
Microchip Technology - DSPIC30F6013AT-20E/PF Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor dsPIC

Core Size 16-Bit

Speed 20 MIPS

Connectivity CANbus, I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LVD, POR, PWM, WDT

Number of I/O 68

Program Memory Size 132KB (44K x 24)

Program Memory Type FLASH

EEPROM Size 2K x 8

RAM Size 6K x 8

Voltage - Supply (Vcc/Vdd) 2.5V ~ 5.5V

Data Converters A/D 16x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 80-TQFP

Supplier Device Package 80-TQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/dspic30f6013at-20e-pf

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/dspic30f6013at-20e-pf-4430712
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

dsPIC30F Flash Programming Specification
TABLE 5-5: FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F4011/4012 AND
dsPIC30F5011/5013

Bit Field Register Description

FCKSM<1:0> FOSC Clock Switching Mode
1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled

FOS<1:0> FOSC Oscillator Source Selection on POR

FPR<3:0> FOSC Primary Oscillator Mode
1111 = ECIO w/PLL 16X – External Clock mode with 16X PLL. OSC2 pin is I/O
1110 = ECIO w/PLL 8X – External Clock mode with 8X PLL. OSC2 pin is I/O
1101 = ECIO w/PLL 4X – External Clock mode with 4X PLL. OSC2 pin is I/O
1100 = ECIO – External Clock mode. OSC2 pin is I/O
1011 = EC – External Clock mode. OSC2 pin is system clock output (FOSC/4)
1010 = FRC w/PLL 8x – Internal fast RC oscillator with 8x PLL. OSC2 pin is I/O
1001 = ERC – External RC Oscillator mode. OSC2 pin is system clock output

(FOSC/4)
1000 = ERCIO – External RC Oscillator mode. OSC2 pin is I/O
0111 = XT w/PLL 16X – XT Crystal Oscillator mode with 16X PLL
0110 = XT w/PLL 8X – XT Crystal Oscillator mode with 8X PLL
0101 = XT w/PLL 4X – XT Crystal Oscillator mode with 4X PLL
0100 = XT – XT Crystal Oscillator mode (4 MHz-10 MHz crystal)
0011 = FRC w/PLL 16x – Internal fast RC oscillator with 16x PLL. OSC2 pin is I/O
0010 = HS – HS Crystal Oscillator mode (10 MHz-25 MHz crystal)
0001 = FRC w/PLL 4x – Internal fast RC oscillator with 4x PLL. OSC2 pin is I/O
0000 = XTL – XTL Crystal Oscillator mode (200 kHz-4 MHz crystal)

11 = Primary Oscillator
10 = Internal Low-Power RC Oscillator
01 = Internal Fast RC Oscillator
00 = Low-Power 32 kHz Oscillator (Timer1 Oscillator)
DS70102K-page 10 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
FPR<4:0> FOSC Alternate Oscillator Mode (when FOS<2:0> = 011b)
1xxxx = Reserved (do not use)
0111x = Reserved (do not use)
01101 = Reserved (do not use)
01100 = ECIO – External clock. OSC2 pin is I/O
01011 = EC – External clock. OSC2 pin is system clock output (FOSc/4)
01010 = Reserved (do not use)
01001 = ERC – External RC oscillator. OSC2 pin is system clock output (FOSC/4)
01000 = ERCIO – External RC oscillator. OSC2 pin is I/O
00111 = Reserved (do not use)
00110 = Reserved (do not use)
00101 = Reserved (do not use)
00100 = XT – XT crystal oscillator (4 MHz-10 MHz crystal)
00010 = HS – HS crystal oscillator (10 MHz-25 MHz crystal)
00001 = Reserved (do not use)
00000 = XTL – XTL crystal oscillator (200 kHz-4 MHz crystal)

TABLE 5-6: FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F2011/2012,
dsPIC30F3010/3011/3012/3013/3014, dsPIC30F4013, dsPIC30F5015/5016,
dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015 (CONTINUED)

Bit Field Register Description
DS70102K-page 12 © 2010 Microchip Technology Inc.

©
 2010 M

icrochip Technology Inc.
D

S
70102K

-page 17

dsPIC
30F Flash Program

m
ing Specification

TA 12/3013/3014, dsPIC30F4013 AND

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x FPR<4:0>

0x :0> FWPSB<3:0>

0x 0> — — FPWRT<1:0>

0x — Reserved(2)

0x — Reserved(2)

0x — — Reserved(3) GCP GWRP

0x — — — ICS<1:0>

No

TA AND dsPIC30F6015)
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x FPR<4:0>

0x :0> FWPSB<3:0>

0x 0> — — FPWRT<1:0>

0x — BSS<2:0>

0x — SSS<2:0>

0x — — GSS<1:0> GWRP

0x — — — ICS<1:0>

No

BWRP

SWRP
BLE 5-10: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F2011/2012, dsPIC30F3010/3011/30
dsPIC30F5015/5016)

Address Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5

F80000 FOSC FCKSM<1:0> — — — FOS<2:0> — — —

F80002 FWDT FWDTEN — — — — — — — — — FWPSA<1

F80004 FBORPOR MCLREN — — — — PWMPIN(1) HPOL(1) LPOL(1) BOREN — BORV<1:

F80006 FBS — — Reserved(2) — — — Reserved(2) — — —

F80008 FSS — — Reserved(2) — — Reserved(2) — — —

F8000A FGS — — — — — — — — — — —

F8000C FICD BKBUG COE — — — — — — — — —

te 1: On the 2011, 2012, 3012, 3013, 3014 and 4013, these bits are reserved (read as ‘1’ and must be programmed as ‘1’).
2: Reserved bits read as ‘1’ and must be programmed as ‘1’.
3: The FGS<2> bit is a read-only copy of the GCP bit (FGS<1>).

