

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Becano	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, I ² S, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	144KB (48K x 24)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f6014at-20i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.0 DEVICE PROGRAMMING

5.1 Overview of the Programming Process

Once the programming executive has been verified in memory (or loaded if not present), the dsPIC30F can be programmed using the command set shown in Table 5-1. A detailed description for each command is provided in Section 8.0 "Programming Executive Commands".

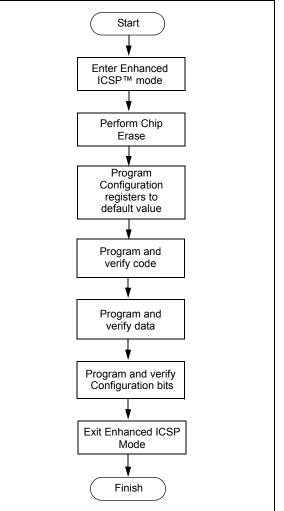

Command	Description
SCHECK	Sanity check
READD	Read data EEPROM, Configuration registers and device ID
READP	Read code memory
PROGD	Program one row of data EEPROM and verify
PROGP	Program one row of code memory and verify
PROGC	Program Configuration bits and verify
ERASEB	Bulk Erase, or erase by segment
ERASED	Erase data EEPROM
ERASEP	Erase code memory
QBLANK	Query if the code memory and data EEPROM are blank
QVER	Query the software version

TABLE 5-1: COMMAND SET SUMMARY

A high-level overview of the programming process is illustrated in Figure 5-1. The process begins by entering Enhanced ICSP mode. The chip is then bulk erased, which clears all memory to '1' and allows the device to be programmed. The Chip Erase is verified before programming begins. Next, the code memory, data Flash and Configuration bits are programmed. As these memories are programmed, they are each verified to ensure that programming was successful. If no errors are detected, the programming is complete and Enhanced ICSP mode is exited. If any of the verifications fail, the procedure should be repeated, starting from the Chip Erase. If Advanced Security features are enabled, then individual Segment Erase operations need to be performed, based on user selections (i.e., based on the specific needs of the user application). The specific operations that are used typically depend on the order in which various segments need to be programmed for a given application or system.

Section 5.2 "Entering Enhanced ICSP Mode" through Section 5.8 "Exiting Enhanced ICSP Mode" describe the programming process in detail.

FIGURE 5-1: PROGRAMMING FLOW

5.5 Code Memory Programming

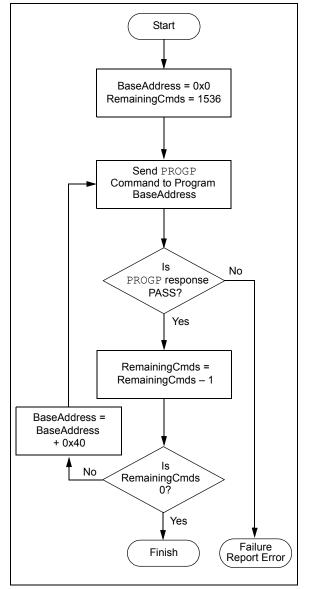
5.5.1 OVERVIEW

The Flash code memory array consists of 512 rows of thirty-two, 24-bit instructions. Each panel stores 16K instruction words, and each dsPIC30F device has either 1, 2 or 3 memory panels (see Table 5-2).

Device	Code Size (24-bit Words)	Number of Rows	Number of Panels
dsPIC30F2010	4K	128	1
dsPIC30F2011	4K	128	1
dsPIC30F2012	4K	128	1
dsPIC30F3010	8K	256	1
dsPIC30F3011	8K	256	1
dsPIC30F3012	8K	256	1
dsPIC30F3013	8K	256	1
dsPIC30F3014	8K	256	1
dsPIC30F4011	16K	512	1
dsPIC30F4012	16K	512	1
dsPIC30F4013	16K	512	1
dsPIC30F5011	22K	704	2
dsPIC30F5013	22K	704	2
dsPIC30F5015	22K	704	2
dsPIC30F5016	22K	704	2
dsPIC30F6010	48K	1536	3
dsPIC30F6010A	48K	1536	3
dsPIC30F6011	44K	1408	3
dsPIC30F6011A	44K	1408	3
dsPIC30F6012	48K	1536	3
dsPIC30F6012A	48K	1536	3
dsPIC30F6013	44K	1408	3
dsPIC30F6013A	44K	1408	3
dsPIC30F6014	48K	1536	3
dsPIC30F6014A	48K	1536	3
dsPIC30F6015	48K	1536	3

TABLE 5-2: DEVICE CODE MEMORY SIZE

5.5.2 PROGRAMMING METHODOLOGY


Code memory is programmed with the PROGP command. PROGP programs one row of code memory to the memory address specified in the command. The number of PROGP commands required to program a device depends on the number of rows that must be programmed in the device.

A flowchart for programming of code memory is illustrated in Figure 5-3. In this example, all 48K instruction words of a dsPIC30F6014A device are programmed. First, the number of commands to send (called 'RemainingCmds' in the flowchart) is set to 1536 and the destination address (called 'BaseAddress') is set to '0'. Next, one row in the device is programmed with a PROGP command. Each PROGP command contains data for one row of code memory of the dsPIC30F6014A. After the first command is processed successfully, 'RemainingCmds' is decremented by 1 and compared to 0. Since there are more PROGP commands to send, 'BaseAddress' is incremented by 0x40 to point to the next row of memory.

