

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, I ² S, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	144KB (48K x 24)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f6014t-20e-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5-8: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F2010, dsPIC30F4011/4012 AND dsPIC30F6010/ 6011/6012/6013/ 6014)

Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSN	1<1:0>	—	_	-	_	FOS	<1:0>	—	_	—	—		FPR<	3:0>	
0xF80002	FWDT	FWDTEN	_	_	_	_	_	_	_	_	_	FWPS	A<1:0>		FWPSE	8<3:0>	
0xF80004	FBORPOR	MCLREN	_	_	_	_	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	BOREN	_	BORV	/<1:0>	_	_	FPWR	T<1:0>
0xF80006	FBS	—	_	Reser	ved ⁽²⁾	_	_	_	Reserved ⁽²⁾	_	_	_	_		Reserv	/ed ⁽²⁾	
0xF80008	FSS	—	_	Reser	ved ⁽²⁾	-	_	Rese	rved ⁽²⁾	—	_	_	_		Reserv	/ed ⁽²⁾	
0xF8000A	FGS	—	_	_	_	-	_	—	—	_	_	_	_	_	Reserved ⁽²⁾	GCP	GWRP
0xF8000C	FICD	BKBUG	COE	_	_	—	—	—	—	_	—	_	_	_	_	ICS<	:1:0>

 On the 6011, 6012, 6013 and 6014, these bits are reserved (read as '1' and must be programmed as '1').
 Reserved bits read as '1' and must be programmed as '1'. Note

TABLE 5-9: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F5011/5013)

Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSM	1<1:0>	—	—	-	_	FOS	i<1:0>	—	_	—	—		FPR<	3:0>	
0xF80002	FWDT	FWDTEN	_	_	_	—	_	_	_	_	_	FWPS	A<1:0>		FWPSE	3<3:0>	
0xF80004	FBORPOR	MCLREN	_	_	_	—	F	Reserved ⁽¹⁾		BOREN	_	BOR\	/<1:0>	—	_	FPWR	T<1:0>
0xF80006	FBS	_	_	RBS	<1:0>	_	_	—	EBS	—	_	—	_		BSS<2:0>		BWRP
0xF80008	FSS	_	_	RSS	<1:0>	_	—	ESS	<1:0>	_	_	_	_		SSS<2:0>		SWRP
0xF8000A	FGS	_		—	_	—	_	_	_	_	_	—	—	_	GSS<	1:0>	GWRP
0xF8000C	FICD	BKBUG	COE	_	_	—	_	_	_	_	_	_	_	—	_	ICS<	<1:0>

Note 1: Reserved bits read as '1' and must be programmed as '1'.

TABLE 5-10: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F2011/2012, dsPIC30F3010/3011/3012/3013/3014, dsPIC30F4013 AND dsPIC30F5015/5016)

Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSN	1<1:0>	—	—			FOS<2:0>		—	_	_			FPR<4:0>		
0xF80002	FWDT	FWDTEN	_	_	_	_	_	_	_	_	_	FWPS	A<1:0>		FWPSE	3<3:0>	
0xF80004	FBORPOR	MCLREN	_	_	_	_	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	BOREN	_	BORV	/<1:0>	_	_	FPWR	T<1:0>
0xF80006	FBS	_	_	Reser	ved ⁽²⁾	_	_	_	Reserved ⁽²⁾	_	_	_	_		Reserv	/ed ⁽²⁾	
0xF80008	FSS	_	_	Reser	ved ⁽²⁾	_	_	Rese	erved ⁽²⁾	_	_	_	_		Reserv	/ed ⁽²⁾	
0xF8000A	FGS	—	_	_	_	-	_	_	_	_	—	_	—	_	Reserved ⁽³⁾	GCP	GWRP
0xF8000C	FICD	BKBUG	COE	—	—	_	—	_	—	—	_	_	_	_	—	ICS<	<1:0>

1: On the 2011, 2012, 3012, 3013, 3014 and 4013, these bits are reserved (read as '1' and must be programmed as '1'). 2: Reserved bits read as '1' and must be programmed as '1'. Note

3: The FGS<2> bit is a read-only copy of the GCP bit (FGS<1>).

TABLE 5-11: dsPIC30F CONFIGURATION REGISTERS (FOR dsPIC30F6010A/6011A/6012A/6013A/6014A AND dsPIC30F6015)

Address	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FOSC	FCKSN	l<1:0>	—	-			FOS<2:0>		_	_	_			FPR<4:0>		
0xF80002	FWDT	FWDTEN	—	_	_	_	_	_	_	_	_	FWPS	A<1:0>		FWPSE	3<3:0>	
0xF80004	FBORPOR	MCLREN	_	_	_	_	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	BOREN	_	BORV	/<1:0>	_	_	FPWR	T<1:0>
0xF80006	FBS	—	_	RBS	<1:0>	_	—	_	EBS	—	_	_	—		BSS<2:0>		BWRP
0xF80008	FSS	_	_	RSS	<1:0>	-	_	ESS	s<1:0>	—	_	—	_		SSS<2:0>		SWRP
0xF8000A	FGS	_	_	_	_	_	_	_	_	—	_	_	—	_	GSS<	:1:0>	GWRP
0xF8000C	FICD	BKBUG	COE	—	_		—			_	_	—	_	_	_	ICS<	<1:0>

Note 1: On the 6011A, 6012A, 6013A and 6014A, these bits are reserved (read as '1' and must be programmed as '1').