BLE 5-11: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F6010A/6011A/6012A/6013A/6014A
Address Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5

F80000 FOSC FCKSM<1:0> — — — FOS<2:0> — — —

F80002 FWDT FWDTEN — — — — — — — — — FWPSA<1

F80004 FBORPOR MCLREN — — — — PWMPIN(1) HPOL(1) LPOL(1) BOREN — BORV<1:

F80006 FBS — — RBS<1:0> — — — EBS — — —

F80008 FSS — — RSS<1:0> — — ESS<1:0> — — —

F8000A FGS — — — — — — — — — — —

F8000C FICD BKBUG COE — — — — — — — — —

te 1: On the 6011A, 6012A, 6013A and 6014A, these bits are reserved (read as ‘1’ and must be programmed as ‘1’).

dsPIC30F Flash Programming Specification
5.8 Exiting Enhanced ICSP Mode
The Enhanced ICSP mode is exited by removing power
from the device or bringing MCLR to VIL. When normal
user mode is next entered, the program that was stored
using Enhanced ICSP will execute.

FIGURE 5-5: CONFIGURATION BIT PROGRAMMING FLOW

Send PROGC
Command

ConfigAddress = 0xF80000

Is
PROGC Response

PASS?

No

Yes

No

Failure
Report Error

Start

Finish

Yes

Is
ConfigAddress

0xF8000C?

ConfigAddress =
ConfigAddress + 2
© 2010 Microchip Technology Inc. DS70102K-page 19

dsPIC30F Flash Programming Specification
6.6 Configuration Information in the
Hexadecimal File

To allow portability of code, the programmer must read
the Configuration register locations from the
hexadecimal file. If configuration information is not
present in the hexadecimal file, a simple warning
message should be issued by the programmer.
Similarly, while saving a hexadecimal file, all
configuration information must be included. An option
to not include the configuration information can be
provided.

Microchip Technology Inc. feels strongly that this
feature is important for the benefit of the end customer.

6.7 Unit ID
The dsPIC30F devices contain 32 instructions of Unit
ID. These are located at addresses 0x8005C0 through
0x8005FF. The Unit ID can be used for storing product
information such as serial numbers, system
manufacturing dates, manufacturing lot numbers and
other such application-specific information.

A Bulk Erase does not erase the Unit ID locations.
Instead, erase all executive memory using steps 1-4 as
shown in Table 12-1, and program the Unit ID along
with the programming executive. Alternately, use a
Row Erase to erase the row containing the Unit ID
locations.

6.8 Checksum Computation
Checksums for the dsPIC30F are 16 bits in size. The
checksum is to total sum of the following:

• Contents of code memory locations
• Contents of Configuration registers

Table A-1 describes how to calculate the checksum for
each device. All memory locations are summed one
byte at a time, using only their native data size. More
specifically, Configuration and device ID registers are
summed by adding the lower two bytes of these
locations (the upper byte is ignored), while code
memory is summed by adding all three bytes of code
memory.

Note: The checksum calculation differs
depending on the code-protect setting.
Table A-1 describes how to compute the
checksum for an unprotected device and
a read-protected device. Regardless of
the code-protect setting, the Configuration
registers can always be read.

7.0 PROGRAMMER –
PROGRAMMING EXECUTIVE
COMMUNICATION

7.1 Communication Overview
The programmer and programming executive have a
master-slave relationship, where the programmer is
the master programming device and the programming
executive is the slave.

All communication is initiated by the programmer in the
form of a command. Only one command at a time can
be sent to the programming executive. In turn, the
programming executive only sends one response to
the programmer after receiving and processing a
command. The programming executive command set
is described in Section 8.0 “Programming Executive
Commands”. The response set is described in
Section 9.0 “Programming Executive Responses”.

7.2 Communication Interface and
Protocol

The Enhanced ICSP interface is a 2-wire SPI interface
implemented using the PGC and PGD pins. The PGC
pin is used as a clock input pin, and the clock source
must be provided by the programmer. The PGD pin is
used for sending command data to, and receiving
response data from, the programming executive. All
serial data is transmitted on the falling edge of PGC
and latched on the rising edge of PGC. All data
transmissions are sent Most Significant bit (MSb) first,
using 16-bit mode (see Figure 7-1).

FIGURE 7-1: PROGRAMMING
EXECUTIVE SERIAL
TIMING

Since a 2-wire SPI interface is used, and data transmis-
sions are bidirectional, a simple protocol is used to
control the direction of PGD. When the programmer
completes a command transmission, it releases the
PGD line and allows the programming executive to
drive this line high. The programming executive keeps
the PGD line high to indicate that it is processing the
command.

After the programming executive has processed the
command, it brings PGD low for 15 μsec to indicate to
the programmer that the response is available to be

PGC

PGD

1 2 3 11 13 15 161412

LSb14 13 12 11

4 5 6

MSb 123... 45

P2

P3

P1

P1a
P1b
© 2010 Microchip Technology Inc. DS70102K-page 21

dsPIC30F Flash Programming Specification
8.0 PROGRAMMING EXECUTIVE
COMMANDS

8.1 Command Set
The programming executive command set is shown in
Table 8-1. This table contains the opcode, mnemonic,
length, time out and description for each command.
Functional details on each command are provided in
the command descriptions (see Section 8.5
“Command Descriptions”).