On the second PROGP command, the second row of each memory panel is programmed. This process is repeated until the entire device is programmed. No special handling must be performed when a panel boundary is crossed.

FLOWCHART FOR PROGRAMMING dsPIC30F6014A CODE MEMORY

5.5.3 PROGRAMMING VERIFICATION

Once code memory is programmed, the contents of memory can be verified to ensure that programming was successful. Verification requires code memory to be read back and compared against the copy held in the programmer's buffer.

The READP command can be used to read back all the programmed code memory.

Alternatively, you can have the programmer perform the verification once the entire device is programmed using a checksum computation, as described in Section 6.8 "Checksum Computation".

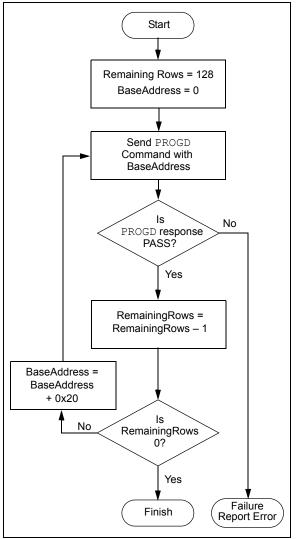
5.6 Data EEPROM Programming

5.6.1 OVERVIEW

The panel architecture for the data EEPROM memory array consists of 128 rows of sixteen 16-bit data words. Each panel stores 2K words. All devices have either one or no memory panels. Devices with data EEPROM provide either 512 words, 1024 words or 2048 words of memory on the one panel (see Table 5-3).

TABLE 5-3:DATA EEPROM SIZE

TABLE 3-3. L		
Device	Data EEPROM Size (Words)	Number of Rows
dsPIC30F2010	512	32
dsPIC30F2011	0	0
dsPIC30F2012	0	0
dsPIC30F3010	512	32
dsPIC30F3011	512	32
dsPIC30F3012	512	32
dsPIC30F3013	512	32
dsPIC30F3014	512	32
dsPIC30F4011	512	32
dsPIC30F4012	512	32
dsPIC30F4013	512	32
dsPIC30F5011	512	32
dsPIC30F5013	512	32
dsPIC30F5015	512	32
dsPIC30F5016	512	32
dsPIC30F6010	2048	128
dsPIC30F6010A	2048	128
dsPIC30F6011	1024	64
dsPIC30F6011A	1024	64
dsPIC30F6012	2048	128
dsPIC30F6012A	2048	128
dsPIC30F6013	1024	64
dsPIC30F6013A	1024	64
dsPIC30F6014	2048	128
dsPIC30F6014A	2048	128
dsPIC30F6015	2048	128


5.6.2 PROGRAMMING METHODOLOGY

The programming executive uses the PROGD command to program the data EEPROM. Figure 5-4 illustrates the flowchart of the process. Firstly, the number of rows to program (RemainingRows) is based on the device size, and the destination address (DestAddress) is set to '0'. In this example, 128 rows (2048 words) of data EEPROM will be programmed.

The first PROGD command programs the first row of data EEPROM. Once the command completes successfully, 'RemainingRows' is decremented by 1 and compared with 0. Since there are 127 more rows to program, 'BaseAddress' is incremented by 0x20 to point to the next row of data EEPROM. This process is then repeated until all 128 rows of data EEPROM are programmed.

FIGURE 5-4:

FLOWCHART FOR PROGRAMMING dsPIC30F6014A DATA EEPROM

5.6.3 PROGRAMMING VERIFICATION

Once the data EEPROM is programmed, the contents of memory can be verified to ensure that the programming was successful. Verification requires the data EEPROM to be read back and compared against the copy held in the programmer's buffer. The READD command reads back the programmed data EEPROM.

Alternatively, the programmer can perform the verification once the entire device is programmed using a checksum computation, as described in **Section 6.8 "Checksum Computation"**.

Note: TBLRDL instructions executed within a REPEAT loop must not be used to read from Data EEPROM. Instead, it is recommended to use PSV access.

5.7 Configuration Bits Programming

5.7.1 OVERVIEW

The dsPIC30F has Configuration bits stored in seven 16-bit registers. These bits can be set or cleared to select various device configurations. There are two types of Configuration bits: system-operation bits and code-protect bits. The system-operation bits determine the power-on settings for system-level components such as the oscillator and Watchdog Timer. The codeprotect bits prevent program memory from being read and written. The FOSC Configuration register has three different register descriptions, based on the device. The FOSC Configuration register description for the dsPIC30F2010 and dsPIC30F6010/6011/6012/6013/ 6014 devices are shown in Table 5-4.

Note: If user software performs an erase operation on the configuration fuse, it must be followed by a write operation to this fuse with the desired value, even if the desired value is the same as the state of the erased fuse.

The FOSC Configuration register description for the dsPIC30F4011/4012 and dsPIC30F5011/5013 devices is shown in Table 5-5.

The FOSC Configuration register description for all remaining devices (dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013, dsPIC30F3014/ 4013, dsPIC30F5015 and dsPIC30F6011A/6012A/ 6013A/ 6014A) is shown in Table 5-6. Always use the correct register descriptions for your target processor.

The FWDT, FBORPOR, FBS, FSS, FGS and FICD Configuration registers are not device-dependent. The register descriptions for these Configuration registers are shown in Table 5-7.

The Device Configuration register maps are shown in Table 5-8 through Table 5-11.