5.7.2 PROGRAMMING METHODOLOGY

System operation Configuration bits are inherently different than all other memory cells. Unlike code memory, data EEPROM and code-protect Configuration bits, the system operation bits cannot be erased. If the chip is erased with the ERASEB command, the system-operation bits retain their previous value. Consequently, you should make no assumption about the value of the system operation bits. They should always be programmed to their desired setting.

Configuration bits are programmed as a single word at a time using the PROGC command. The PROGC command specifies the configuration data and Configuration register address. When Configuration bits are programmed, any unimplemented bits must be programmed with a '0', and any reserved bits must be programmed with a '1'.

Four PROGC commands are required to program all the Configuration bits. Figure 5-5 illustrates the flowchart of Configuration bit programming.

Note: If the General Code Segment Code Protect (GCP) bit is programmed to '0', code memory is code-protected and cannot be read. Code memory must be verified before enabling read protection. See Section 5.7.4 "Code-Protect Configuration Bits" for more information about code-protect Configuration bits.

5.7.3 PROGRAMMING VERIFICATION

Once the Configuration bits are programmed, the contents of memory should be verified to ensure that the programming was successful. Verification requires the Configuration bits to be read back and compared against the copy held in the programmer's buffer. The READD command reads back the programmed Configuration bits and verifies whether the programming was successful.

Any unimplemented Configuration bits are read-only and read as '0'.

5.7.4 CODE-PROTECT CONFIGURATION BITS

The FBS, FSS and FGS Configuration registers are special Configuration registers that control the size and level of code protection for the Boot Segment, Secure Segment and General Segment, respectively. For each segment, two main forms of code protection are provided. One form prevents code memory from being written (write protection), while the other prevents code memory from being read (read protection).

The BWRP, SWRP and GWRP bits control write protection; and BSS<2:0>, SSS<2:0> and GSS<1:0> bits control read protection. The Chip Erase ERASEB command sets all the code protection bits to '1', which allows the device to be programmed.

When write protection is enabled, any programming operation to code memory will fail. When read protection is enabled, any read from code memory will cause a '0x0' to be read, regardless of the actual contents of code memory. Since the programming executive always verifies what it programs, attempting to program code memory with read protection enabled will also result in failure.

It is imperative that all code protection bits are '1' while the device is being programmed and verified. Only after the device is programmed and verified should any of the above bits be programmed to '0' (see Section 5.7 "Configuration Bits Programming").

In addition to code memory protection, parts of data EEPROM and/or data RAM can be configured to be accessible only by code resident in the Boot Segment and/or Secure Segment. The sizes of these "reserved" sections are user-configurable, using the EBS, RBS<1:0>, ESS<1:0> and RSS<1:0> bits.

- Note 1: All bits in the FBS, FSS and FGS Configuration registers can only be programmed to a value of '0'. ERASEB is the only way to reprogram code-protect bits from ON ('0') to OFF ('1').
 - 2: If any of the code-protect bits in FBS, FSS, or FGS are clear, the entire device must be erased before it can be reprogrammed.

Opcode	Mnemonic	Length (16-bit words)	Time Out	Description
0x0	SCHECK	1	1 ms	Sanity check.
0x1	READD	4	1 ms/row	Read N 16-bit words of data EEPROM, Configuration registers or device ID starting from specified address.
0x2	READP	4	1 ms/row	Read N 24-bit instruction words of code memory starting from specified address.
0x3	Reserved	N/A	N/A	This command is reserved. It will return a NACK.
0x4	PROGD ⁽²⁾	19	5 ms	Program one row of data EEPROM at the specified address, then verify.
0x5	PROGP(1)	51	5 ms	Program one row of code memory at the specified address, then verify.
0x6	PROGC	4	5 ms	Write byte or 16-bit word to specified Configuration register.
0x7	ERASEB	2	5 ms	Bulk Erase (entire code memory or data EEPROM), or erase by segment.
0x8	ERASED ⁽²⁾	3	5 ms/row	Erase rows of data EEPROM from specified address.
0x9	ERASEP(1)	3	5 ms/row	Erase rows of code memory from specified address.
0xA	QBLANK	3	300 ms	Query if the code memory and data EEPROM are blank.
0xB	QVER	1	1 ms	Query the programming executive software version.

TABLE 8-1: PROGRAMMING EXECUTIVE COMMAND SET

Note 1: One row of code memory consists of (32) 24-bit words. Refer to Table 5-2 for device-specific information.
2: One row of data EEPROM consists of (16) 16-bit words. Refer to Table 5-3 for device-specific information.

8.5 Command Descriptions

All commands that are supported by the programming executive are described in Section 8.5.1 "SCHECK Command" through Section 8.5.11 "QVER Command".

8.5.1 SCHECK COMMAND

15	12	11 0)
	Opcode	Length	

Field	Description
Opcode	0x0
Length	0x1

The SCHECK command instructs the programming executive to do nothing, but generate a response. This command is used as a "sanity check" to verify that the programming executive is operational.