8.2 Command Format
All programming executive commands have a general
format consisting of a 16-bit header and any required
data for the command (see Figure 8-1). The 16-bit
header consists of a 4-bit opcode field, which is used to
identify the command, followed by a 12-bit command
length field.

FIGURE 8-1: COMMAND FORMAT

The command opcode must match one of those in the
command set. Any command that is received which
does not match the list in Table 8-1 will return a “NACK”
response (see Section 9.2.1 “Opcode Field”).

The command length is represented in 16-bit words
since the SPI operates in 16-bit mode. The
programming executive uses the Command Length
field to determine the number of words to read from the
SPI port. If the value of this field is incorrect, the
command will not be properly received by the
programming executive.

8.3 Packed Data Format
When 24-bit instruction words are transferred across
the 16-bit SPI interface, they are packed to conserve
space using the format shown in Figure 8-2. This
format minimizes traffic over the SPI and provides the
programming executive with data that is properly
aligned for performing table write operations.

Note: When the number of instruction words
transferred is odd, MSB2 is zero and lsw2
cannot be transmitted.

FIGURE 8-2: PACKED INSTRUCTION
WORD FORMAT

8.4 Programming Executive Error
Handling

The programming executive will “NACK” all
unsupported commands. Additionally, due to the
memory constraints of the programming executive, no
checking is performed on the data contained in the
Programmer command. It is the responsibility of the
programmer to command the programming executive
with valid command arguments, or the programming
operation may fail. Additional information on error
handling is provided in Section 9.2.3 “QE_Code
Field”.

15 12 11 0
Opcode Length

Command Data First Word (if required)
•
•

Command Data Last Word (if required)

15 8 7 0
lsw1

MSB2 MSB1
lsw2

lswx: Least significant 16 bits of instruction word
MSBx: Most Significant Byte of instruction word
© 2010 Microchip Technology Inc. DS70102K-page 23

dsPIC30F Flash Programming Specification
8.5.7 ERASEB COMMAND

15 12 11 2 0
Opcode Length

Reserved MS

Field Description

Opcode 0x7
Length 0x2
Reserved 0x0
MS Select memory to erase:

 0x0 = All Code in General Segment
 0x1 = All Data EEPROM in General
Segment
 0x2 = All Code and Data EEPROM in
General Segment, interrupt vectors and
FGS Configuration register
 0x3 = Full Chip Erase
 0x4 = All Code and Data EEPROM in
Boot, Secure and General Segments,
and FBS, FSS and FGS Configuration
registers
 0x5 = All Code and Data EEPROM in
Secure and General Segments, and
FSS and FGS Configuration registers
 0x6 = All Data EEPROM in Boot
Segment
 0x7 = All Data EEPROM in Secure
Segment

The ERASEB command performs a Bulk Erase. The MS
field selects the memory to be bulk erased, with options
for erasing Code and/or Data EEPROM in individual
memory segments.

When Full Chip Erase is selected, the following
memory regions are erased:

• All code memory (even if code-protected)
• All data EEPROM
• All code-protect Configuration registers

Only the executive code memory, Unit ID, device ID
and Configuration registers that are not code-protected
remain intact after a Chip Erase.

Expected Response (2 words):
0x1700
0x0002

Note: A Full Chip Erase cannot be performed in
low-voltage programming systems (VDD
less than 4.5 volts). ERASED and ERASEP
must be used to erase code memory,
executive memory and data memory.
Alternatively, individual Segment Erase
operations may be performed.

8.5.8 ERASED COMMAND

15 12 11 8 7 0
Opcode Length

Num_Rows Addr_MSB
Addr_LS

Field Description

Opcode 0x8
Length 0x3
Num_Rows Number of rows to erase (max of 128)
Addr_MSB MSB of 24-bit base address
Addr_LS LS 16 bits of 24-bit base address

The ERASED command erases the specified number of
rows of data EEPROM from the specified base
address. The specified base address must be a
multiple of 0x20. Since the data EEPROM is mapped
to program space, a 24-bit base address must be
specified.

After the erase is performed, all targeted bytes of data
EEPROM will contain 0xFF.

Expected Response (2 words):
0x1800
0x0002

Note: The ERASED command cannot be used to
erase the Configuration registers or
device ID. Code-protect Configuration
registers can only be erased with the
ERASEB command, while the device ID is
read-only.
DS70102K-page 28 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
9.2.3 QE_Code FIELD
The QE_Code is a byte in the first word of the
response. This byte is used to return data for query
commands, and error codes for all other commands.

When the programming executive processes one of the
two query commands (QBLANK or QVER), the returned
opcode is always PASS and the QE_Code holds the
query response data. The format of the QE_Code for
both queries is shown in Table 9-3.

TABLE 9-3: QE_Code FOR QUERIES
Query QE_Code

QBLANK 0x0F = Code memory and data EEPROM
are NOT blank
0xF0 = Code memory and data EEPROM
are blank

QVER 0xMN, where programming executive
software version = M.N
(i.e., 0x32 means software version 3.2)

When the programming executive processes any
command other than a Query, the QE_Code
represents an error code. Supported error codes are
shown in Table 9-4. If a command is successfully
processed, the returned QE_Code is set to 0x0, which
indicates that there was no error in the command
processing. If the verify of the programming for the
PROGD, PROGP or PROGC command fails, the QE_Code
is set to 0x1. For all other programming executive
errors, the QE_Code is 0x2.