TABLE 5-4:	FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F2010 AND
	dsPIC30F6010/6011/6012/6013/6014

Bit Field	Register	Description
FCKSM<1:0>	FOSC	Clock Switching Mode 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
FOS<1:0>	FOSC	Oscillator Source Selection on POR 11 = Primary Oscillator 10 = Internal Low-Power RC Oscillator 01 = Internal Fast RC Oscillator 00 = Low-Power 32 kHz Oscillator (Timer1 Oscillator)
FPR<3:0>	FOSC	 Primary Oscillator Mode 1111 = ECIO w/PLL 16X – External Clock mode with 16X PLL. OSC2 pin is I/O 110 = ECIO w/PLL 8X – External Clock mode with 8X PLL. OSC2 pin is I/O 101 = ECIO w/PLL 4X – External Clock mode with 4X PLL. OSC2 pin is I/O 100 = ECIO – External Clock mode. OSC2 pin is I/O 101 = EC – External Clock mode. OSC2 pin is system clock output (Fosc/4) 101 = ERC – External RC Oscillator mode. OSC2 pin is system clock output (Fosc/4) 1000 = ERCIO – External RC Oscillator mode. OSC2 pin is l/O 0111 = XT w/PLL 16X – XT Crystal Oscillator mode with 16X PLL 0101 = XT w/PLL 8X – XT Crystal Oscillator mode with 8X PLL 0101 = XT w/PLL 4X – XT Crystal Oscillator mode with 4X PLL 0101 = XT w/PLL 4X – XT Crystal Oscillator mode with 4X PLL 0101 = XT - XT Crystal Oscillator mode (4 MHz-10 MHz crystal) 001x = HS – HS Crystal Oscillator mode (200 kHz-4 MHz crystal)

TABLE 5-6: FOSC CONFIGURATION BITS DESCRIPTION FOR dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013/3014, dsPIC30F4013, dsPIC30F5015/5016, dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015 (CONTINUED)

Bit Field	Register	Description
FPR<4:0>	FOSC	Alternate Oscillator Mode (when FOS<2:0> = 011b)
		1xxxx = Reserved (do not use)
		0111x = Reserved (do not use)
		01101 = Reserved (do not use)
		01100 = ECIO – External clock. OSC2 pin is I/O
		01011 = EC – External clock. OSC2 pin is system clock output (Fosc/4)
		01010 = Reserved (do not use)
		01001 = ERC – External RC oscillator. OSC2 pin is system clock output (Fosc/4)
		01000 = ERCIO – External RC oscillator. OSC2 pin is I/O
		00111 = Reserved (do not use)
		00110 = Reserved (do not use)
		00101 = Reserved (do not use)
		00100 = XT – XT crystal oscillator (4 MHz-10 MHz crystal)
		00010 = HS – HS crystal oscillator (10 MHz-25 MHz crystal)
		00001 = Reserved (do not use)
		00000 = XTL – XTL crystal oscillator (200 kHz-4 MHz crystal)

TABLE 5-7:	CONFIGUE	RATION BITS DESCRIPTION
Bit Field	Register	Description
FWPSA<1:0>		Watchdog Timer Prescaler A 11 = 1:512 10 = 1:64 01 = 1:8 00 = 1:1
FWPSB<3:0>	FWDT	Watchdog Timer Prescaler B 1111 = 1:16 1110 = 1:15 0001 = 1:2 0000 = 1:1
FWDTEN	FWDT	 Watchdog Enable 1 = Watchdog enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect) 0 = Watchdog disabled (LPRC oscillator can be disabled by clearing the SWDTEN bit in the RCON register)
MCLREN	FBORPOR	Master Clear Enable1 = Master Clear pin (MCLR) is enabled0 = MCLR pin is disabled
PWMPIN	FBORPOR	Motor Control PWM Module Pin Mode 1 = PWM module pins controlled by PORT register at device Reset (tri-stated) 0 = PWM module pins controlled by PWM module at device Reset (configured as out- put pins)
HPOL	FBORPOR	Motor Control PWM Module High-Side Polarity 1 = PWM module high-side output pins have active-high output polarity 0 = PWM module high-side output pins have active-low output polarity
LPOL	FBORPOR	Motor Control PWM Module Low-Side Polarity 1 = PWM module low-side output pins have active-high output polarity 0 = PWM module low-side output pins have active-low output polarity
BOREN	FBORPOR	PBOR Enable 1 = PBOR enabled 0 = PBOR disabled
BORV<1:0>	FBORPOR	Brown-out Voltage Select 11 = 2.0V (not a valid operating selection) 10 = 2.7V 01 = 4.2V 00 = 4.5V
FPWRT<1:0>	FBORPOR	Power-on Reset Timer Value Select 11 = PWRT = 64 ms 10 = PWRT = 16 ms 01 = PWRT = 4 ms 00 = Power-up Timer disabled
RBS<1:0>	FBS	Boot Segment Data RAM Code Protection (only present in dsPIC30F5011/5013/ 6010A/6011A/6012A/6013A/6014A/6015) 11 = No Data RAM is reserved for Boot Segment 10 = Small-sized Boot RAM [128 bytes of RAM are reserved for Boot Segment] 01 = Medium-sized Boot RAM [256 bytes of RAM are reserved for Boot Segment] 00 = Large-sized Boot RAM [512 bytes of RAM are reserved for Boot Segment in dsPIC30F5011/5013, and 1024 bytes in dsPIC30F6010A/6011A/6012A/6013A/6014A/6015]

TABLE 5-7: CONFIGURATION BITS DESCRIPTION

TABLE 5-8: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F2010, dsPIC30F4011/4012 AND dsPIC30F6010/ 6011/6012/6013/ 6014)

Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSN	1<1:0>	—	_	-	_	FOS	<1:0>	—	_	—	—		FPR<	3:0>	
0xF80002	FWDT	FWDTEN	_	_	_	_	_	_	_	_	_	FWPS	A<1:0>		FWPSB<3:0>		
0xF80004	FBORPOR	MCLREN	_	_	_	_	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	BOREN	_	BORV	/<1:0>	_	_	FPWR	T<1:0>
0xF80006	FBS	—	_	Reser	ved ⁽²⁾	_	_	_	Reserved ⁽²⁾	_	_	_	_		Reserv	/ed ⁽²⁾	
0xF80008	FSS	—	_	Reser	ved ⁽²⁾	-	_	Rese	rved ⁽²⁾	—	_	_	_		Reserv	/ed ⁽²⁾	
0xF8000A	FGS	—	_	_	_	-	_	—	—	_	_	_	_	_	Reserved ⁽²⁾	GCP	GWRP
0xF8000C	FICD	BKBUG	COE	_	_	—	—	—	—	_	—	_	_	10		ICS<	:1:0>

 On the 6011, 6012, 6013 and 6014, these bits are reserved (read as '1' and must be programmed as '1').
 Reserved bits read as '1' and must be programmed as '1'. Note

TABLE 5-9: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F5011/5013)

Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSM	1<1:0>	—	—	-	_	FOS	i<1:0>	—	_	—	—	FPR<3:0>			
0xF80002	FWDT	FWDTEN	_	_	_	—	— — — — FWPSA<1:0> FWPSB<3:0					3<3:0>	0>				
0xF80004	FBORPOR	MCLREN	_	_	_	—	Reserved ⁽¹⁾			BOREN	_	BOR\	/<1:0>	—	— FPWRT-		T<1:0>
0xF80006	FBS	_	_	RBS	<1:0>	_	_	—	EBS	—	_	—	_	BSS<2:0>			BWRP
0xF80008	FSS	_	_	RSS	<1:0>	_	—	ESS	<1:0>	_	_	_	_		SSS<2:0>		SWRP
0xF8000A	FGS	_		—	_	—	_	—	_	_	_	—	—	— GSS<1:0>		GWRP	
0xF8000C	FICD	BKBUG	COE	_	_	—	_	_	_	_	_	_	_	—	— — ICS<		

Note 1: Reserved bits read as '1' and must be programmed as '1'.

TABLE 5-10: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013/3014, dsPIC30F4013 AND dsPIC30F5015/5016)

Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSN	1<1:0>	—	—			FOS<2:0>		—	_	_	– FPR<4:0>				
0xF80002	FWDT	FWDTEN	_	_	_	_	_	_	_	_	_	FWPS	A<1:0>		FWPSB<3:0>		
0xF80004	FBORPOR	MCLREN	_	_	_	_	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	BOREN	_	BORV	/<1:0>	_	_	FPWRT<1:0>	
0xF80006	FBS	_	_	Reser	ved ⁽²⁾	_	_	_	Reserved ⁽²⁾	_	_	_	_		Reserv	/ed ⁽²⁾	
0xF80008	FSS	_	_	Reser	ved ⁽²⁾	_	_	Rese	erved ⁽²⁾	_	_	_	_		Reserv	/ed ⁽²⁾	
0xF8000A	FGS	—	_	_	_	-	_	_	_	_	—	_	—	_	Reserved ⁽³⁾	GCP	GWRP
0xF8000C	FICD	BKBUG	COE	—	—	_	—	_	—	—	_	_	_			ICS<	<1:0>

1: On the 2011, 2012, 3012, 3013, 3014 and 4013, these bits are reserved (read as '1' and must be programmed as '1'). 2: Reserved bits read as '1' and must be programmed as '1'. Note

3: The FGS<2> bit is a read-only copy of the GCP bit (FGS<1>).

TABLE 5-11: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015)

Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSN	l<1:0>	—	-			FOS<2:0>		_	_	— FPR<4:0>					
0xF80002	FWDT	FWDTEN	—	_	_	_	_	_	_	_	_	FWPS	A<1:0>		FWPSB<3:0>		
0xF80004	FBORPOR	MCLREN	_	_	_	_	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	BOREN	_	BORV	/<1:0>	_	- FPWRT		T<1:0>
0xF80006	FBS	—	_	RBS	<1:0>	_	—	_	EBS	—	_	_	—		BSS<2:0>		BWRP
0xF80008	FSS	_	_	RSS	<1:0>	-	_	ESS	s<1:0>	—	_	—	_		SSS<2:0>		SWRP
0xF8000A	FGS	_	_	_	_	_	_	_	_	—	_	_	—	— GSS<1:0>		:1:0>	GWRP
0xF8000C	FICD	BKBUG	COE	—	_		—			_	_	—	_	— — ICS•		<1:0>	

Note 1: On the 6011A, 6012A, 6013A and 6014A, these bits are reserved (read as '1' and must be programmed as '1').

5.7.2 PROGRAMMING METHODOLOGY

System operation Configuration bits are inherently different than all other memory cells. Unlike code memory, data EEPROM and code-protect Configuration bits, the system operation bits cannot be erased. If the chip is erased with the ERASEB command, the system-operation bits retain their previous value. Consequently, you should make no assumption about the value of the system operation bits. They should always be programmed to their desired setting.

Configuration bits are programmed as a single word at a time using the PROGC command. The PROGC command specifies the configuration data and Configuration register address. When Configuration bits are programmed, any unimplemented bits must be programmed with a '0', and any reserved bits must be programmed with a '1'.