Expected Response (2 words):

0x1000 0x0002

Note: This instruction is not required for programming, but is provided for development purposes only.

8.5.2 READD COMMAND

15	12	11	8	7	0
Орс	ode			Length	
Reser	ved0			Ν	
	Reser	ved1		Addr_MSB	
			Addr_	LS	

Field	Description
Opcode	0x1
Length	0x4
Reserved0	0x0
N	Number of 16-bit words to read (max of 2048)
Reserved1	0x0
Addr_MSB	MSB of 24-bit source address
Addr_LS	LS 16 bits of 24-bit source address

The READD command instructs the programming executive to read N 16-bit words of memory starting from the 24-bit address specified by Addr_MSB and Addr_LS. This command can only be used to read 16-bit data. It can be used to read data EEPROM, Configuration registers and the device ID.

Expected Response (2+N words):

0x1100 N + 2 Data word 1

Data word N

Note: Reading unimplemented memory will cause the programming executive to reset.

dsPIC30F Flash Programming Specification

8.5.3 READP COMMAND

15				7	0	
Opc	Opcode			Length		
			Ν			
	Rese	rved		Addr_MSB		
Addr_LS						

Field	Description
Opcode	0x2
Length	0x4
Ν	Number of 24-bit instructions to read (max of 32768)
Reserved	0x0
Addr_MSB	MSB of 24-bit source address
Addr_LS	LS 16 bits of 24-bit source address

The READP command instructs the programming executive to read N 24-bit words of code memory starting from the 24-bit address specified by Addr_MSB and Addr_LS. This command can only be used to read 24-bit data. All data returned in response to this command uses the packed data format described in Section 8.3 "Packed Data Format".

Expected Response (2 + 3 * N/2 words for N even): 0x1200

2 + 3 * N/2 Least significant program memory word 1

Least significant data word N

Expected Response (4 + 3 * (N - 1)/2 words for N odd):

0x12004 + 3 * (N - 1)/2 Least significant program memory word 1

MSB of program memory word N (zero padded)

Note: Reading unimplemented memory will cause the programming executive to reset.

8.5.4 PROGD COMMAND

15	12	11 8 7 0				
Орс	ode			L	ength	
	Rese	rved			Addr_MSB	
			Addr_	LS		
D_1						
D_2						
D_16						

Field	Description
Opcode	0x4
Length	0x13
Reserved	0x0
Addr_MSB	MSB of 24-bit destination address
Addr_LS	LS 16 bits of 24-bit destination address
D_1	16-bit data word 1
D_2	16-bit data word 2
	16-bit data words 3 through 15
D_16	16-bit data word 16

The PROGD command instructs the programming executive to program one row of data EEPROM. The data to be programmed is specified by the 16 data words (D_1, D_2,..., D_16) and is programmed to the destination address specified by Addr_MSB and Addr_LSB. The destination address should be a multiple of 0x20.

Once the row of data EEPROM has been programmed, the programming executive verifies the programmed data against the data in the command.

Expected Response (2 words):

0x1400 0x0002

Note: Refer to Table 5-3 for data EEPROM size information.

8.5.5 PROGP COMMAND

15	12	11 8 7 0		0		
Орс	ode			L	ength	
	Rese	rved			Addr_MSB	
			Addr_	LS		
C			D_^	1		
D_2						
D_N						

Field	Description
Opcode	0x5
Length	0x33
Reserved	0x0
Addr_MSB	MSB of 24-bit destination address
Addr_LS	LS 16 bits of 24-bit destination address
D_1	16-bit data word 1
D_2	16-bit data word 2
	16-bit data word 3 through 47
D_48	16-bit data word 48

The PROGP command instructs the programming executive to program one row of code memory (32 instruction words) to the specified memory address. Programming begins with the row address specified in the command. The destination address should be a multiple of 0x40.

The data to program to memory, located in command words D_1 through D_48, must be arranged using the packed instruction word format shown in Figure 8-2.

After all data has been programmed to code memory, the programming executive verifies the programmed data against the data in the command.

Expected Response (2 words): 0x1500 0x0002

Note: Refer to Table 5-2 for code memory size information.

8.5.6 PROGC COMMAND

15	12	11 8 7 0			0	
Opcode			L	ength		
	Reserved				Addr_MSB	
/			Addr_	LS		
	Data					

Field	Description
Opcode	0x6
Length	0x4
Reserved	0x0
Addr_MSB	MSB of 24-bit destination address
Addr_LS	LS 16 bits of 24-bit destination address
Data	Data to program

The PROGC command programs data to the specified Configuration register and verifies the programming. Configuration registers are 16 bits wide, and this command allows one Configuration register to be programmed.

Expected Response (2 words): 0x1600 0x0002

Note: This command can only be used for programming Configuration registers.

dsPIC30F Flash Programming Specification

8.5.11 QVER COMMAND

15	12	11

15 12	11 0
Opcode	Length

Field	Description
Opcode	0xB
Length	0x1

The QVER command queries the version of the programming executive software stored in test memory. The "version.revision" information is returned in the response's QE Code using a single byte with the following format: main version in upper nibble and revision in the lower nibble (i.e., 0x23 is version 2.3 of programming executive software).