TABLE 9-4: QE_Code FOR NON-QUERY
COMMANDS

QE_Code Description

0x0 No error
0x1 Verify failed
0x2 Other error

9.2.4 RESPONSE LENGTH
The response length indicates the length of the
programming executive’s response in 16-bit words.
This field includes the 2 words of the response header.

With the exception of the response for the READD and
READP commands, the length of each response is only
2 words.

The response to the READD command is N + 2 words,
where N is the number of words specified in the READD
command.

The response to the READP command uses the packed
instruction word format described in Section 8.3
“Packed Data Format”. When reading an odd number
of program memory words (N odd), the response to the
READP command is (3 • (N + 1)/2 + 2) words. When
reading an even number of program memory words
(N even), the response to the READP command is
(3 • N/2 + 2) words.
© 2010 Microchip Technology Inc. DS70102K-page 31

dsPIC30F Flash Programming Specification
10.0 DEVICE ID
The device ID region is 2 x 16 bits and can be read
using the READD command. This region of memory is
read-only and can also be read when code protection
is enabled.

Table 10-1 shows the device ID for each device,
Table 10-2 shows the device ID registers and Table 10-
3 describes the bit field of each register.

TABLE 10-1: DEVICE IDS

Device DEVID
Silicon Revision

A0 A1 A2 A3 A4 B0 B1 B2

dsPIC30F2010 0x0040 0x1000 0x1001 0x1002 0x1003 0x1004 — — —
dsPIC30F2011 0x0240 — 0x1001 — — — — — —
dsPIC30F2012 0x0241 — 0x1001 — — — — — —
dsPIC30F3010 0x01C0 0x1000 0x1001 0x1002 — — — — —
dsPIC30F3011 0x01C1 0x1000 0x1001 0x1002 — — — — —
dsPIC30F3012 0x00C1 — — — — — 0x1040 0x1041 —
dsPIC30F3013 0x00C3 — — — — — 0x1040 0x1041 —
dsPIC30F3014 0x0160 — 0x1001 0x1002 — — — — —
dsPIC30F4011 0x0101 — 0x1001 0x1002 0x1003 0x1003 — — —
dsPIC30F4012 0x0100 — 0x1001 0x1002 0x1003 0x1003 — — —
dsPIC30F4013 0x0141 — 0x1001 0x1002 — — — — —
dsPIC30F5011 0x0080 — 0x1001 0x1002 0x1003 0x1003 — — —
dsPIC30F5013 0x0081 — 0x1001 0x1002 0x1003 0x1003 — — —
dsPIC30F5015 0x0200 0x1000 — — — — — — —
dsPIC30F5016 0x0201 0x1000 — — — — — — —
dsPIC30F6010 0x0188 — — — — — — 0x1040 0x1042
dsPIC30F6010A 0x0281 — — 0x1002 0x1003 0x1004 — — —
dsPIC30F6011 0x0192 — — — 0x1003 — — 0x1040 0x1042
dsPIC30F6011A 0x02C0 — — 0x1002 — — 0x1040 0x1041 —
dsPIC30F6012 0x0193 — — — 0x1003 — — 0x1040 0x1042
dsPIC30F6012A 0x02C2 — — 0x1002 — — 0x1040 0x1041 —
dsPIC30F6013 0x0197 — — — 0x1003 — — 0x1040 0x1042
dsPIC30F6013A 0x02C1 — — 0x1002 — — 0x1040 0x1041 —
dsPIC30F6014 0x0198 — — — 0x1003 — — 0x1040 0x1042
dsPIC30F6014A 0x02C3 — — 0x1002 — — 0x1040 0x1041 —
dsPIC30F6015 0x0280 — — 0x1002 0x1003 0x1004 — — —

TABLE 10-2: dsPIC30F DEVICE ID REGISTERS

Address Name
Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0xFF0000 DEVID DEVID<15:0>
0xFF0002 DEVREV PROC<3:0> REV<5:0> DOT<5:0>
DS70102K-page 32 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
TABLE 10-3: DEVICE ID BITS DESCRIPTION
Bit Field Register Description

DEVID<15:0> DEVID Encodes the device ID.
PROC<3:0> DEVREV Encodes the process of the device (always read as 0x001).
REV<5:0> DEVREV Encodes the major revision number of the device.

000000 = A
000001 = B
000010 = C

DOT<5:0> DEVREV Encodes the minor revision number of the device.
000000 = 0
000001 = 1
000010 = 2
000011 = 3

Examples:

Rev A.1 = 0000 0000 0000 0001

Rev A.2 = 0000 0000 0000 0010

Rev B.0 = 0000 0000 0100 0000

This formula applies to all dsPIC30F devices, with the exception of the following:

Refer to Table 10-1 for the actual revision IDs.

• dsPIC30F6010
• dsPIC30F6011
• dsPIC30F6012
• dsPIC30F6013
• dsPIC30F6014
© 2010 Microchip Technology Inc. DS70102K-page 33

dsPIC30F Flash Programming Specification
11.3 Entering ICSP Mode
The ICSP mode is entered by holding PGC and PGD
low, raising MCLR/VPP to VIHH (high voltage), and then
performing additional steps as illustrated in Figure 11-
4.

FIGURE 11-4: ENTERING ICSP™ MODE

Note 1: The sequence that places the device into
ICSP mode places all unused I/O pins to
the high-impedance state.

2: Once ICSP mode is entered, the PC is
set to 0x0 (the Reset vector).

3: Before leaving the Reset vector, execute
two GOTO instructions, followed by a
single NOP instruction must be executed.

MCLR/VPP

VDD

PGD

PGC

Execute 2 NOP instructions

0 0 0 0

4 msP6 4 ms

VIHH

10 μs
DS70102K-page 36 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
11.4 Flash Memory Programming in
ICSP Mode

Programming in ICSP mode is described in
Section 11.4.1 “Programming Operations” through
Section 11.4.3 “Starting and Stopping a Program-
ming Cycle”. Step-by-step procedures are described
in Section 11.5 “Erasing Program Memory in
Normal-Voltage Systems” through Section 11.13
“Reading the Application ID Word”. All programming
operations must use serial execution, as described in
Section 11.2 “ICSP Operation”.

11.4.1 PROGRAMMING OPERATIONS
Flash memory write and erase operations are
controlled by the NVMCON register. Programming is
performed by setting NVMCON to select the type of
erase operation (Table 11-2) or write operation
(Table 11-3), writing a key sequence to enable the
programming and initiating the programming by setting
the WR control bit, NVMCON<15>.

In ICSP mode, all programming operations are
externally timed. An external 2 ms delay must be used
between setting the WR control bit and clearing the WR
control bit to complete the programming operation.

TABLE 11-2: NVMCON ERASE
OPERATIONS

NVMCON
Value Erase Operation

0x407F Erase all code memory, data memory
(does not erase UNIT ID).

0x4075 Erase 1 row (16 words) of data
EEPROM.

0x4074 Erase 1 word of data EEPROM.
0x4072 Erase all executive memory.
0x4071 Erase 1 row (32 instruction words)

from 1 panel of code memory.
0x406E Erase Boot Secure and General

Segments, then erase FBS, FSS and
FGS configuration registers.

0x4066 Erase all Data EEPROM allocated to
Boot Segment.

0x405E Erase Secure and General Segments,
then erase FSS and FGS configuration
registers.

0x4056 Erase all Data EEPROM allocated to
Secure Segment.

0x404E Erase General Segment, then erase
FGS configuration register.

0x4046 Erase all Data EEPROM allocated to
General Segment.

TABLE 11-3: NVMCON WRITE
OPERATIONS

NVMCON
Value Write Operation

0x4008 Write 1 word to configuration
memory.

0x4005 Write 1 row (16 words) to data memory.
0x4004 Write 1 word to data memory.
0x4001 Write 1 row (32 instruction words) into

1 panel of program memory.

11.4.2 UNLOCKING NVMCON FOR
PROGRAMMING

Writes to the WR bit (NVMCON<15>) are locked to
prevent accidental programming from taking place.
Writing a key sequence to the NVMKEY register
unlocks the WR bit and allows it to be written to. The
unlock sequence is performed as follows:

MOV #0x55, W8
MOV W8, NVMKEY
MOV #0xAA, W9
MOV W9, NVMKEY

Note: Any working register, or working register
pair, can be used to write the unlock
sequence.

11.4.3 STARTING AND STOPPING A
PROGRAMMING CYCLE

Once the unlock key sequence has been written to the
NVMKEY register, the WR bit (NVMCON<15>) is used
to start and stop an erase or write cycle. Setting the WR
bit initiates the programming cycle. Clearing the WR bit
terminates the programming cycle.

All erase and write cycles must be externally timed. An
external delay must be used between setting and
clearing the WR bit. Starting and stopping a
programming cycle is performed as follows:

BSET NVMCON, #WR
<Wait 2 ms>
BCLR NVMCON, #WR

11.5 Erasing Program Memory in
Normal-Voltage Systems

The procedure for erasing program memory (all code
memory, data memory, executive memory and code-
protect bits) consists of setting NVMCON to 0x407F,
unlocking NVMCON for erasing and then executing the
programming cycle. This method of bulk erasing pro-
gram memory only works for systems where VDD is
between 4.5 volts and 5.5 volts. The method for erasing
program memory for systems with a lower VDD (3.0
volts-4.5 volts) is described in Section 6.1 “Erasing
Memory”.
© 2010 Microchip Technology Inc. DS70102K-page 37

dsPIC30F Flash Programming Specification
11.6 Erasing Program Memory in
Low-Voltage Systems

The procedure for erasing program memory (all code
memory and data memory) in low-voltage systems
(with VDD between 2.5 volts and 4.5 volts) is quite
different than the procedure for erasing program
memory in normal-voltage systems. Instead of using a
Bulk Erase operation, each region of memory must be
individually erased by row. Namely, all of the code
memory, executive memory and data memory must be
erased one row at a time. This procedure is detailed in
Table 11-5.

Due to security restrictions, the FBS, FSS and FGS
register cannot be erased in low-voltage systems.
Once any bits in the FGS register are programmed to
‘0’, they can only be set back to ‘1’ by performing a Bulk
Erase in a normal-voltage system. Alternatively, a Seg-
ment Erase operation can be performed instead of a
Bulk Erase.

Normal-voltage systems can also be used to erase
program memory as shown in Table 11-5. However,
since this method is more time-consuming and does
not clear the code-protect bits, it is not recommended.

Note: Program memory must be erased before
writing any data to program memory.

