1 Checksum Computation

The checksum computation is described in **Section 6.8 "Checksum Computation"**. Table A-1 shows how this 16-bit computation can be made for each dsPIC30F device. Computations for read code protection are shown both enabled and disabled. The checksum values assume that the Configuration registers are also erased. However, when code protection is enabled, the value of the FGS register is assumed to be 0x5.

A.2 dsPIC30F5011 and dsPIC30F5013

A.2.1 ICSP PROGRAMMING

The dsPIC30F5011 and dsPIC30F5013 processors require that the FBS and FSS registers be programmed with 0x0000 before the device is chip erased. The steps to perform this action are shown in Table 11-4.

A.2.2 ENHANCED ICSP PROGRAMMING

The dsPIC30F5011 and dsPIC30F5013 processors require that the FBS and FSS registers be programmed with 0x0000 using the PROGC command before the ERASEB command is used to erase the chip.

Device	Read Code Protection	Checksum Computation	Erased Value	Value with 0xAAAAAA at 0x0 and Last Code Address
dsPIC30F2010	Disabled	CFGB+SUM(0:001FFF)	0xD406	0xD208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F2011	Disabled	CFGB+SUM(0:001FFF)	0xD406	0xD208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F2012	Disabled	CFGB+SUM(0:001FFF)	0xD406	0xD208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3010	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3011	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3012	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3013	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3014	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F4011	Disabled	CFGB+SUM(0:007FFF)	0x4406	0x4208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F4012	Disabled	CFGB+SUM(0:007FFF)	0x4406	0x4208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F4013	Disabled	CFGB+SUM(0:007FFF)	0x4406	0x4208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F5011	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404
dsPIC30F5013	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404
dsPIC30F5015	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404

TABLE A-1: CHECKSUM COMPUTATION

Item Description:

SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory)

CFGB = Configuration Block (masked) = Byte sum of ((FOSC&0xC10F) + (FWDT&0x803F) + (FBORPOR&0x87B3) + (FBS&0x310F) + (FSS&0x330F) + (FGS&0x0007) + (FICD&0xC003))

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-636-4

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.