Expected Response (2 words):

0x1BMN (where "MN" stands for version M.N) 0x0002

9.0 **PROGRAMMING EXECUTIVE** RESPONSES

9.1 Overview

The programming executive sends a response to the programmer for each command that it receives. The response indicates if the command was processed correctly, and includes any required response or error data.

The programming executive response set is shown in Table 9-1. This table contains the opcode, mnemonic and description for each response. The response format is described in Section 9.2 "Response Format".

TABLE 9-1: PROGRAMMING EXECUTIVE RESPONSE SET

Opcode	Mnemonic	Description
0x1	PASS	Command successfully processed.
0x2	FAIL	Command unsuccessfully processed.
0x3	NACK	Command not known.

9.2 **Response Format**

As shown in Example 9-1, all programming executive responses have a general format consisting of a two word header and any required data for the command. Table 9-2 lists the fields and their descriptions.

EXAMPLE 9-1: FORMAT

15 12	11 8	7	0
Opcode	Last_Cmd	QE_Code	
	Lenç	gth	
	D_1 (if applicable)		
D_N (if applicable)			

TABLE 9-2: FIELDS AND DESCRIPTIONS

Field	Description
Opcode	Response opcode.
Last_Cmd	Programmer command that generated the response.
QE_Code	Query code or Error code.
Length	Response length in 16-bit words (includes 2 header words.)
D_1	First 16-bit data word (if applicable).
D_N	Last 16-bit data word (if applicable).

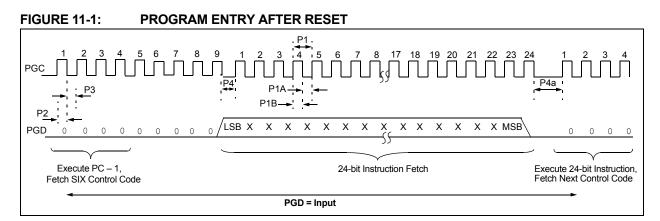
9.2.1 **Opcode FIELD**

The Opcode is a 4-bit field in the first word of the response. The Opcode indicates how the command was processed (see Table 9-1). If the command is processed successfully, the response opcode is PASS. If there is an error in processing the command, the response opcode is FAIL, and the QE Code indicates the reason for the failure. If the command sent to the programming executive is not identified, the programming executive returns a NACK response.

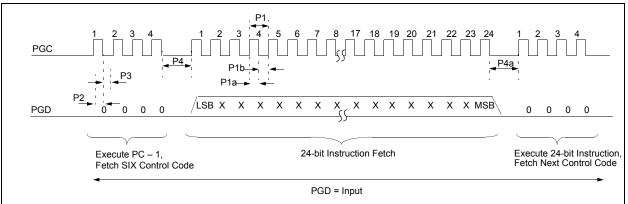
9.2.2 Last Cmd FIELD

The Last Cmd is a 4-bit field in the first word of the response and indicates the command that the programming executive processed. Since the programming executive can only process one command at a time, this field is technically not required. However, it can be used to verify whether the programming executive correctly received the command that the programmer transmitted.

Bit Field	Register	Description
DEVID<15:0>	DEVID	Encodes the device ID.
PROC<3:0>	DEVREV	Encodes the process of the device (always read as 0x001).
REV<5:0>	DEVREV	Encodes the major revision number of the device. 000000 = A 000001 = B 000010 = C
DOT<5:0>	DEVREV	Encodes the minor revision number of the device. 000000 = 0 000001 = 1 000010 = 2 000011 = 3
Examples:		
Rev A.1 = 0000 000	0 0000 0001	
Rev A.2 = 0000 000	0 0000 0010	
Rev B.0 = 0000 000	0 0100 0000	
This formula applies to	o all dsPIC30F device	es, with the exception of the following:
 dsPIC30F6010 dsPIC30F6011 dsPIC30F6012 dsPIC30F6013 dsPIC30F6014 		-
Refer to Table 10-1 fo	r the actual revision II	٦


TABLE 10-3: DEVICE ID BITS DESCRIPTION

11.2.2 REGOUT SERIAL INSTRUCTION EXECUTION


The REGOUT control code allows for data to be extracted from the device in ICSP mode. It is used to clock the contents of the VISI register out of the device over the PGD pin. Once the REGOUT control code is received, eight clock cycles are required to process the command. During this time, the CPU is held idle. After these eight cycles, an additional 16 cycles are required to clock the data out (see Figure 11-3).

The REGOUT instruction is unique because the PGD pin is an input when the control code is transmitted to the device. However, once the control code is processed, the PGD pin becomes an output as the VISI register is shifted out. After the contents of the VISI are shifted out, PGD becomes an input again as the state machine holds the CPU idle until the next 4-bit control code is shifted in.

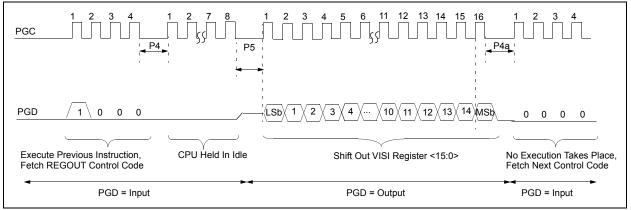

Note: Once the contents of VISI are shifted out, the dsPIC[®] DSC device maintains PGD as an output until the first rising edge of the next clock is received.