Four PROGC commands are required to program all the Configuration bits. Figure 5-5 illustrates the flowchart of Configuration bit programming.

Note: If the General Code Segment Code Protect (GCP) bit is programmed to '0', code memory is code-protected and cannot be read. Code memory must be verified before enabling read protection. See Section 5.7.4 "Code-Protect Configuration Bits" for more information about code-protect Configuration bits.

5.7.3 PROGRAMMING VERIFICATION

Once the Configuration bits are programmed, the contents of memory should be verified to ensure that the programming was successful. Verification requires the Configuration bits to be read back and compared against the copy held in the programmer's buffer. The READD command reads back the programmed Configuration bits and verifies whether the programming was successful.

Any unimplemented Configuration bits are read-only and read as '0'.

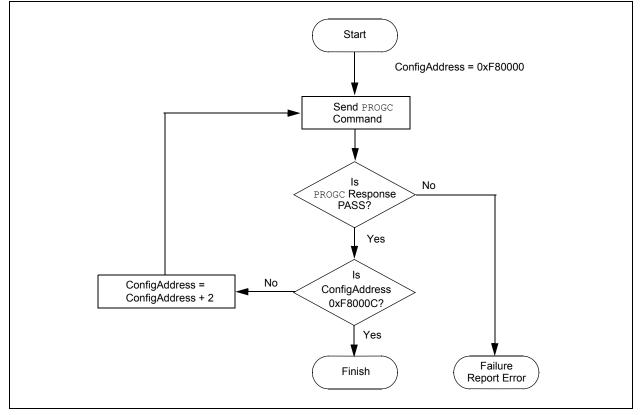
5.7.4 CODE-PROTECT CONFIGURATION BITS

The FBS, FSS and FGS Configuration registers are special Configuration registers that control the size and level of code protection for the Boot Segment, Secure Segment and General Segment, respectively. For each segment, two main forms of code protection are provided. One form prevents code memory from being written (write protection), while the other prevents code memory from being read (read protection).

The BWRP, SWRP and GWRP bits control write protection; and BSS<2:0>, SSS<2:0> and GSS<1:0> bits control read protection. The Chip Erase ERASEB command sets all the code protection bits to '1', which allows the device to be programmed.

When write protection is enabled, any programming operation to code memory will fail. When read protection is enabled, any read from code memory will cause a '0x0' to be read, regardless of the actual contents of code memory. Since the programming executive always verifies what it programs, attempting to program code memory with read protection enabled will also result in failure.

It is imperative that all code protection bits are '1' while the device is being programmed and verified. Only after the device is programmed and verified should any of the above bits be programmed to '0' (see Section 5.7 "Configuration Bits Programming").


In addition to code memory protection, parts of data EEPROM and/or data RAM can be configured to be accessible only by code resident in the Boot Segment and/or Secure Segment. The sizes of these "reserved" sections are user-configurable, using the EBS, RBS<1:0>, ESS<1:0> and RSS<1:0> bits.

- Note 1: All bits in the FBS, FSS and FGS Configuration registers can only be programmed to a value of '0'. ERASEB is the only way to reprogram code-protect bits from ON ('0') to OFF ('1').
 - 2: If any of the code-protect bits in FBS, FSS, or FGS are clear, the entire device must be erased before it can be reprogrammed.

5.8 Exiting Enhanced ICSP Mode

The Enhanced ICSP mode is exited by removing power from the device or bringing MCLR to VIL. When normal user mode is next entered, the program that was stored using Enhanced ICSP will execute.

FIGURE 5-5: CONFIGURATION BIT PROGRAMMING FLOW

dsPIC30F Flash Programming Specification

8.5.3 READP COMMAND

15	12	11	8	7	0
Орс	Opcode L			Length	
			Ν		
Reserved			Addr_MSB		
Addr_LS					

Field	Description
Opcode	0x2
Length	0x4
Ν	Number of 24-bit instructions to read (max of 32768)
Reserved	0x0
Addr_MSB	MSB of 24-bit source address
Addr_LS	LS 16 bits of 24-bit source address

The READP command instructs the programming executive to read N 24-bit words of code memory starting from the 24-bit address specified by Addr_MSB and Addr_LS. This command can only be used to read 24-bit data. All data returned in response to this command uses the packed data format described in Section 8.3 "Packed Data Format".

Expected Response (2 + 3 * N/2 words for N even): 0x1200

2 + 3 * N/2 Least significant program memory word 1

Least significant data word N

Expected Response (4 + 3 * (N - 1)/2 words for N odd):

0x12004 + 3 * (N - 1)/2 Least significant program memory word 1

MSB of program memory word N (zero padded)

Note: Reading unimplemented memory will cause the programming executive to reset.

8.5.4 PROGD COMMAND

15	12	11	8	7		0
Орс	Opcode				ength	
Reserved					Addr_MSB	
			Addr_	LS		
D_1						
			D_2	2		
			D_1	6		

Field	Description
Opcode	0x4
Length	0x13
Reserved	0x0
Addr_MSB	MSB of 24-bit destination address
Addr_LS	LS 16 bits of 24-bit destination address
D_1	16-bit data word 1
D_2	16-bit data word 2
	16-bit data words 3 through 15
D_16	16-bit data word 16

The PROGD command instructs the programming executive to program one row of data EEPROM. The data to be programmed is specified by the 16 data words (D_1, D_2,..., D_16) and is programmed to the destination address specified by Addr_MSB and Addr_LSB. The destination address should be a multiple of 0x20.