TABLE 11-5: SERIAL INSTRUCTION EXECUTION FOR ERASING PROGRAM MEMORY
(EITHER IN LOW-VOLTAGE OR NORMAL-VOLTAGE SYSTEMS)

Command
(Binary)

Data
(Hexadecimal) Description

Step 1: Exit the Reset vector.
0000
0000
0000

040100
040100
000000

GOTO 0x100
GOTO 0x100
NOP

Step 2: Initialize NVMADR and NVMADRU to erase code memory and initialize W7 for row address updates.
0000
0000
0000
0000

EB0300
883B16
883B26
200407

CLR W6
MOV W6, NVMADR
MOV W6, NVMADRU
MOV #0x40, W7

Step 3: Set NVMCON to erase 1 row of code memory.
0000
0000

24071A
883B0A

MOV #0x4071, W10
MOV W10, NVMCON

Step 4: Unlock the NVMCON to erase 1 row of code memory.
0000
0000
0000
0000

200558
883B38
200AA9
883B39

MOV #0x55, W8
MOV W8, NVMKEY
MOV #0xAA, W9
MOV W9, NVMKEY

Step 5: Initiate the erase cycle.
0000
0000
0000
—

0000
0000
0000
0000
0000

A8E761
000000
000000
—

000000
000000
A9E761
000000
000000

BSET NVMCON, #WR
NOP
NOP
Externally time ‘P13a’ ms (see Section 13.0 “AC/DC Characteristics and
Timing Requirements”)
NOP
NOP
BCLR NVMCON, #WR
NOP
NOP
DS70102K-page 40 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
11.7 Writing Configuration Memory
The FOSC, FWDT, FBORPOR and FICD registers are
not erasable. It is recommended that all Configuration
registers be set to a default value after erasing program
memory. The FWDT, FBORPOR and FICD registers
can be set to a default all ‘1’s value by programming
0xFFFF to each register. Since these registers contain
unimplemented bits that read as ‘0’ the default values
shown in Table 11-6 will be read instead of 0xFFFF.
The recommended default FOSC value is 0xC100,
which selects the FRC clock oscillator setting.

The FGS, FBS and FSS Configuration registers are
special since they enable code protection for the
device. For security purposes, once any bit in these
registers is programmed to ‘0’ (to enable some code
protection feature), it can only be set back to ‘1’ by
performing a Bulk Erase or Segment Erase as
described in Section 11.5 “Erasing Program
Memory in Normal-Voltage Systems”. Programming
these bits from a ‘0’ to ‘1’ is not possible, but they may
be programmed from a ‘1’ to a ‘0’ to enable code
protection.

Table 11-7 shows the ICSP programming details for
clearing the Configuration registers. In Step 1, the
Reset vector is exited. In Step 2, the write pointer (W7)
is loaded with 0x0000, which is the original destination
address (in TBLPAG 0xF8 of program memory). In
Step 3, the NVMCON is set to program one Configura-

tion register. In Step 4, the TBLPAG register is
initialized, to 0xF8, for writing to the Configuration
registers. In Step 5, the value to write to the each
Configuration register (0xFFFF) is loaded to W6. In
Step 6, the Configuration register data is written to the
write latch using the TBLWTL instruction. In Steps 7 and
8, the NVMCON is unlocked for programming and the
programming cycle is initiated, as described in
Section 11.4 “Flash Memory Programming in ICSP
Mode”. In Step 9, the internal PC is set to 0x100 as a
safety measure to prevent the PC from incrementing
into unimplemented memory. Lastly, Steps 3-9 are
repeated six times until all seven Configuration
registers are cleared.

TABLE 11-6: DEFAULT CONFIGURATION
REGISTER VALUES

Address Register Default Value

0xF80000 FOSC 0xC100
0xF80002 FWDT 0x803F
0xF80004 FBORPOR 0x87B3
0xF80006 FBS 0x310F
0xF80008 FSS 0x330F
0xF8000A FGS 0x0007
0xF8000C FICD 0xC003

TABLE 11-7: SERIAL INSTRUCTION EXECUTION FOR WRITING CONFIGURATION
REGISTERS

Command
(Binary)

Data
(Hexadecimal) Description

Step 1: Exit the Reset vector.
0000
0000
0000

040100
040100
000000

GOTO 0x100
GOTO 0x100
NOP

Step 2: Initialize the write pointer (W7) for the TBLWT instruction.
0000 200007 MOV #0x0000, W7

Step 3: Set the NVMCON to program 1 Configuration register.
0000
0000

24008A
883B0A

MOV #0x4008, W10
MOV W10, NVMCON

Step 4: Initialize the TBLPAG register.
0000
0000

200F80
880190

MOV #0xF8, W0
MOV W0, TBLPAG

Step 5: Load the Configuration register data to W6.
0000
0000

2xxxx0
000000

MOV #<CONFIG_VALUE>, W0
NOP
© 2010 Microchip Technology Inc. DS70102K-page 43

dsPIC30F Flash Programming Specification
Step 6: Write the Configuration register data to the write latch and increment the write pointer.
0000
0000
0000

BB1B96
000000
000000

TBLWTL W6, [W7++]
NOP
NOP

Step 7: Unlock the NVMCON for programming.
0000
0000
0000
0000

200558
883B38
200AA9
883B39

MOV #0x55, W8
MOV W8, NVMKEY
MOV #0xAA, W9
MOV W9, NVMKEY

Step 8: Initiate the write cycle.
0000
0000
0000
—

0000
0000
0000
0000
0000

A8E761
000000
000000
—

000000
000000
A9E761
000000
000000

BSET NVMCON, #WR
NOP
NOP
Externally time ‘P12a’ ms (see Section 13.0 “AC/DC Characteristics and
Timing Requirements”)
NOP
NOP
BCLR NVMCON, #WR
NOP
NOP

Step 9: Reset device internal PC.
0000
0000

040100
000000

GOTO 0x100
NOP

Step 10: Repeat steps 3-9 until all 7 Configuration registers are cleared.

TABLE 11-7: SERIAL INSTRUCTION EXECUTION FOR WRITING CONFIGURATION
REGISTERS (CONTINUED)

Command
(Binary)

Data
(Hexadecimal) Description
DS70102K-page 44 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
Step 5: Set the read pointer (W6) and load the (next set of) write latches.
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

EB0300
000000
BB0BB6
000000
000000
BBDBB6
000000
000000
BBEBB6
000000
000000
BB1BB6
000000
000000
BB0BB6
000000
000000
BBDBB6
000000
000000
BBEBB6
000000
000000
BB1BB6
000000
000000

CLR W6
NOP
TBLWTL [W6++], [W7]
NOP
NOP
TBLWTH.B [W6++], [W7++]
NOP
NOP
TBLWTH.B [W6++], [++W7]
NOP
NOP
TBLWTL [W6++], [W7++]
NOP
NOP
TBLWTL [W6++], [W7]
NOP
NOP
TBLWTH.B [W6++], [W7++]
NOP
NOP
TBLWTH.B [W6++], [++W7]
NOP
NOP
TBLWTL [W6++], [W7++]
NOP
NOP

Step 6: Repeat steps 4-5 eight times to load the write latches for 32 instructions.
Step 7: Unlock the NVMCON for writing.
0000
0000
0000
0000

200558
883B38
200AA9
883B39

MOV #0x55, W8
MOV W8, NVMKEY
MOV #0xAA, W9
MOV W9, NVMKEY

Step 8: Initiate the write cycle.
0000
0000
0000
—

0000
0000
0000
0000
0000

A8E761
000000
000000
—

000000
000000
A9E761
000000
000000

BSET NVMCON, #WR
NOP
NOP
Externally time ‘P12a’ ms (see Section 13.0 “AC/DC Characteristics and
Timing Requirements”)
NOP
NOP
BCLR NVMCON, #WR
NOP
NOP

Step 9: Reset device internal PC.
0000
0000

040100
000000

GOTO 0x100
NOP

Step 10: Repeat steps 2-9 until all code memory is programmed.

TABLE 11-8: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY (CONTINUED)
Command
(Binary)

Data
(Hexadecimal) Description
DS70102K-page 46 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
Step 7: Unlock the NVMCON for writing.
0000
0000
0000
0000

200558
883B38
200AA9
883B39

MOV #0x55, W8
MOV W8, NVMKEY
MOV #0xAA, W9
MOV W9, NVMKEY

Step 8: Initiate the write cycle.
0000
0000
0000
—

0000
0000
0000
0000
0000

A8E761
000000
000000
—

000000
000000
A9E761
000000
000000

BSET NVMCON, #WR
NOP
NOP
Externally time ‘P12a’ ms (see Section 13.0 “AC/DC Characteristics and
Timing Requirements”)
NOP
NOP
BCLR NVMCON, #WR
NOP
NOP

Step 9: Reset device internal PC.
0000
0000

040100
000000

GOTO 0x100
NOP

Step 10: Repeat steps 2-9 until all data memory is programmed.

TABLE 11-9: SERIAL INSTRUCTION EXECUTION FOR WRITING DATA EEPROM (CONTINUED)
Command

(Binary)
Data

(Hexadecimal) Description
DS70102K-page 48 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
11.10 Reading Code Memory
Reading from code memory is performed by executing
a series of TBLRD instructions and clocking out the data
using the REGOUT command. To ensure efficient
execution and facilitate verification on the programmer,
four instruction words are read from the device at a
time.

Table 11-10 shows the ICSP programming details for
reading code memory. In Step 1, the Reset vector is
exited. In Step 2, the 24-bit starting source address for
reading is loaded into the TBLPAG and W6 registers.
The upper byte of the starting source address is stored
to TBLPAG, while the lower 16 bits of the source
address are stored to W6.

To minimize the reading time, the packed instruction
word format that was utilized for writing is also used for
reading (see Figure 11-5). In Step 3, the write pointer
W7 is initialized, and four instruction words are read
from code memory and stored to working registers
W0:W5. In Step 4, the four instruction words are
clocked out of the device from the VISI register using
the REGOUT command. In Step 5, the internal PC is
reset to 0x100, as a precautionary measure, to prevent
the PC from incrementing into unimplemented memory
when large devices are being read. Lastly, in Step 6,
Steps 3-5 are repeated until the desired amount of
code memory is read.

TABLE 11-10: SERIAL INSTRUCTION EXECUTION FOR READING CODE MEMORY
Command
(Binary)

Data
(Hexadecimal) Description

Step 1: Exit the Reset vector.
0000
0000
0000

040100
040100
000000

GOTO 0x100
GOTO 0x100
NOP

Step 2: Initialize TBLPAG and the read pointer (W6) for TBLRD instruction.
0000
0000
0000

200xx0
880190
2xxxx6

MOV #<SourceAddress23:16>, W0
MOV W0, TBLPAG
MOV #<SourceAddress15:0>, W6

Step 3: Initialize the write pointer (W7) and store the next four locations of code memory to W0:W5.
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

EB0380
000000
BA1B96
000000
000000
BADBB6
000000
000000
BADBD6
000000
000000
BA1BB6
000000
000000
BA1B96
000000
000000
BADBB6
000000
000000
BADBD6
000000
000000
BA0BB6
000000
000000

CLR W7
NOP
TBLRDL [W6], [W7++]
NOP
NOP
TBLRDH.B [W6++], [W7++]
NOP
NOP
TBLRDH.B [++W6], [W7++]
NOP
NOP
TBLRDL [W6++], [W7++]
NOP
NOP
TBLRDL [W6], [W7++]
NOP
NOP
TBLRDH.B [W6++], [W7++]
NOP
NOP
TBLRDH.B [++W6], [W7++]
NOP
NOP
TBLRDL [W6++], [W7]
NOP
NOP
© 2010 Microchip Technology Inc. DS70102K-page 49

dsPIC30F Flash Programming Specification
11.12 Reading Data Memory
The procedure for reading data memory is similar to
that of reading code memory, except that 16-bit data
words are read instead of 24-bit words. Since less data
is read in each operation, only working registers
W0:W3 are used as temporary holding registers for the
data to be read.

Table 11-12 shows the ICSP programming details for
reading data memory. Note that the TBLPAG register is
hard-coded to 0x7F (the upper byte address of all
locations of data memory).

TABLE 11-12: SERIAL INSTRUCTION EXECUTION FOR READING DATA MEMORY
Command
(Binary)

Data
(Hexadecimal) Description

Step 1: Exit the Reset vector.
0000
0000
0000

040100
040100
000000

GOTO 0x100
GOTO 0x100
NOP

Step 2: Initialize TBLPAG and the read pointer (W6) for TBLRD instruction.
0000
0000
0000

2007F0
880190
2xxxx6

MOV #0x7F, W0
MOV W0, TBLPAG
MOV #<SourceAddress15:0>, W6

Step 3: Initialize the write pointer (W7) and store the next four locations of code memory to W0:W5.
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

EB0380
000000
BA1BB6
000000
000000
BA1BB6
000000
000000
BA1BB6
000000
000000
BA1BB6
000000
000000

CLR W7
NOP
TBLRDL [W6++], [W7++]
NOP
NOP
TBLRDL [W6++], [W7++]
NOP
NOP
TBLRDL [W6++], [W7++]
NOP
NOP
TBLRDL [W6++], [W7++]
NOP
NOP

Step 4: Output W0:W5 using the VISI register and REGOUT command.
0000
0000
0001
0000
0000
0000
0001
0000
0000
0000
0001
0000
0000
0000
0001
0000

883C20
000000
<VISI>
000000
883C21
000000
<VISI>
000000
883C22
000000
<VISI>
000000
883C23
000000
<VISI>
000000

MOV W0, VISI
NOP
Clock out contents of VISI register
NOP
MOV W1, VISI
NOP
Clock out contents of VISI register
NOP
MOV W2, VISI
NOP
Clock out contents of VISI register
NOP
MOV W3, VISI
NOP
Clock out contents of VISI register
NOP

Step 5: Reset device internal PC.
0000
0000

040100
000000

GOTO 0x100
NOP

Step 6: Repeat steps 3-5 until all desired data memory is read.
DS70102K-page 52 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
Step 8: Set the read pointer (W6) and load the (next four write) latches.
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

EB0300
000000
BB0BB6
000000
000000
BBDBB6
000000
000000
BBEBB6
000000
000000
BB1BB6
000000
000000
BB0BB6
000000
000000
BBDBB6
000000
000000
BBEBB6
000000
000000
BB1BB6
000000
000000

CLR W6
NOP
TBLWTL [W6++], [W7]
NOP
NOP
TBLWTH.B [W6++], [W7++]
NOP
NOP
TBLWTH.B [W6++], [++W7]
NOP
NOP
TBLWTL [W6++], [W7++]
NOP
NOP
TBLWTL [W6++], [W7]
NOP
NOP
TBLWTH.B [W6++], [W7++]
NOP
NOP
TBLWTH.B [W6++], [++W7]
NOP
NOP
TBLWTL [W6++], [W7++]
NOP
NOP

Step 9: Repeat Steps 7-8 eight times to load the write latches for the 32 instructions.
Step 10: Unlock the NVMCON for programming.
0000
0000
0000
0000

200558
883B38
200AA9
883B39

MOV #0x55, W8
MOV W8, NVMKEY
MOV #0xAA, W9
MOV W9, NVMKEY

Step 11: Initiate the programming cycle.
0000
0000
0000
—

0000
0000
0000
0000
0000

A8E761
000000
000000
—

000000
000000
A9E761
000000
000000

BSET NVMCON, #15
NOP
NOP
Externally time ‘P12a’ ms (see Section 13.0 “AC/DC Characteristics and
Timing Requirements”)
NOP
NOP
BCLR NVMCON, #15
NOP
NOP

Step 12: Reset the device internal PC.
0000
0000

040100
000000

GOTO 0x100
NOP

Step 13: Repeat Steps 7-12 until all 23 rows of executive memory are programmed.

TABLE 12-1: PROGRAMMING THE PROGRAMMING EXECUTIVE (CONTINUED)
Command
(Binary)

Data
(Hexadecimal) Description
© 2010 Microchip Technology Inc. DS70102K-page 55