TABLE 11-5:SERIAL INSTRUCTION EXECUTION FOR ERASING PROGRAM MEMORY
(EITHER IN LOW-VOLTAGE OR NORMAL-VOLTAGE SYSTEMS) (CONTINUED)

Commar (Binary		Description
		stored in NVMADRU:NVMADR. When W6 rolls over to 0x0, NVMADRU must be
in	cremented.	1
0000	430307	ADD W6, W7, W6
0000	AF0042	BTSC SR, #C
0000	EC2764	INC NVMADRU
0000	883B16	MOV W6, NVMADR
Step 7: Re	eset device internal PC	
0000	040100	GOTO 0x100
0000	000000	NOP
Step 8: Re	epeat Steps 3-7 until al	I rows of code memory are erased.
Step 9: Ini	itialize NVMADR and N	IVMADRU to erase executive memory and initialize W7 for row address updates.
0000	EB0300	CLR W6
0000	883B16	MOV W6, NVMADR
0000	200807	MOV #0x80, W7
0000	883B27	MOV W7, NVMADRU
0000	200407	MOV #0x40, W7
Step 10: S	Set NVMCON to erase	1 row of executive memory.
0000	24071A	MOV #0x4071, W10
0000	883B0A	MOV W10, NVMCON
Step 11: Լ	Jnlock the NVMCON to	erase 1 row of executive memory.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 12: I	nitiate the erase cycle.	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_	-	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and
0000	00000	Timing Requirements")
0000 0000	000000	NOP NOP
0000	A9E761	BCLR NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
Step 13։ Լ	Jpdate the row address	s stored in NVMADR.
0000	430307	ADD W6, W7, W6
0000	883B16	MOV W6, NVMADR
	Reset device internal P	
0000	040100	GOTO 0x100
0000	000000	NOP
		til all 24 rows of executive memory are erased.
		NVMADRU to erase data memory and initialize W7 for row address updates.
0000	2XXXX6	MOV # <lower 16-bits="" address="" data="" eeprom="" of="" starting="">, W6</lower>
0000	883B16	MOV W6, NVMADR
0000 0000	2007F6 883B16	MOV #0x7F, W6
0000	883B16 200207	MOV W6, NVMADRU MOV #0x20, W7
	Set NVMCON to erase	
•		
0000	24075A	MOV #0x4075, W10
0000	883B0A	MOV W10, NVMCON

TABLE 11-5:SERIAL INSTRUCTION EXECUTION FOR ERASING PROGRAM MEMORY
(EITHER IN LOW-VOLTAGE OR NORMAL-VOLTAGE SYSTEMS) (CONTINUED)

Command (Binary)	Data (Hexadecimal)	Description
Step 18: Un	lock the NVMCON to	erase 1 row of data memory.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 19: Init	iate the erase cycle.	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
_	-	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and
		Timing Requirements")
0000	000000	NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
Step 20: Up	date the row address	stored in NVMADR.
0000	430307	ADD W6, W7, W6
0000	883B16	MOV W6, NVMADR
Step 21: Re	set device internal P	С.
0000	040100	GOTO 0x100
0000	000000	NOP
Step 22: Re	peat Steps 17-21 unt	il all rows of data memory are erased.

11.8 Writing Code Memory

The procedure for writing code memory is similar to the procedure for clearing the Configuration registers, except that 32 instruction words are programmed at a time. To facilitate this operation, working registers W0:W5 are used as temporary holding registers for the data to be programmed.

Table 11-8 shows the ICSP programming details, including the serial pattern with the ICSP command code, which must be transmitted Least Significant bit first using the PGC and PGD pins (see Figure 11-2). In Step 1, the Reset vector is exited. In Step 2, the NVMCON register is initialized for single-panel programming of code memory. In Step 3, the 24-bit starting destination address for programming is loaded into the TBLPAG register and W7 register. The upper byte of the starting destination address is stored to TBLPAG, while the lower 16 bits of the destination address are stored to W7.

To minimize the programming time, the same packed instruction format that the programming executive uses is utilized (Figure 8-2). In Step 4, four packed instruction words are stored to working registers W0:W5 using the MOV instruction and the read pointer W6 is initialized. The contents of W0:W5 holding the packed instruction word data is shown in Figure 11-4.

In Step 5, eight TBLWT instructions are used to copy the data from W0:W5 to the write latches of code memory. Since code memory is programmed 32 instruction words at a time, Steps 4 and 5 are repeated eight times to load all the write latches (Step 6).

After the write latches are loaded, programming is initiated by writing to the NVMKEY and NVMCON registers in Steps 7 and 8. In Step 9, the internal PC is reset to 0x100. This is a precautionary measure to prevent the PC from incrementing into unimplemented memory when large devices are being programmed. Lastly, in Step 10, Steps 2-9 are repeated until all of code memory is programmed.