Once the row of data EEPROM has been programmed, the programming executive verifies the programmed data against the data in the command.

Expected Response (2 words):

0x1400 0x0002

Note: Refer to Table 5-3 for data EEPROM size information.

8.5.5 PROGP COMMAND

15	12	11	8	7		0
Орс	ode			L	ength	
	Rese	rved			Addr_MSB	
			Addr_	LS		
			D_^	1		
			D_2	2		
			D_1	N		

Field	Description
Opcode	0x5
Length	0x33
Reserved	0x0
Addr_MSB	MSB of 24-bit destination address
Addr_LS	LS 16 bits of 24-bit destination address
D_1	16-bit data word 1
D_2	16-bit data word 2
	16-bit data word 3 through 47
D_48	16-bit data word 48

The PROGP command instructs the programming executive to program one row of code memory (32 instruction words) to the specified memory address. Programming begins with the row address specified in the command. The destination address should be a multiple of 0x40.

The data to program to memory, located in command words D_1 through D_48, must be arranged using the packed instruction word format shown in Figure 8-2.

After all data has been programmed to code memory, the programming executive verifies the programmed data against the data in the command.

Expected Response (2 words): 0x1500 0x0002

Note: Refer to Table 5-2 for code memory size information.

8.5.6 PROGC COMMAND

15	12	11	8	7		0			
Орс	Opcode			Length					
	Reserved				Addr_MSB				
Addr_LS									
Data									

Field	Description
Opcode	0x6
Length	0x4
Reserved	0x0
Addr_MSB	MSB of 24-bit destination address
Addr_LS	LS 16 bits of 24-bit destination address
Data	Data to program

The PROGC command programs data to the specified Configuration register and verifies the programming. Configuration registers are 16 bits wide, and this command allows one Configuration register to be programmed.

Expected Response (2 words): 0x1600 0x0002

Note: This command can only be used for programming Configuration registers.

10.0 DEVICE ID

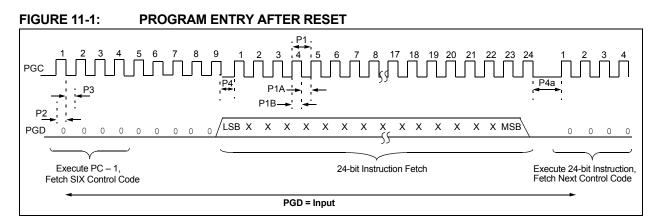
The device ID region is 2×16 bits and can be read using the READD command. This region of memory is read-only and can also be read when code protection is enabled.

Table 10-1shows the device ID for each device,Table 10-2shows the device ID registers and Table 10-33describes the bit field of each register.

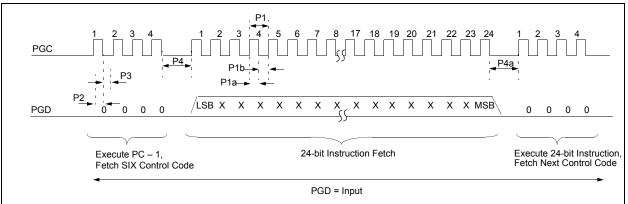
Device	Silicon Revision											
Device	DEVID	A0	A1	A2	A3	A4	В0	B1	B2			
dsPIC30F2010	0x0040	0x1000	0x1001	0x1002	0x1003	0x1004	_	_	_			
dsPIC30F2011	0x0240	_	0x1001				_	_	_			
dsPIC30F2012	0x0241	_	0x1001	_	_	_	_	_	—			
dsPIC30F3010	0x01C0	0x1000	0x1001	0x1002	—	—	_	—	—			
dsPIC30F3011	0x01C1	0x1000	0x1001	0x1002	_	_	_	_	—			
dsPIC30F3012	0x00C1	_	_	_	_	_	0x1040	0x1041	—			
dsPIC30F3013	0x00C3	_	_	_	_		0x1040	0x1041	_			
dsPIC30F3014	0x0160	—	0x1001	0x1002	_		—	—	—			
dsPIC30F4011	0x0101	—	0x1001	0x1002	0x1003	0x1003	—	—	—			
dsPIC30F4012	0x0100		0x1001	0x1002	0x1003	0x1003		_	_			
dsPIC30F4013	0x0141	_	0x1001	0x1002		_	_	_	_			
dsPIC30F5011	0x0080	_	0x1001	0x1002	0x1003	0x1003	_	—	—			
dsPIC30F5013	0x0081	_	0x1001	0x1002	0x1003	0x1003	_	_	_			
dsPIC30F5015	0x0200	0x1000	_	_	_		_	—	—			
dsPIC30F5016	0x0201	0x1000	_	_	_		_	—	—			
dsPIC30F6010	0x0188	—	_	—	—	—	_	0x1040	0x1042			
dsPIC30F6010A	0x0281	_	_	0x1002	0x1003	0x1004	_	_	—			
dsPIC30F6011	0x0192	—	—	—	0x1003	—	—	0x1040	0x1042			
dsPIC30F6011A	0x02C0	—	_	0x1002	—	—	0x1040	0x1041	—			
dsPIC30F6012	0x0193	_	_	_	0x1003	_	_	0x1040	0x1042			
dsPIC30F6012A	0x02C2	—	—	0x1002	—	—	0x1040	0x1041	—			
dsPIC30F6013	0x0197	_	_	_	0x1003	_	_	0x1040	0x1042			
dsPIC30F6013A	0x02C1			0x1002			0x1040	0x1041	_			
dsPIC30F6014	0x0198				0x1003			0x1040	0x1042			
dsPIC30F6014A	0x02C3	_	_	0x1002		_	0x1040	0x1041	—			
dsPIC30F6015	0x0280	_		0x1002	0x1003	0x1004	_	—	—			

