
Microchip Technology - DSPIC30F6014AT-20E/PT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor dsPIC

Core Size 16-Bit

Speed 20 MIPS

Connectivity CANbus, I²C, SPI, UART/USART

Peripherals AC'97, Brown-out Detect/Reset, I²S, LVD, POR, PWM, WDT

Number of I/O 68

Program Memory Size 144KB (48K x 24)

Program Memory Type FLASH

EEPROM Size 4K x 8

RAM Size 8K x 8

Voltage - Supply (Vcc/Vdd) 2.5V ~ 5.5V

Data Converters A/D 16x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 80-TQFP

Supplier Device Package 80-TQFP (12x12)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/dspic30f6014at-20e-pt

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/dspic30f6014at-20e-pt-4429427
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

dsPIC30F Flash Programming Specification
EBS FBS Boot Segment Data EEPROM Code Protection (only present in dsPIC30F5011/
5013/6010A/6011A/6012A/6013A/6014A/6015)
1 = No Data EEPROM is reserved for Boot Segment
0 = 128 bytes of Data EEPROM are reserved for Boot Segment in dsPIC30F5011/

5013, and 256 bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015
BSS<2:0> FBS Boot Segment Program Memory Code Protection (only present in

dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015)
111 = No Boot Segment
110 = Standard security; Small-sized Boot Program Flash

[Boot Segment starts after BS and ends at 0x0003FF]
101 = Standard security; Medium-sized Boot Program Flash

[Boot Segment starts after BS and ends at 0x000FFF]
100 = Standard security; Large-sized Boot Program Flash

[Boot Segment starts after BS and ends at 0x001FF]
011 = No Boot Segment
010 = High security; Small-sized Boot Program Flash

[Boot Segment starts after BS and ends at 0x0003FF]
001 = High security; Medium-sized Boot Program Flash

[Boot Segment starts after BS and ends at 0x000FFF]
000 = High security; Large-sized Boot Program Flash

[Boot Segment starts after BS and ends at 0x001FFF]
BWRP FBS Boot Segment Program Memory Write Protection (only present in

dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015)
1 = Boot Segment program memory is not write-protected
0 = Boot Segment program memory is write-protected

RSS<1:0> FSS Secure Segment Data RAM Code Protection (only present in dsPIC30F5011/
5013/6010A/6011A/6012A/6013A/6014A/6015)
11 = No Data RAM is reserved for Secure Segment
10 = Small-sized Secure RAM

[(256 – N) bytes of RAM are reserved for Secure Segment]
01 = Medium-sized Secure RAM

[(768 – N) bytes of RAM are reserved for Secure Segment in dsPIC30F5011/
5013, and (2048 – N) bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/
6015]

00 = Large-sized Secure RAM
[(1024 – N) bytes of RAM are reserved for Secure Segment in dsPIC30F5011/
5013, and (4096 – N) bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/
6015]
where N = Number of bytes of RAM reserved for Boot Sector.

ESS<1:0> FSS Secure Segment Data EEPROM Code Protection (only present in
dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015)
11 = No Data EEPROM is reserved for Secure Segment
10 = Small-sized Secure Data EEPROM

[(128 – N) bytes of Data EEPROM are reserved for Secure Segment in
dsPIC30F5011/5013, and (256 – N) bytes in dsPIC30F6010A/6011A/6012A/
6013A/6014A/6015]

01 = Medium-sized Secure Data EEPROM
[(256 – N) bytes of Data EEPROM are reserved for Secure Segment in
dsPIC30F5011/5013, and (512 – N) bytes in dsPIC30F6010A/6011A/6012A/
6013A/6014A/6015]

00 = Large-sized Secure Data EEPROM
[(512 – N) bytes of Data EEPROM are reserved for Secure Segment in
dsPIC30F5011/5013, (1024 – N) bytes in dsPIC30F6011A/6013A, and (2048 –
N) bytes in dsPIC30F6010A/6012A/6014A/6015]
where N = Number of bytes of Data EEPROM reserved for Boot Sector.

TABLE 5-7: CONFIGURATION BITS DESCRIPTION (CONTINUED)
Bit Field Register Description
DS70102K-page 14 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
SSS<2:0> FSS Secure Segment Program Memory Code Protection (only present in
dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015)
111 = No Secure Segment
110 = Standard security; Small-sized Secure Program Flash

[Secure Segment starts after BS and ends at 0x001FFF]
101 = Standard security; Medium-sized Secure Program Flash

[Secure Segment starts after BS and ends at 0x003FFF]
100 = Standard security; Large-sized Secure Program Flash

[Secure Segment starts after BS and ends at 0x007FFF]
011 = No Secure Segment
010 = High security; Small-sized Secure Program Flash

[Secure Segment starts after BS and ends at 0x001FFF]
001 = High security; Medium-sized Secure Program Flash

[Secure Segment starts after BS and ends at 0x003FFF]
000 = High security; Large-sized Secure Program Flash

[Secure Segment starts after BS and ends at 0x007FFF]
SWRP FSS Secure Segment Program Memory Write Protection (only present in

dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015)
1 = Secure Segment program memory is not write-protected
0 = Secure program memory is write-protected

GSS<1:0> FGS General Segment Program Memory Code Protection (only present in
dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015)
11 = Code protection is disabled
10 = Standard security code protection is enabled
0x = High security code protection is enabled

GCP FGS General Segment Program Memory Code Protection (present in all devices
except dsPIC30F5011/5013/6010A/6011A/6012A/6013A/6014A/6015)
1 = General Segment program memory is not code-protected
0 = General Segment program memory is code-protected

GWRP FGS General Segment Program Memory Write Protection
1 = General Segment program memory is not write-protected
0 = General Segment program memory is write-protected

BKBUG FICD Debugger/Emulator Enable
1 = Device will reset into Operational mode
0 = Device will reset into Debug/Emulation mode