FIGURE 11-5: PACKED INSTRUCTION WORDS IN W0:W5

	15		8	7		0
W0			lsv	v0		
W1		MSB1			MSB0	
W2			lsv	v1		
W3			lsv	v2		
W4		MSB3			MSB2	
W5			lsv	v 3		

Command (Binary)	Data (Hexadecimal)	Description				
Step 1: Exit th	Step 1: Exit the Reset vector.					
0000	040100	GOTO 0x100				
0000	040100	GOTO 0x100				
0000	000000	NOP				
Step 2: Set th	e NVMCON to progr	am 32 instruction words.				
0000	24001A	MOV #0x4001, W10				
0000	883B0A	MOV W10, NVMCON				
Step 3: Initiali	ze the write pointer (W7) for TBLWT instruction.				
0000	200xx0	MOV # <destinationaddress23:16>, W0</destinationaddress23:16>				
0000	880190	MOV W0, TBLPAG				
0000	2xxxx7	MOV # <destinationaddress15:0>, W7</destinationaddress15:0>				
Step 4: Initializ	ze the read pointer (W6) and load W0:W5 with the next 4 instruction words to program.				
0000	2xxxx0	MOV # <lsw0>, W0</lsw0>				
0000	2xxxx1	MOV # <msb1:msb0>, W1</msb1:msb0>				
0000	2xxxx2	MOV # <lsw1>, W2</lsw1>				
0000	2xxxx3	MOV # <lsw2>, W3</lsw2>				
0000	2xxxx4	MOV # <msb3:msb2>, W4</msb3:msb2>				
0000	2xxxx5	MOV # <lsw3>, W5</lsw3>				

TABLE 11-8: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY

11.12 Reading Data Memory

The procedure for reading data memory is similar to that of reading code memory, except that 16-bit data words are read instead of 24-bit words. Since less data is read in each operation, only working registers W0:W3 are used as temporary holding registers for the data to be read.

Table 11-12 shows the ICSP programming details for reading data memory. Note that the TBLPAG register is hard-coded to 0x7F (the upper byte address of all locations of data memory).

TABLE 11-12: SERIAL INSTRUCTION EXECUTION FOR READING DATA MEMORY

Command (Binary)	Data (Hexadecimal)	Description
Step 1: Exit t	he Reset vector.	
0000	040100	GOTO 0x100
0000	040100	GOTO 0x100
0000	000000	NOP
Step 2: Initial	lize TBLPAG and	the read pointer (W6) for TBLRD instruction.
0000	2007F0	MOV #0x7F, WO
0000	880190	MOV W0, TBLPAG
0000	2xxxx6	MOV # <sourceaddress15:0>, W6</sourceaddress15:0>
Step 3: Initial		er (W7) and store the next four locations of code memory to W0:W5.
0000	EB0380	CLR W7
0000	000000	NOP
0000	BA1BB6	TBLRDL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BA1BB6	TBLRDL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BA1BB6	TBLRDL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BA1BB6	TBLRDL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
Step 4: Outp	ut W0:W5 using th	ne VISI register and REGOUT command.
0000	883C20	MOV W0, VISI
0000	000000	NOP
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
0000	883C21	MOV W1, VISI
0000	000000	NOP
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
0000	883C22	MOV W2, VISI
0000	000000	NOP
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
0000	883C23	MOV W3, VISI
0000	000000	NOP
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
Step 5: Rese	t device internal F	PC.
0000	040100	GOTO 0x100
0000	000000	NOP

12.0 PROGRAMMING THE PROGRAMMING EXECUTIVE TO MEMORY

12.1 Overview

If it is determined that the programming executive does not reside in executive memory (as described in Section 4.0 "Confirming the Contents of Executive Memory"), it must be programmed into executive memory using ICSP and the techniques described in Section 11.0 "ICSP™ Mode". Storing the programming executive to executive memory is similar to normal programming of code memory. The executive memory must first be erased, and then the programming executive must be programmed 32 words at a time. This control flow is summarized in Table 12-1.

Command (Binary)	Data (Hexadecimal)	Description
Step 1: Exit th	e Reset vector and	erase executive memory.
0000	040100	GOTO 0x100
0000	040100	GOTO 0x100
0000	000000	NOP
Step 2: Initializ	ze the NVMCON to	erase executive memory.
0000	24072A	MOV #0x4072, W10
0000	883B0A	MOV W10, NVMCON
Step 3: Unloc	k the NVMCON for p	programming.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 4: Initiate	e the erase cycle.	
0000	A8E761	BSET NVMCON, #15
0000	000000	NOP
0000	000000	NOP
-	-	Externally time 'P13a' ms (see Section 13.0 "AC/DC Characteristics and
		Timing Requirements")
0000	000000	NOP
0000	000000	NOP
0000	A9E761	BCLR NVMCON, #15
0000	000000	NOP NOP
•		the write pointer (W7).
0000	200800	MOV #0x80, WO
0000	880190	MOV W0, TBLPAG CLR W7
0000	EB0380 000000	CLR W7 NOP
0000	000000	NOP
		program 32 instruction words.
0000	24001A	MOV #0x4001, W10
0000	883B0A	MOV W10, NVMCON
Step 7: Load progra	W0:W5 with the nex	t 4 words of packed programming executive code and initialize W6 for ng starts from the base of executive memory (0x800000) using W6 as a read
0000	2 <lsw0>0</lsw0>	MOV # <lswo>, WO</lswo>
0000	2 <msb1:msb0>1</msb1:msb0>	MOV # <msb1:msb0>, W1</msb1:msb0>
0000	2 <lsw1>2</lsw1>	MOV # <lsw1>, W2</lsw1>
0000	2 <lsw2>3</lsw2>	MOV # <lsw2>, W3</lsw2>
0000	2 <msb3:msb2>4</msb3:msb2>	MOV # <msb3:msb2>, W4</msb3:msb2>
0000	2 <lsw3>5</lsw3>	MOV # <lsw3>, W5</lsw3>