TABLE 10-1	DEVICE IDS
IADLE 10-1	

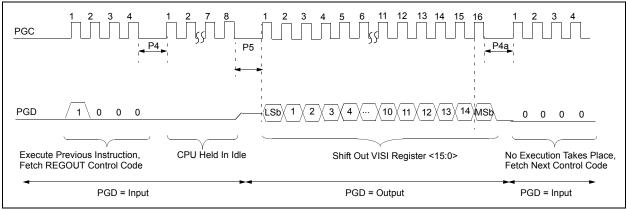
TABLE 10-2: dsPIC30F DEVICE ID REGISTERS


Address	Address Name																
Address	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0xFF0000	DEVID		DEVID<15:0>														
0xFF0002	DEVREV	PROC<3:0> REV<5:0> DOT<5:0>															

11.2.2 REGOUT SERIAL INSTRUCTION EXECUTION


The REGOUT control code allows for data to be extracted from the device in ICSP mode. It is used to clock the contents of the VISI register out of the device over the PGD pin. Once the REGOUT control code is received, eight clock cycles are required to process the command. During this time, the CPU is held idle. After these eight cycles, an additional 16 cycles are required to clock the data out (see Figure 11-3).

The REGOUT instruction is unique because the PGD pin is an input when the control code is transmitted to the device. However, once the control code is processed, the PGD pin becomes an output as the VISI register is shifted out. After the contents of the VISI are shifted out, PGD becomes an input again as the state machine holds the CPU idle until the next 4-bit control code is shifted in.


Note: Once the contents of VISI are shifted out, the dsPIC[®] DSC device maintains PGD as an output until the first rising edge of the next clock is received.

11.3 Entering ICSP Mode

The ICSP mode is entered by holding PGC and PGD low, raising $\overline{\text{MCLR}/\text{VPP}}$ to VIHH (high voltage), and then performing additional steps as illustrated in Figure 11-4.

- Note 1: The sequence that places the device into ICSP mode places all unused I/O pins to the high-impedance state.
 - **2:** Once ICSP mode is entered, the PC is set to 0x0 (the Reset vector).
 - 3: Before leaving the Reset vector, execute two GOTO instructions, followed by a single NOP instruction must be executed.

FIGURE 11-4: ENTERING ICSP™ MODE

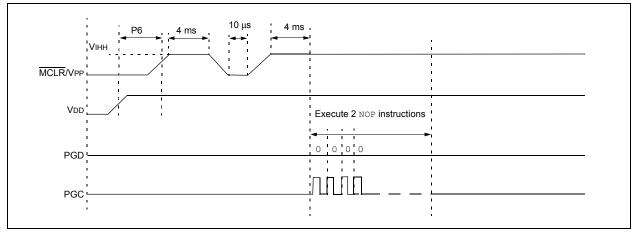


Table 11-4 shows the ICSP programming process for bulk-erasing program memory. This process includes the ICSP command code, which must be transmitted (for each instruction) to the Least Significant bit first using the PGC and PGD pins (see Figure 11-2).

If an individual Segment Erase operation is required, the NVMCON value must be replaced by the value for the corresponding Segment Erase operation.

Note:	Program memory must be erased before
	writing any data to program memory.

TABLE 11-4:SERIAL INSTRUCTION EXECUTION FOR BULK ERASING PROGRAM MEMORY
(ONLY IN NORMAL-VOLTAGE SYSTEMS)

Command Data (Binary) (Hexadecimal)		Description		
Step 1: Exit t	he Reset vector.	<u>-</u>		
0000	040100	GOTO 0x100		
0000	040100	GOTO 0x100		
0000	000000	NOP		
Step 2: Set N	IVMCON to program	the FBS Configuration register. ⁽¹⁾		
0000	24008A	MOV #0x4008, W10		
0000	883B0A	MOV W10, NVMCON		
Step 3: Initial	ize the TBLPAG and	write pointer (W7) for TBLWT instruction for Configuration register. ⁽¹⁾		
0000	200F80	MOV #0xF8, W0		
0000	880190	MOV W0, TBLPAG		
0000	200067	MOV #0x6, W7		
Step 4: Load	the Configuration Re	egister data to W6. ⁽¹⁾		
0000	EB0300	CLR W6		
0000	000000	NOP		
Step 5: Load	the Configuration Re	egister write latch. Advance W7 to point to next Configuration register. ⁽¹⁾		
0000	BB1B86	TBLWTL W6, [W7++]		
Step 6: Unloc	k the NVMCON for	programming the Configuration register ⁽¹⁾		
0000	200558	MOV #0x55, W8		
0000	200AA9	MOV #0xAA, W9		
0000	883B38	MOV W8, NVMKEY		
0000	883B39	MOV W9, NVMKEY		
Step 7: Initiat	e the programming of	cycle. ⁽¹⁾		
0000	A8E761	BSET NVMCON, #WR		
0000	000000	NOP		
0000	000000	NOP		
_	-	Externally time 2 ms		
0000	000000	NOP		
0000	000000	NOP		
0000	A9E761	BCLR NVMCON, #WR		
0000	000000	NOP		
0000	000000	NOP		
Step 8: Repe	at steps 5-7 one time	e to program 0x0000 to RESERVED2 Configuration register. ⁽¹⁾		
		e all Program Memory.		
00000	2407FA	MOV #0x407F, W10		
0000	883B0A	MOV W10, NVMCON		

Note 1: Steps 2-8 are only required for the dsPIC30F5011/5013 devices. These steps may be skipped for all other devices in the dsPIC30F family.