COE FICD Debugger/Emulator Enable
1 = Device will reset into Operational mode
0 = Device will reset into Clip-on Emulation mode

ICS<1:0> FICD ICD Communication Channel Select
11 = Communicate on PGC/EMUC and PGD/EMUD
10 = Communicate on EMUC1 and EMUD1
01 = Communicate on EMUC2 and EMUD2
00 = Communicate on EMUC3 and EMUD3

RESERVED FBS, FSS, FGS Reserved (read as ‘1’, write as ‘1’)
— All Unimplemented (read as ‘0’, write as ‘0’)

TABLE 5-7: CONFIGURATION BITS DESCRIPTION (CONTINUED)
Bit Field Register Description
© 2010 Microchip Technology Inc. DS70102K-page 15

dsPIC30F Flash Programming Specification
5.7.2 PROGRAMMING METHODOLOGY
System operation Configuration bits are inherently
different than all other memory cells. Unlike code
memory, data EEPROM and code-protect
Configuration bits, the system operation bits cannot be
erased. If the chip is erased with the ERASEB
command, the system-operation bits retain their
previous value. Consequently, you should make no
assumption about the value of the system operation
bits. They should always be programmed to their
desired setting.

Configuration bits are programmed as a single word at
a time using the PROGC command. The PROGC
command specifies the configuration data and
Configuration register address. When Configuration
bits are programmed, any unimplemented bits must be
programmed with a ‘0’, and any reserved bits must be
programmed with a ‘1’.

Four PROGC commands are required to program all the
Configuration bits. Figure 5-5 illustrates the flowchart of
Configuration bit programming.

Note: If the General Code Segment Code
Protect (GCP) bit is programmed to ‘0’,
code memory is code-protected and can-
not be read. Code memory must
be verified before enabling read protec-
tion. See Section 5.7.4 “Code-Protect
Configuration Bits” for more information
about code-protect Configuration bits.

5.7.3 PROGRAMMING VERIFICATION
Once the Configuration bits are programmed, the
contents of memory should be verified to ensure that
the programming was successful. Verification requires
the Configuration bits to be read back and compared
against the copy held in the programmer’s buffer. The
READD command reads back the programmed
Configuration bits and verifies whether the
programming was successful.

Any unimplemented Configuration bits are read-only
and read as ‘0’.

5.7.4 CODE-PROTECT CONFIGURATION
BITS

The FBS, FSS and FGS Configuration registers are
special Configuration registers that control the size and
level of code protection for the Boot Segment, Secure
Segment and General Segment, respectively. For each
segment, two main forms of code protection are
provided. One form prevents code memory from being
written (write protection), while the other prevents code
memory from being read (read protection).

The BWRP, SWRP and GWRP bits control write
protection; and BSS<2:0>, SSS<2:0> and GSS<1:0>
bits control read protection. The Chip Erase ERASEB
command sets all the code protection bits to ‘1’, which
allows the device to be programmed.

When write protection is enabled, any programming
operation to code memory will fail. When read
protection is enabled, any read from code memory will
cause a ‘0x0’ to be read, regardless of the actual
contents of code memory. Since the programming
executive always verifies what it programs, attempting
to program code memory with read protection enabled
will also result in failure.

It is imperative that all code protection bits are ‘1’ while
the device is being programmed and verified. Only after
the device is programmed and verified should any of
the above bits be programmed to ‘0’ (see Section 5.7
“Configuration Bits Programming”).

In addition to code memory protection, parts of data
EEPROM and/or data RAM can be configured to be
accessible only by code resident in the Boot Segment
and/or Secure Segment. The sizes of these “reserved”
sections are user-configurable, using the EBS,
RBS<1:0>, ESS<1:0> and RSS<1:0> bits.

Note 1: All bits in the FBS, FSS and FGS
Configuration registers can only be
programmed to a value of ‘0’. ERASEB is
the only way to reprogram code-protect
bits from ON (‘0’) to OFF (‘1’).

2: If any of the code-protect bits in FBS,
FSS, or FGS are clear, the entire device
must be erased before it can be
reprogrammed.
DS70102K-page 18 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
6.0 OTHER PROGRAMMING
FEATURES

6.1 Erasing Memory
Memory is erased by using an ERASEB, ERASED or
ERASEP command, as detailed in Section 8.5
“Command Descriptions”. Code memory can be
erased by row using ERASEP. Data EEPROM can be
erased by row using ERASED. When memory is erased,
the affected memory locations are set to ‘1’s.

ERASEB provides several Bulk Erase options.
Performing a Chip Erase with the ERASEB command
clears all code memory, data EEPROM and code
protection registers. Alternatively, ERASEB can be used
to selectively erase either all code memory or data
EEPROM. Erase options are summarized in Table 6-1.

TABLE 6-1: ERASE OPTIONS
Command Affected Region

ERASEB Entire chip(1) or all code memory or all
data EEPROM, or erase by segment

ERASED Specified rows of data EEPROM
ERASEP(2) Specified rows of code memory
Note 1: The system operation Configuration

registers and device ID registers are not
erasable.

2: ERASEP cannot be used to erase code-
protect Configuration bits. These bits must
be erased using ERASEB.

6.2 Modifying Memory
Instead of bulk-erasing the device before
programming, it is possible that you may want to modify
only a section of an already programmed device. In this
situation, Chip Erase is not a realistic option.

Instead, you can erase selective rows of code memory
and data EEPROM using ERASEP and ERASED,
respectively. You can then reprogram the modified
rows with the PROGP and PROGD command pairs. In
these cases, when code memory is programmed,
single-panel programming must be specified in the
PROGP command.

For modification of Advanced Code Protection bits for
a particular segment, the entire chip must first be
erased with the ERASEB command. Alternatively, on
devices that support Advanced Security, individual
segments (code and/or data EEPROM) may be
erased, by suitably changing the MS (Memory Select)

field in the ERASEB command. The code-protect
Configuration bits can then be reprogrammed using the
PROGC command.

Note: If read or write code protection is enabled
for a segment, no modifications can be
made to that segment until code
protection is disabled. Code protection
can only be disabled by performing a Chip
Erase or by performing a Segment Erase
operation for the required segment.

6.3 Reading Memory
The READD command reads the data EEPROM,
Configuration bits and device ID of the device. This
command only returns 16-bit data and operates on
16-bit registers. READD can be used to return the
entire contents of data EEPROM.

The READP command reads the code memory of the
device. This command only returns 24-bit data packed
as described in Section 8.3 “Packed Data Format”.
READP can be used to read up to 32K instruction words
of code memory.

Note: Reading an unimplemented memory
location causes the programming
executive to reset. All READD and READP
commands must specify only valid
memory locations.

6.4 Programming Executive Software
Version

At times, it may be necessary to determine the version
of programming executive stored in executive memory.
The QVER command performs this function. See
Section 8.5.11 “QVER Command” for more details
about this command.

6.5 Data EEPROM Information in the
Hexadecimal File

To allow portability of code, the programmer must read
the data EEPROM information from the hexadecimal
file. If data EEPROM information is not present, a
simple warning message should be issued by the
programmer. Similarly, when saving a hexadecimal file,
all data EEPROM information must be included. An
option to not include the data EEPROM information can
be provided.

Microchip Technology Inc. believes that this feature is
important for the benefit of the end customer.
DS70102K-page 20 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
TABLE 8-1: PROGRAMMING EXECUTIVE COMMAND SET

Opcode Mnemonic
Length
(16-bit
words)

Time Out Description

0x0 SCHECK 1 1 ms Sanity check.
0x1 READD 4 1 ms/row Read N 16-bit words of data EEPROM, Configuration registers or

device ID starting from specified address.
0x2 READP 4 1 ms/row Read N 24-bit instruction words of code memory starting from

specified address.
0x3 Reserved N/A N/A This command is reserved. It will return a NACK.
0x4 PROGD(2) 19 5 ms Program one row of data EEPROM at the specified address, then

verify.
0x5 PROGP(1) 51 5 ms Program one row of code memory at the specified address, then

verify.
0x6 PROGC 4 5 ms Write byte or 16-bit word to specified Configuration register.
0x7 ERASEB 2 5 ms Bulk Erase (entire code memory or data EEPROM), or erase by

segment.
0x8 ERASED(2) 3 5 ms/row Erase rows of data EEPROM from specified address.
0x9 ERASEP(1) 3 5 ms/row Erase rows of code memory from specified address.
0xA QBLANK 3 300 ms Query if the code memory and data EEPROM are blank.
0xB QVER 1 1 ms Query the programming executive software version.
Note 1: One row of code memory consists of (32) 24-bit words. Refer to Table 5-2 for device-specific information.

2: One row of data EEPROM consists of (16) 16-bit words. Refer to Table 5-3 for device-specific information.
DS70102K-page 24 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
9.2.3 QE_Code FIELD
The QE_Code is a byte in the first word of the
response. This byte is used to return data for query
commands, and error codes for all other commands.

When the programming executive processes one of the
two query commands (QBLANK or QVER), the returned
opcode is always PASS and the QE_Code holds the
query response data. The format of the QE_Code for
both queries is shown in Table 9-3.

TABLE 9-3: QE_Code FOR QUERIES
Query QE_Code

QBLANK 0x0F = Code memory and data EEPROM
are NOT blank
0xF0 = Code memory and data EEPROM
are blank

QVER 0xMN, where programming executive
software version = M.N
(i.e., 0x32 means software version 3.2)

When the programming executive processes any
command other than a Query, the QE_Code
represents an error code. Supported error codes are
shown in Table 9-4. If a command is successfully
processed, the returned QE_Code is set to 0x0, which
indicates that there was no error in the command
processing. If the verify of the programming for the
PROGD, PROGP or PROGC command fails, the QE_Code
is set to 0x1. For all other programming executive
errors, the QE_Code is 0x2.

TABLE 9-4: QE_Code FOR NON-QUERY
COMMANDS

QE_Code Description

0x0 No error
0x1 Verify failed
0x2 Other error

9.2.4 RESPONSE LENGTH
The response length indicates the length of the
programming executive’s response in 16-bit words.
This field includes the 2 words of the response header.

With the exception of the response for the READD and
READP commands, the length of each response is only
2 words.

The response to the READD command is N + 2 words,
where N is the number of words specified in the READD
command.

The response to the READP command uses the packed
instruction word format described in Section 8.3
“Packed Data Format”. When reading an odd number
of program memory words (N odd), the response to the
READP command is (3 • (N + 1)/2 + 2) words. When
reading an even number of program memory words
(N even), the response to the READP command is
(3 • N/2 + 2) words.
© 2010 Microchip Technology Inc. DS70102K-page 31

dsPIC30F Flash Programming Specification
10.0 DEVICE ID
The device ID region is 2 x 16 bits and can be read
using the READD command. This region of memory is
read-only and can also be read when code protection
is enabled.

Table 10-1 shows the device ID for each device,
Table 10-2 shows the device ID registers and Table 10-
3 describes the bit field of each register.

TABLE 10-1: DEVICE IDS

Device DEVID
Silicon Revision

A0 A1 A2 A3 A4 B0 B1 B2

dsPIC30F2010 0x0040 0x1000 0x1001 0x1002 0x1003 0x1004 — — —
dsPIC30F2011 0x0240 — 0x1001 — — — — — —
dsPIC30F2012 0x0241 — 0x1001 — — — — — —
dsPIC30F3010 0x01C0 0x1000 0x1001 0x1002 — — — — —
dsPIC30F3011 0x01C1 0x1000 0x1001 0x1002 — — — — —
dsPIC30F3012 0x00C1 — — — — — 0x1040 0x1041 —
dsPIC30F3013 0x00C3 — — — — — 0x1040 0x1041 —
dsPIC30F3014 0x0160 — 0x1001 0x1002 — — — — —
dsPIC30F4011 0x0101 — 0x1001 0x1002 0x1003 0x1003 — — —
dsPIC30F4012 0x0100 — 0x1001 0x1002 0x1003 0x1003 — — —
dsPIC30F4013 0x0141 — 0x1001 0x1002 — — — — —
dsPIC30F5011 0x0080 — 0x1001 0x1002 0x1003 0x1003 — — —
dsPIC30F5013 0x0081 — 0x1001 0x1002 0x1003 0x1003 — — —
dsPIC30F5015 0x0200 0x1000 — — — — — — —
dsPIC30F5016 0x0201 0x1000 — — — — — — —
dsPIC30F6010 0x0188 — — — — — — 0x1040 0x1042
dsPIC30F6010A 0x0281 — — 0x1002 0x1003 0x1004 — — —
dsPIC30F6011 0x0192 — — — 0x1003 — — 0x1040 0x1042
dsPIC30F6011A 0x02C0 — — 0x1002 — — 0x1040 0x1041 —
dsPIC30F6012 0x0193 — — — 0x1003 — — 0x1040 0x1042
dsPIC30F6012A 0x02C2 — — 0x1002 — — 0x1040 0x1041 —
dsPIC30F6013 0x0197 — — — 0x1003 — — 0x1040 0x1042
dsPIC30F6013A 0x02C1 — — 0x1002 — — 0x1040 0x1041 —
dsPIC30F6014 0x0198 — — — 0x1003 — — 0x1040 0x1042
dsPIC30F6014A 0x02C3 — — 0x1002 — — 0x1040 0x1041 —
dsPIC30F6015 0x0280 — — 0x1002 0x1003 0x1004 — — —

TABLE 10-2: dsPIC30F DEVICE ID REGISTERS

Address Name
Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0xFF0000 DEVID DEVID<15:0>
0xFF0002 DEVREV PROC<3:0> REV<5:0> DOT<5:0>
DS70102K-page 32 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
TABLE 10-3: DEVICE ID BITS DESCRIPTION
Bit Field Register Description

DEVID<15:0> DEVID Encodes the device ID.
PROC<3:0> DEVREV Encodes the process of the device (always read as 0x001).
REV<5:0> DEVREV Encodes the major revision number of the device.

000000 = A
000001 = B
000010 = C

DOT<5:0> DEVREV Encodes the minor revision number of the device.
000000 = 0
000001 = 1
000010 = 2
000011 = 3

Examples:

Rev A.1 = 0000 0000 0000 0001

Rev A.2 = 0000 0000 0000 0010

Rev B.0 = 0000 0000 0100 0000

This formula applies to all dsPIC30F devices, with the exception of the following:

Refer to Table 10-1 for the actual revision IDs.

• dsPIC30F6010
• dsPIC30F6011
• dsPIC30F6012
• dsPIC30F6013
• dsPIC30F6014
© 2010 Microchip Technology Inc. DS70102K-page 33

dsPIC30F Flash Programming Specification
11.4 Flash Memory Programming in
ICSP Mode

Programming in ICSP mode is described in
Section 11.4.1 “Programming Operations” through
Section 11.4.3 “Starting and Stopping a Program-
ming Cycle”. Step-by-step procedures are described
in Section 11.5 “Erasing Program Memory in
Normal-Voltage Systems” through Section 11.13
“Reading the Application ID Word”. All programming
operations must use serial execution, as described in
Section 11.2 “ICSP Operation”.

11.4.1 PROGRAMMING OPERATIONS
Flash memory write and erase operations are
controlled by the NVMCON register. Programming is
performed by setting NVMCON to select the type of
erase operation (Table 11-2) or write operation
(Table 11-3), writing a key sequence to enable the
programming and initiating the programming by setting
the WR control bit, NVMCON<15>.

In ICSP mode, all programming operations are
externally timed. An external 2 ms delay must be used
between setting the WR control bit and clearing the WR
control bit to complete the programming operation.

TABLE 11-2: NVMCON ERASE
OPERATIONS

NVMCON
Value Erase Operation

0x407F Erase all code memory, data memory
(does not erase UNIT ID).

0x4075 Erase 1 row (16 words) of data
EEPROM.

0x4074 Erase 1 word of data EEPROM.
0x4072 Erase all executive memory.
0x4071 Erase 1 row (32 instruction words)

from 1 panel of code memory.
0x406E Erase Boot Secure and General

Segments, then erase FBS, FSS and
FGS configuration registers.

0x4066 Erase all Data EEPROM allocated to
Boot Segment.

0x405E Erase Secure and General Segments,
then erase FSS and FGS configuration
registers.

0x4056 Erase all Data EEPROM allocated to
Secure Segment.

0x404E Erase General Segment, then erase
FGS configuration register.

0x4046 Erase all Data EEPROM allocated to
General Segment.

TABLE 11-3: NVMCON WRITE
OPERATIONS

NVMCON
Value Write Operation

0x4008 Write 1 word to configuration
memory.

0x4005 Write 1 row (16 words) to data memory.
0x4004 Write 1 word to data memory.
0x4001 Write 1 row (32 instruction words) into

1 panel of program memory.

11.4.2 UNLOCKING NVMCON FOR
PROGRAMMING

Writes to the WR bit (NVMCON<15>) are locked to
prevent accidental programming from taking place.
Writing a key sequence to the NVMKEY register
unlocks the WR bit and allows it to be written to. The
unlock sequence is performed as follows:

MOV #0x55, W8
MOV W8, NVMKEY
MOV #0xAA, W9
MOV W9, NVMKEY

Note: Any working register, or working register
pair, can be used to write the unlock
sequence.

11.4.3 STARTING AND STOPPING A
PROGRAMMING CYCLE

Once the unlock key sequence has been written to the
NVMKEY register, the WR bit (NVMCON<15>) is used
to start and stop an erase or write cycle. Setting the WR
bit initiates the programming cycle. Clearing the WR bit
terminates the programming cycle.

All erase and write cycles must be externally timed. An
external delay must be used between setting and
clearing the WR bit. Starting and stopping a
programming cycle is performed as follows:

BSET NVMCON, #WR
<Wait 2 ms>
BCLR NVMCON, #WR

11.5 Erasing Program Memory in
Normal-Voltage Systems

The procedure for erasing program memory (all code
memory, data memory, executive memory and code-
protect bits) consists of setting NVMCON to 0x407F,
unlocking NVMCON for erasing and then executing the
programming cycle. This method of bulk erasing pro-
gram memory only works for systems where VDD is
between 4.5 volts and 5.5 volts. The method for erasing
program memory for systems with a lower VDD (3.0
volts-4.5 volts) is described in Section 6.1 “Erasing
Memory”.
© 2010 Microchip Technology Inc. DS70102K-page 37

dsPIC30F Flash Programming Specification
0000
0000
0000
0000

200558
883B38
200AA9
883B39

MOV #0x55, W8
MOV W8, NVMKEY
MOV #0xAA, W9
MOV W9, NVMKEY

Step 11: Initiate the erase cycle.
0000
0000
0000
—

0000
0000
0000
0000
0000

A8E761
000000
000000
—

000000
000000
A9E761
000000
000000

BSET NVMCON, #WR
NOP
NOP
Externally time ‘P13a’ ms (see Section 13.0 “AC/DC Characteristics and
Timing Requirements”)
NOP
NOP
BCLR NVMCON, #WR
NOP
NOP

TABLE 11-4: SERIAL INSTRUCTION EXECUTION FOR BULK ERASING PROGRAM MEMORY
(ONLY IN NORMAL-VOLTAGE SYSTEMS) (CONTINUED)

Command
(Binary)

Data
(Hexadecimal) Description

Note 1: Steps 2-8 are only required for the dsPIC30F5011/5013 devices. These steps may be skipped for all other
devices in the dsPIC30F family.
© 2010 Microchip Technology Inc. DS70102K-page 39

dsPIC30F Flash Programming Specification
11.7 Writing Configuration Memory
The FOSC, FWDT, FBORPOR and FICD registers are
not erasable. It is recommended that all Configuration
registers be set to a default value after erasing program
memory. The FWDT, FBORPOR and FICD registers
can be set to a default all ‘1’s value by programming
0xFFFF to each register. Since these registers contain
unimplemented bits that read as ‘0’ the default values
shown in Table 11-6 will be read instead of 0xFFFF.
The recommended default FOSC value is 0xC100,
which selects the FRC clock oscillator setting.

The FGS, FBS and FSS Configuration registers are
special since they enable code protection for the
device. For security purposes, once any bit in these
registers is programmed to ‘0’ (to enable some code
protection feature), it can only be set back to ‘1’ by
performing a Bulk Erase or Segment Erase as
described in Section 11.5 “Erasing Program
Memory in Normal-Voltage Systems”. Programming
these bits from a ‘0’ to ‘1’ is not possible, but they may
be programmed from a ‘1’ to a ‘0’ to enable code
protection.

Table 11-7 shows the ICSP programming details for
clearing the Configuration registers. In Step 1, the
Reset vector is exited. In Step 2, the write pointer (W7)
is loaded with 0x0000, which is the original destination
address (in TBLPAG 0xF8 of program memory). In
Step 3, the NVMCON is set to program one Configura-

tion register. In Step 4, the TBLPAG register is
initialized, to 0xF8, for writing to the Configuration
registers. In Step 5, the value to write to the each
Configuration register (0xFFFF) is loaded to W6. In
Step 6, the Configuration register data is written to the
write latch using the TBLWTL instruction. In Steps 7 and
8, the NVMCON is unlocked for programming and the
programming cycle is initiated, as described in
Section 11.4 “Flash Memory Programming in ICSP
Mode”. In Step 9, the internal PC is set to 0x100 as a
safety measure to prevent the PC from incrementing
into unimplemented memory. Lastly, Steps 3-9 are
repeated six times until all seven Configuration
registers are cleared.

TABLE 11-6: DEFAULT CONFIGURATION
REGISTER VALUES

Address Register Default Value

0xF80000 FOSC 0xC100
0xF80002 FWDT 0x803F
0xF80004 FBORPOR 0x87B3
0xF80006 FBS 0x310F
0xF80008 FSS 0x330F
0xF8000A FGS 0x0007
0xF8000C FICD 0xC003

TABLE 11-7: SERIAL INSTRUCTION EXECUTION FOR WRITING CONFIGURATION
REGISTERS

Command
(Binary)

Data
(Hexadecimal) Description

Step 1: Exit the Reset vector.
0000
0000
0000

040100
040100
000000

GOTO 0x100
GOTO 0x100
NOP

Step 2: Initialize the write pointer (W7) for the TBLWT instruction.
0000 200007 MOV #0x0000, W7

Step 3: Set the NVMCON to program 1 Configuration register.
0000
0000

24008A
883B0A

MOV #0x4008, W10
MOV W10, NVMCON

Step 4: Initialize the TBLPAG register.
0000
0000

200F80
880190

MOV #0xF8, W0
MOV W0, TBLPAG

Step 5: Load the Configuration register data to W6.
0000
0000

2xxxx0
000000

MOV #<CONFIG_VALUE>, W0
NOP
© 2010 Microchip Technology Inc. DS70102K-page 43

dsPIC30F Flash Programming Specification
Step 6: Write the Configuration register data to the write latch and increment the write pointer.
0000
0000
0000

BB1B96
000000
000000

TBLWTL W6, [W7++]
NOP
NOP

Step 7: Unlock the NVMCON for programming.
0000
0000
0000
0000

200558
883B38
200AA9
883B39

MOV #0x55, W8
MOV W8, NVMKEY
MOV #0xAA, W9
MOV W9, NVMKEY

Step 8: Initiate the write cycle.
0000
0000
0000
—

0000
0000
0000
0000
0000

A8E761
000000
000000
—

000000
000000
A9E761
000000
000000

BSET NVMCON, #WR
NOP
NOP
Externally time ‘P12a’ ms (see Section 13.0 “AC/DC Characteristics and
Timing Requirements”)
NOP
NOP
BCLR NVMCON, #WR
NOP
NOP

Step 9: Reset device internal PC.
0000
0000

040100
000000

GOTO 0x100
NOP

Step 10: Repeat steps 3-9 until all 7 Configuration registers are cleared.

TABLE 11-7: SERIAL INSTRUCTION EXECUTION FOR WRITING CONFIGURATION
REGISTERS (CONTINUED)

Command
(Binary)

Data
(Hexadecimal) Description
DS70102K-page 44 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
11.8 Writing Code Memory
The procedure for writing code memory is similar to the
procedure for clearing the Configuration registers,
except that 32 instruction words are programmed at a
time. To facilitate this operation, working registers
W0:W5 are used as temporary holding registers for the
data to be programmed.

Table 11-8 shows the ICSP programming details,
including the serial pattern with the ICSP command
code, which must be transmitted Least Significant bit
first using the PGC and PGD pins (see Figure 11-2). In
Step 1, the Reset vector is exited. In Step 2, the
NVMCON register is initialized for single-panel
programming of code memory. In Step 3, the 24-bit
starting destination address for programming is loaded
into the TBLPAG register and W7 register. The upper
byte of the starting destination address is stored to
TBLPAG, while the lower 16 bits of the destination
address are stored to W7.

To minimize the programming time, the same packed
instruction format that the programming executive uses
is utilized (Figure 8-2). In Step 4, four packed
instruction words are stored to working registers
W0:W5 using the MOV instruction and the read pointer
W6 is initialized. The contents of W0:W5 holding the
packed instruction word data is shown in Figure 11-4.

In Step 5, eight TBLWT instructions are used to copy the
data from W0:W5 to the write latches of code memory.
Since code memory is programmed 32 instruction
words at a time, Steps 4 and 5 are repeated eight times
to load all the write latches (Step 6).

After the write latches are loaded, programming is
initiated by writing to the NVMKEY and NVMCON
registers in Steps 7 and 8. In Step 9, the internal PC is
reset to 0x100. This is a precautionary measure to
prevent the PC from incrementing into unimplemented
memory when large devices are being programmed.
Lastly, in Step 10, Steps 2-9 are repeated until all of
code memory is programmed.

FIGURE 11-5: PACKED INSTRUCTION
WORDS IN W0:W5

15 8 7 0

W0 lsw0
W1 MSB1 MSB0
W2 lsw1
W3 lsw2
W4 MSB3 MSB2
W5 lsw3

TABLE 11-8: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY
Command
(Binary)

Data
(Hexadecimal) Description

Step 1: Exit the Reset vector.
0000
0000
0000

040100
040100
000000

GOTO 0x100
GOTO 0x100
NOP

Step 2: Set the NVMCON to program 32 instruction words.
0000
0000

24001A
883B0A

MOV #0x4001, W10
MOV W10, NVMCON

Step 3: Initialize the write pointer (W7) for TBLWT instruction.
0000
0000
0000

200xx0
880190
2xxxx7

MOV #<DestinationAddress23:16>, W0
MOV W0, TBLPAG
MOV #<DestinationAddress15:0>, W7

Step 4: Initialize the read pointer (W6) and load W0:W5 with the next 4 instruction words to program.
0000
0000
0000
0000
0000
0000

2xxxx0
2xxxx1
2xxxx2
2xxxx3
2xxxx4
2xxxx5

MOV #<LSW0>, W0
MOV #<MSB1:MSB0>, W1
MOV #<LSW1>, W2
MOV #<LSW2>, W3
MOV #<MSB3:MSB2>, W4
MOV #<LSW3>, W5
© 2010 Microchip Technology Inc. DS70102K-page 45

dsPIC30F Flash Programming Specification
Step 4: Output W0:W5 using the VISI register and REGOUT command.
0000
0000
0001
0000
0000
0000
0001
0000
0000
0000
0001
0000
0000
0000
0001
0000
0000
0000
0001
0000
0000
0000
0001
0000

883C20
000000
<VISI>
000000
883C21
000000
<VISI>
000000
883C22
000000
<VISI>
000000
883C23
000000
<VISI>
000000
883C24
000000
<VISI>
000000
883C25
000000
<VISI>
000000

MOV W0, VISI
NOP
Clock out contents of VISI register
NOP
MOV W1, VISI
NOP
Clock out contents of VISI register
NOP
MOV W2, VISI
NOP
Clock out contents of VISI register
NOP
MOV W3, VISI
NOP
Clock out contents of VISI register
NOP
MOV W4, VISI
NOP
Clock out contents of VISI register
NOP
MOV W5, VISI
NOP
Clock out contents of VISI register
NOP

Step 5: Reset the device internal PC.
0000
0000

040100
000000

GOTO 0x100
NOP

Step 6: Repeat steps 3-5 until all desired code memory is read.

TABLE 11-10: SERIAL INSTRUCTION EXECUTION FOR READING CODE MEMORY (CONTINUED)
Command
(Binary)

Data
(Hexadecimal) Description
DS70102K-page 50 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
11.12 Reading Data Memory
The procedure for reading data memory is similar to
that of reading code memory, except that 16-bit data
words are read instead of 24-bit words. Since less data
is read in each operation, only working registers
W0:W3 are used as temporary holding registers for the
data to be read.

Table 11-12 shows the ICSP programming details for
reading data memory. Note that the TBLPAG register is
hard-coded to 0x7F (the upper byte address of all
locations of data memory).

TABLE 11-12: SERIAL INSTRUCTION EXECUTION FOR READING DATA MEMORY
Command
(Binary)

Data
(Hexadecimal) Description

Step 1: Exit the Reset vector.
0000
0000
0000

040100
040100
000000

GOTO 0x100
GOTO 0x100
NOP

Step 2: Initialize TBLPAG and the read pointer (W6) for TBLRD instruction.
0000
0000
0000

2007F0
880190
2xxxx6

MOV #0x7F, W0
MOV W0, TBLPAG
MOV #<SourceAddress15:0>, W6

Step 3: Initialize the write pointer (W7) and store the next four locations of code memory to W0:W5.
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

EB0380
000000
BA1BB6
000000
000000
BA1BB6
000000
000000
BA1BB6
000000
000000
BA1BB6
000000
000000

CLR W7
NOP
TBLRDL [W6++], [W7++]
NOP
NOP
TBLRDL [W6++], [W7++]
NOP
NOP
TBLRDL [W6++], [W7++]
NOP
NOP
TBLRDL [W6++], [W7++]
NOP
NOP

Step 4: Output W0:W5 using the VISI register and REGOUT command.
0000
0000
0001
0000
0000
0000
0001
0000
0000
0000
0001
0000
0000
0000
0001
0000

883C20
000000
<VISI>
000000
883C21
000000
<VISI>
000000
883C22
000000
<VISI>
000000
883C23
000000
<VISI>
000000

MOV W0, VISI
NOP
Clock out contents of VISI register
NOP
MOV W1, VISI
NOP
Clock out contents of VISI register
NOP
MOV W2, VISI
NOP
Clock out contents of VISI register
NOP
MOV W3, VISI
NOP
Clock out contents of VISI register
NOP

Step 5: Reset device internal PC.
0000
0000

040100
000000

GOTO 0x100
NOP

Step 6: Repeat steps 3-5 until all desired data memory is read.
DS70102K-page 52 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
11.13 Reading the Application ID Word
The application ID word is stored at address 0x8005BE
in executive code memory. To read this memory
location, you must use the SIX control code to move
this program memory location to the VISI register. The
REGOUT control code must then be used to clock the
contents of the VISI register out of the device. The
corresponding control and instruction codes that must
be serially transmitted to the device to perform this
operation are shown in Table 11-13.

Once the programmer has clocked-out the application
ID word, it must be inspected. If the application ID has
the value 0xBB, the programming executive is resident
in memory and the device can be programmed using
the mechanism described in Section 5.0 “Device
Programming”. However, if the application ID has any
other value, the programming executive is not resident
in memory. It must be loaded to memory before the
device can be programmed. The procedure for loading
the programming executive to the memory is described
in Section 12.0 “Programming the Programming
Executive to Memory”.

11.14 Exiting ICSP Mode
After confirming that the programming executive is
resident in memory, or loading the programming
executive, ICSP mode is exited by removing power to
the device or bringing MCLR to VIL. Programming can
then take place by following the procedure outlined in
Section 5.0 “Device Programming”.

TABLE 11-13: SERIAL INSTRUCTION EXECUTION FOR READING THE APPLICATION ID WORD
Command
(Binary)

Data
(Hexadecimal) Description

Step 1: Exit the Reset vector.
0000
0000
0000

040100
040100
000000

GOTO 0x100
GOTO 0x100
NOP

Step 2: Initialize TBLPAG and the read pointer (W0) for TBLRD instruction.
0000
0000
0000
0000
0000
0000
0000
0000

200800
880190
205BE0
207841
000000
BA0890
000000
000000

MOV #0x80, W0
MOV W0, TBLPAG
MOV #0x5BE, W0
MOV VISI, W1
NOP
TBLRDL [W0], [W1]
NOP
NOP

Step 3: Output the VISI register using the REGOUT command.
0001
0000

<VISI>
000000

Clock out contents of the VISI register
NOP
© 2010 Microchip Technology Inc. DS70102K-page 53

dsPIC30F Flash Programming Specification
Step 4: Output W0:W5 using the VISI register and REGOUT command.
0000
0000
0001
0000
0000
0001
0000
0000
0001
0000
0000
0001
0000
0000
0001
0000
0000
0001

883C20
000000
—
883C21
000000
—
883C22
000000
—
883C23
000000
—
883C24
000000
—
883C25
000000
—

MOV W0, VISI
NOP
Clock out contents of VISI register
MOV W1, VISI
NOP
Clock out contents of VISI register
MOV W2, VISI
NOP
Clock out contents of VISI register
MOV W3, VISI
NOP
Clock out contents of VISI register
MOV W4, VISI
NOP
Clock out contents of VISI register
MOV W5, VISI
NOP
Clock out contents of VISI register

Step 5: Reset the device internal PC.
0000
0000

040100
000000

GOTO 0x100
NOP

Step 6: Repeat Steps 3-5 until all 736 instruction words of executive memory are read.

TABLE 12-2: READING EXECUTIVE MEMORY (CONTINUED)
Command
(Binary)

Data
(Hexadecimal) Description
© 2010 Microchip Technology Inc. DS70102K-page 57

dsPIC30F Flash Programming Specification
P9b TDLY5 Delay between PGD ↓ by programming
executive to PGD released by
programming executive

15 — μs —

P10 TDLY6 Delay between PGD released by
programming executive to first PGC ↑ of
response

5 — μs —

P11 TDLY7 Delay between clocking out response
words

10 — μs —

P12a TPROG Row Programming cycle time 1 4 ms ICSP mode
P12b TPROG Row Programming cycle time 0.8 2.6 ms Enhanced

ICSP mode
P13a TERA Bulk/Row Erase cycle time 1 4 ms ICSP mode
P13b TERA Bulk/Row Erase cycle time 0.8 2.6 ms Enhanced

ICSP mode

TABLE 13-1: AC/DC CHARACTERISTICS (CONTINUED)

AC/DC CHARACTERISTICS
Standard Operating Conditions
(unless otherwise stated)
Operating Temperature: 25° C is recommended

Param.
No. Sym Characteristic Min Max Units Conditions
© 2010 Microchip Technology Inc. DS70102K-page 59

dsPIC30F Flash Programming Specification
APPENDIX A: DEVICE-SPECIFIC
INFORMATION

A.1 Checksum Computation
The checksum computation is described in Section 6.8
“Checksum Computation”. Table A-1 shows how this
16-bit computation can be made for each dsPIC30F
device. Computations for read code protection are
shown both enabled and disabled. The checksum
values assume that the Configuration registers are also
erased. However, when code protection is enabled, the
value of the FGS register is assumed to be 0x5.

A.2 dsPIC30F5011 and dsPIC30F5013

A.2.1 ICSP PROGRAMMING
The dsPIC30F5011 and dsPIC30F5013 processors
require that the FBS and FSS registers be programmed
with 0x0000 before the device is chip erased. The steps
to perform this action are shown in Table 11-4.

A.2.2 ENHANCED ICSP PROGRAMMING
The dsPIC30F5011 and dsPIC30F5013 processors
require that the FBS and FSS registers be programmed
with 0x0000 using the PROGC command before the
ERASEB command is used to erase the chip.

TABLE A-1: CHECKSUM COMPUTATION

Device Read Code
Protection Checksum Computation Erased

Value

Value with
0xAAAAAA at 0x0

and Last
Code Address

dsPIC30F2010 Disabled CFGB+SUM(0:001FFF) 0xD406 0xD208
Enabled CFGB 0x0404 0x0404

dsPIC30F2011 Disabled CFGB+SUM(0:001FFF) 0xD406 0xD208
Enabled CFGB 0x0404 0x0404

dsPIC30F2012 Disabled CFGB+SUM(0:001FFF) 0xD406 0xD208
Enabled CFGB 0x0404 0x0404

dsPIC30F3010 Disabled CFGB+SUM(0:003FFF) 0xA406 0xA208
Enabled CFGB 0x0404 0x0404

dsPIC30F3011 Disabled CFGB+SUM(0:003FFF) 0xA406 0xA208
Enabled CFGB 0x0404 0x0404

dsPIC30F3012 Disabled CFGB+SUM(0:003FFF) 0xA406 0xA208
Enabled CFGB 0x0404 0x0404

dsPIC30F3013 Disabled CFGB+SUM(0:003FFF) 0xA406 0xA208
Enabled CFGB 0x0404 0x0404

dsPIC30F3014 Disabled CFGB+SUM(0:003FFF) 0xA406 0xA208
Enabled CFGB 0x0404 0x0404

dsPIC30F4011 Disabled CFGB+SUM(0:007FFF) 0x4406 0x4208
Enabled CFGB 0x0404 0x0404

dsPIC30F4012 Disabled CFGB+SUM(0:007FFF) 0x4406 0x4208
Enabled CFGB 0x0404 0x0404

dsPIC30F4013 Disabled CFGB+SUM(0:007FFF) 0x4406 0x4208
Enabled CFGB 0x0404 0x0404

dsPIC30F5011 Disabled CFGB+SUM(0:00AFFF) 0xFC06 0xFA08
Enabled CFGB 0x0404 0x0404

dsPIC30F5013 Disabled CFGB+SUM(0:00AFFF) 0xFC06 0xFA08
Enabled CFGB 0x0404 0x0404

dsPIC30F5015 Disabled CFGB+SUM(0:00AFFF) 0xFC06 0xFA08
Enabled CFGB 0x0404 0x0404

Item Description:
SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory)
CFGB = Configuration Block (masked) = Byte sum of ((FOSC&0xC10F) + (FWDT&0x803F) +

 (FBORPOR&0x87B3) + (FBS&0x310F) + (FSS&0x330F) + (FGS&0x0007) + (FICD&0xC003))
DS70102K-page 60 © 2010 Microchip Technology Inc.

dsPIC30F Flash Programming Specification
APPENDIX B: HEX FILE FORMAT
Flash programmers process the standard HEX format
used by the Microchip development tools. The format
supported is the Intel® HEX 32 Format (INHX32).
Please refer to Appendix A in the “MPASM User’s
Guide” (DS33014) for more information about hex file
formats.

The basic format of the hex file is:

:BBAAAATTHHHH...HHHHCC

Each data record begins with a 9-character prefix and
always ends with a 2-character checksum. All records
begin with ‘:’ regardless of the format. The individual
elements are described below.

• BB - is a two-digit hexadecimal byte count
representing the number of data bytes that appear
on the line. Divide this number by two to get the
number of words per line.

• AAAA - is a four-digit hexadecimal address
representing the starting address of the data
record. Format is high byte first followed by low
byte. The address is doubled because this format
only supports 8-bits. Divide the value by two to
find the real device address.

• TT - is a two-digit record type that will be ‘00’ for
data records, ‘01’ for end-of-file records and ‘04’
for extended-address record.

• HHHH - is a four-digit hexadecimal data word. For-
mat is low byte followed by high byte. There will
be BB/2 data words following TT.

• CC - is a two-digit hexadecimal checksum that is
the two’s complement of the sum of all the
preceding bytes in the line record.

Because the Intel hex file format is byte-oriented, and
the 16-bit program counter is not, program memory
sections require special treatment. Each 24-bit
program word is extended to 32 bits by inserting a so-
called “phantom byte”. Each program memory address
is multiplied by 2 to yield a byte address.

As an example, a section that is located at 0x100 in
program memory will be represented in the hex file as
0x200.

The hex file will be produced with the following con-
tents:

:020000040000fa

:040200003322110096

:00000001FF

Notice that the data record (line 2) has a load address
of 0200, while the source code specified address
0x100. Note also that the data is represented in “little-
endian” format, meaning the Least Significant Byte
(LSB) appears first. The phantom byte appears last,
just before the checksum.
DS70102K-page 62 © 2010 Microchip Technology Inc.