TABLE 12-1: PROGRAMMING THE PROGRAMMING EXECUTIVE

(Binary)	d Data) (Hexadecim	Description
	•	W6) and load the (next four write) latches.
•		
0000 0000	EB0300 000000	CLR W6 NOP
0000		
	BB0BB6 000000	TBLWTL [W6++], [W7]
0000		NOP
0000	000000	NOP TBLWTH.B [W6++], [W7++]
0000	BBDBB6	
0000	000000	NOP
0000	000000 BBEBB6	
0000		TBLWTH.B [W6++], [++W7]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BB0BB6	TBLWTL [W6++], [W7]
0000	000000	NOP
0000	000000	NOP
0000	BBDBB6	TBLWTH.B [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BBEBB6	TBLWTH.B [W6++], [++W7]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
	· · · ·	ht times to load the write latches for the 32 instructions.
Step 10: 0		N for programming.
0000	200558	MOV #0x55, W8
0000	883B38	MOV W8, NVMKEY
0000	200AA9	MOV #0xAA, W9
0000	883B39	MOV W9, NVMKEY
Step 11: In	itiate the programr	ning cycle.
0000	A8E761	BSET NVMCON, #15
0000		NOD
	000000	NOP
0000	000000 000000	NOP
0000 0000		
0000 0000	000000	NOP Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and
0000 0000 -	000000	NOP
0000 0000 - 0000	000000	NOP Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and Timing Requirements")
0000 0000 0000 0000	000000 000000	NOP Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and Timing Requirements") NOP
0000 0000 - 0000 0000 0000	000000 - 000000 000000	NOP Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and Timing Requirements") NOP NOP
0000 0000 	000000 000000 000000 A9E761	NOP Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and Timing Requirements") NOP NOP BCLR NVMCON, #15
0000 0000 0000 0000 0000 0000	000000 000000 000000 A9E761 000000	NOP Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and Timing Requirements") NOP NOP BCLR NVMCON, #15 NOP NOP
0000 0000 0000 0000 0000 0000	000000 000000 000000 A9E761 000000 000000	NOP Externally time 'P12a' ms (see Section 13.0 "AC/DC Characteristics and Timing Requirements") NOP NOP BCLR NVMCON, #15 NOP NOP

TABLE 12-1: PROGRAMMING THE PROGRAMMING EXECUTIVE (CONTINUED)

13.0 AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS

TABLE 13-1: AC/DC CHARACTERISTICS

AC/DC C	HARACTE	RISTICS	Standard Operating Conditions (unless otherwise stated) Operating Temperature: 25° C is recommended			
Param. No.	Sym	Characteristic	Min	Мах	Units	Conditions
D110	Vінн	High Programming Voltage on MCLR/VPP	9.00	13.25	V	_
D112	IPP	Programming Current on MCLR/VPP	_	300	μA	_
D113	IDDP	Supply Current during programming	_	30	mA	Row Erase Program memory
				30	mA	Row Erase Data EEPROM
			—	30	mA	Bulk Erase
D001	Vdd	Supply voltage	2.5	5.5	V	—
D002	VDDBULK	Supply voltage for Bulk Erase programming	4.5	5.5	V	—
D031	VIL	Input Low Voltage	Vss	0.2 Vss	V	—
D041	Vih	Input High Voltage	0.8 Vdd	Vdd	V	—
D080	Vol	Output Low Voltage	—	0.6	V	IOL = 8.5 mA
D090	Voн	Output High Voltage	Vdd - 0.7	—	V	Іон = -3.0 mA
D012	Сю	Capacitive Loading on I/O Pin (PGD)	_	50	pF	To meet AC specifications
P1	TSCLK	Serial Clock (PGC) period	50	—	ns	ICSP™ mode
			1	—	μs	Enhanced ICSP mode
P1a	TSCLKL	Serial Clock (PGC) low time	20	—	ns	ICSP mode
			400	_	ns	Enhanced ICSP mode
P1b	TSCLKH	Serial Clock (PGC) high time	20	—	ns	ICSP mode
			400	—	ns	Enhanced ICSP mode
P2	TSET1	Input Data Setup Timer to PGC \downarrow	15	—	ns	—
P3	THLD1	Input Data Hold Time from PGC \downarrow	15	—	ns	—
P4	TDLY1	Delay between 4-bit command and command operand	20	—	ns	—
P4a	TDLY1a	Delay between 4-bit command operand and next 4-bit command	20	—	ns	—
P5	TDLY2	Delay between last PGC ↓of command to first PGC ↑ of VISI output	20	—	ns	—
P6	TSET2	VDD ↑ setup time to MCLR/VPP	100	—	ns	_
P7	THLD2	Input data hold time from MCLR/VPP ↑	2	_	μs	ICSP mode
			5		ms	Enhanced ICSP mode
P8	TDLY3	Delay between last PGC ↓of command word to PGD driven ↑ by programming executive	20	—	μs	-
P9a	TDLY4	Programming Executive Command processing time	10	—	μs	—

AC/DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating Temperature: 25° C is recommended			
Param. No. Sym Characteristic		Characteristic	Min	Мах	Units	Conditions
P9b	TDLY5	Delay between PGD ↓by programming executive to PGD released by programming executive	15	_	μs	—
P10	TDLY6	Delay between PGD released by programming executive to first PGC ↑ of response	5	_	μs	_
P11	TDLY7	Delay between clocking out response words	10	—	μs	-
P12a	TPROG	Row Programming cycle time	1	4	ms	ICSP mode
P12b	TPROG	Row Programming cycle time	0.8	2.6	ms	Enhanced ICSP mode
P13a	Tera	Bulk/Row Erase cycle time	1	4	ms	ICSP mode
P13b	Tera	Bulk/Row Erase cycle time	0.8	2.6	ms	Enhanced ICSP mode

TABLE 13-1: AC/DC CHARACTERISTICS (CONTINUED)

APPENDIX A: DEVICE-SPECIFIC INFORMATION

A.1 Checksum Computation

The checksum computation is described in **Section 6.8 "Checksum Computation"**. Table A-1 shows how this 16-bit computation can be made for each dsPIC30F device. Computations for read code protection are shown both enabled and disabled. The checksum values assume that the Configuration registers are also erased. However, when code protection is enabled, the value of the FGS register is assumed to be 0x5.

A.2 dsPIC30F5011 and dsPIC30F5013

A.2.1 ICSP PROGRAMMING

The dsPIC30F5011 and dsPIC30F5013 processors require that the FBS and FSS registers be programmed with 0x0000 before the device is chip erased. The steps to perform this action are shown in Table 11-4.

A.2.2 ENHANCED ICSP PROGRAMMING

The dsPIC30F5011 and dsPIC30F5013 processors require that the FBS and FSS registers be programmed with 0x0000 using the PROGC command before the ERASEB command is used to erase the chip.

Device	Read Code Protection	Checksum Computation	Erased Value	Value with 0xAAAAAA at 0x0 and Last Code Address
dsPIC30F2010	Disabled	CFGB+SUM(0:001FFF)	0xD406	0xD208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F2011	Disabled	CFGB+SUM(0:001FFF)	0xD406	0xD208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F2012	Disabled	CFGB+SUM(0:001FFF)	0xD406	0xD208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3010	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3011	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3012	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3013	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F3014	Disabled	CFGB+SUM(0:003FFF)	0xA406	0xA208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F4011	Disabled	CFGB+SUM(0:007FFF)	0x4406	0x4208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F4012	Disabled	CFGB+SUM(0:007FFF)	0x4406	0x4208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F4013	Disabled	CFGB+SUM(0:007FFF)	0x4406	0x4208
	Enabled	CFGB	0x0404	0x0404
dsPIC30F5011	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404
dsPIC30F5013	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404
dsPIC30F5015	Disabled	CFGB+SUM(0:00AFFF)	0xFC06	0xFA08
	Enabled	CFGB	0x0404	0x0404

TABLE A-1: CHECKSUM COMPUTATION

Item Description:

SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory)

CFGB = Configuration Block (masked) = Byte sum of ((FOSC&0xC10F) + (FWDT&0x803F) + (FBORPOR&0x87B3) + (FBS&0x310F) + (FSS&0x330F) + (FGS&0x0007) + (FICD&0xC003))

APPENDIX C: REVISION HISTORY

Note: Revision histories were not recorded for revisions A through H. The previous revision (J), was published in August 2007.

Revision K (November 2010)

This version of the document includes the following updates:

- Added Note three to Section 5.2 "Entering Enhanced ICSP Mode"
- Updated the first paragraph of Section 10.0 "Device ID"
- Updated Table 10-1: Device IDs
- Removed the VARIANT bit and updated the bit definition for the DEVID register in Table 10-2: dsPIC30F Device ID Registers
- Removed the VARIANT bit and updated the bit field definition and description for the DEVID register in Table 10-3: Device ID Bits Description
- Updated Note 3 in Section 11.3 "Entering ICSP Mode"
- Updated Step 11 in Table 11-4: Serial Instruction Execution for BUIk Erasing Program Memory (Only in Normal-voltage Systems)
- Updated Steps 5, 12 and 19 in Table 11-5: Serial Instruction Execution for Erasing Program Memory (Either in Low-voltage or Normal-voltage Systems)
- Updated Steps 5, 6 and 8 in Table 11-7: Serial Instruction Execution for Writing Configuration Registers
- Updated Steps 6 and 8 in Table 11-8: Serial Instruction Execution for Writing Code Memory
- Updated Steps 6 and 8 in Table 11-9: Serial Instruction Execution for Writing Data EEPROM
- Updated Entering ICSP[™] Mode (see Figure 11-4)
- Updated Steps 4 and 11 in Table 12-1: Programming the Programming Executive
- Renamed parameters: P12 to P12a and P13 to P13a, and added parameters P12b and P13b in Table 13-1: AC/DC Characteristics