11.10 Reading Code Memory

Reading from code memory is performed by executing a series of TBLRD instructions and clocking out the data using the REGOUT command. To ensure efficient execution and facilitate verification on the programmer, four instruction words are read from the device at a time.

Table 11-10 shows the ICSP programming details for reading code memory. In Step 1, the Reset vector is exited. In Step 2, the 24-bit starting source address for reading is loaded into the TBLPAG and W6 registers. The upper byte of the starting source address is stored to TBLPAG, while the lower 16 bits of the source address are stored to W6.

To minimize the reading time, the packed instruction word format that was utilized for writing is also used for reading (see Figure 11-5). In Step 3, the write pointer W7 is initialized, and four instruction words are read from code memory and stored to working registers W0:W5. In Step 4, the four instruction words are clocked out of the device from the VISI register using the REGOUT command. In Step 5, the internal PC is reset to 0x100, as a precautionary measure, to prevent the PC from incrementing into unimplemented memory when large devices are being read. Lastly, in Step 6, Steps 3-5 are repeated until the desired amount of code memory is read.

Command (Binary)	Data (Hexadecimal)		Description
Step 1: Exit th	e Reset vector.		
0000	040100	GOTO 0x100	
0000	040100	GOTO 0x100	
0000	000000	NOP	
Step 2: Initiali	ze TBLPAG and t	the read point	er (W6) for TBLRD instruction.
0000	200xx0	MOV	# <sourceaddress23:16>, W0</sourceaddress23:16>
0000	880190	MOV	WO, TBLPAG
0000	2xxxx6	MOV	<pre>#<sourceaddress15:0>, W6</sourceaddress15:0></pre>
Step 3: Initiali	ze the write point	er (W7) and s	tore the next four locations of code memory to W0:W5.
0000	EB0380	CLR	W7
0000	000000	NOP	
0000	BA1B96	TBLRDL	[W6], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BADBB6	TBLRDH.B	[W6++], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BADBD6	TBLRDH.B	[++W6], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BA1BB6	TBLRDL	[W6++], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BA1B96	TBLRDL	[W6], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BADBB6	TBLRDH.B	[W6++], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BADBD6	TBLRDH.B	[++W6], [W7++]
0000	000000	NOP	
0000	000000	NOP	
0000	BA0BB6	TBLRDL	[W6++], [W7]
0000	000000	NOP	
0000	000000	NOP	

11.13 Reading the Application ID Word

The application ID word is stored at address 0x8005BE in executive code memory. To read this memory location, you must use the SIX control code to move this program memory location to the VISI register. The REGOUT control code must then be used to clock the contents of the VISI register out of the device. The corresponding control and instruction codes that must be serially transmitted to the device to perform this operation are shown in Table 11-13.

Once the programmer has clocked-out the application ID word, it must be inspected. If the application ID has the value 0xBB, the programming executive is resident in memory and the device can be programmed using the mechanism described in Section 5.0 "Device Programming". However, if the application ID has any other value, the programming executive is not resident in memory. It must be loaded to memory before the device can be programming executive to the memory is described in Section 12.0 "Programming the Programming the Programming Executive to Memory".

11.14 Exiting ICSP Mode

After confirming that the programming executive is resident in memory, or loading the programming executive, ICSP mode is exited by removing power to the device or bringing MCLR to VIL. Programming can then take place by following the procedure outlined in **Section 5.0 "Device Programming"**.

Command (Binary)	Data (Hexadecimal)	Description			
Step 1: Exit th	e Reset vector.				
0000 0000 0000	040100 040100 000000	GOTO 0x100 GOTO 0x100 NOP			
Step 2: Initiali	ze TBLPAG and th	e read pointer (W0) for TBLRD instruction.			
0000 0000 0000 0000 0000 0000 0000 0000	200800 880190 205BE0 207841 000000 BA0890 000000 000000	MOV #0x80, W0 MOV W0, TBLPAG MOV #0x5BE, W0 MOV VISI, W1 NOP TBLRDL [W0], [W1] NOP NOP			
Step 3: Output	Step 3: Output the VISI register using the REGOUT command.				
0001 0000	<visi> 000000</visi>	Clock out contents of the VISI register NOP			

TABLE 11-13: SERIAL INSTRUCTION EXECUTION FOR READING THE APPLICATION ID WORD

Device	Read Code Protection	Checksum Computation	Erased Value	Value with 0xAAAAAA at 0x0 and Last Code Address
dsPIC30F5016	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6010	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6010A	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6011	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6011A	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6012	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6012A	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6013	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6013A	Disabled	CFGB+SUM(0:015FFF)	0xF406	0xF208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6014	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6014A	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F6015	Disabled	CFGB+SUM(0:017FFF)	0xC406	0xC208
	Enabled	CFGB	0x0404	0x0404

TABLE A-1: CHECKSUM COMPUTATION (CONTINUED)

Item Description:

SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory)

CFGB = Configuration Block (masked) = Byte sum of ((FOSC&0xC10F) + (FWDT&0x803F) + (FBORPOR&0x87B3) + (FBS&0x310F) + (FSS&0x330F) + (FGS&0x0007) + (FICD&0xC003))

NOTES: